TRAITÉ

ÞΕ

BALISTIQUE

PAR

LE GÉNÉRAL DIDION.

DEUXIÈME ÉDITION,

REVUE ET AUGMENTÉE.

PARIS.

J. DUMAINE, Libraire-éditeur de l'Empereur, rue et passage Dauphine, 30.

MALLET-BACHELIER,

Impriment-libraire de l'École polytechnique, du Burcau des longitudes, quai des Augustins, 55.

1860.

TRADUCTION ET REPRODUCTION RÉSERVÉES.

AVANT-PROPOS.

La Balistique, ou la Science du Mouvement des Projectiles, a été depuis longtemps l'objet des recherches des géomètres les plus distingués et des praticiens les plus habiles. Avant leurs recherches, on avait des idées très-fausses sur la nature de ce mouvement.

Galilée, en combinant le principe de la composition des mouvements provenant de différentes causes avec les lois de l'accélération des graves, démontra que la courbe décrite par les projectiles serait une parabole sans la résistance que l'air oppose au mouvement des mobiles.

Newton voulut tenir compte de cette résistance et il établit qu'elle était proportionnelle au carré de la vitesse du mobile; mais il ne donna aucune méthode pour la détermination effective de la trajectoire.

Jean Bernouilly ramena aux quadratures la solution de la question, dans l'hypothèse la plus générale sur la loi de la résistance du milieu.

Euler, en supposant la résistance proportionnelle au carré de la vitesse du mobile, donna l'expression finie de la longueur d'un arc de la trajectoire compris entre deux points où l'inclinaison de la tangente est connue; en partant de l'inclinaison donnée et en considérant des arcs d'amplitudes diverses terminés sous des inclinaisons choisies arbitrairement et présentant des différences de

plus en plus petites, il en détermina les longueurs; en les projetant ensuite, comme s'ils étaient des lignes droites ayant une inclinaison moyenne, il obtint les deux coordonnées de chacun des points de la trajectoire qui répondent aux inclinaisons arbitrairement choisies. Il détermina également la vitesse du mobile en chaque point et, par son moyen, la durée du trajet parcouru.

Legendre, pour corriger la méthode d'Euler, substitua aux lignes droites des arcs de cercles osculateurs ayant respectivement, aux deux extrémités, les mêmes inclinaisons que dans la trajectoire.

Lambert employa la méthode des développements en séries; cette méthode fut suivie ensuite par Borda, Tempelhoff et Français.

Pour éviter les longs calculs que nécessitent ces procédés dans l'application, les géomètres ont cherché à modifier l'expression de la résistance de l'air de manière à rendre l'intégration possible. Borda a ouvert cette voie, il fut suivi par Besout, Legendre et Français.

D'un autre côté, des expériences furent entreprises pour déterminer la résistance de l'air au mouvement des corps, par Newton, Robins, Borda, Hutton, sans qu'on soit arrivé à la représenter exactement.

Les nombreux travaux que nous signalons prouveraient, s'il en était besoin, la difficulté de la question balistique et son importance. C'est en vain, d'ailleurs, qu'on voudrait essayer de la résoudre par l'expérience seule. Dans quelques circonstances, comme dans le tir de plein fouet, il semble qu'on peut se passer de la connaissance du mouvement des projectiles, et qu'un petit nombre d'expériences doit suffire pour déterminer l'angle de projection qui permet de frapper un objet à une distance donnée; que, de plus, on pourrait y arriver par quelques tâtonnements lorsqu'on ne connaît qu'imparfaitement cette distance. Mais on ne saurait se passer de connaître les vitesses, les durées et les angles de

chute; ils sont indispensables dans un grand nombre de cas.

On remarquera, d'un autre côté, que les problèmes de balistique ne sont pas de ceux qu'on peut toujours résoudre par le seul emploi de tables construites pour chaque genre de questions. Celles-ci seraient trop multipliées, trop étendues, et d'ailleurs certaines d'entre elles ne pourraient être dressées d'après l'expérience seule; elles exigeraient des opérations trop multipliées et des dispositifs trop dispendieux. Les expériences servent essentiellement à fournir certaines données, indispensables dans les applications, et à vérifier l'exactitude des formules.

Cependant, malgré leurs recherches, les géomètres ne sont pas parvenus à des formules qui puissent représenter toujours les résultats de l'expérience avec une exactitude suffisante. Plusieurs causes y ont contribué : d'une part, l'expression de la résistance de l'air a été basée en partie sur des expériences faites dans des circonstances qui différaient de celles du mouvement des projectiles ; de l'autre, cette résistance a été inexactement représentée par un seul terme proportionnel au carré de la vitesse.

Depuis 1836, des recherches et des expériences nouvelles ont été entreprises pour déterminer et pour exprimer les lois de la résistance des fluides au mouvement des corps; dans le cas particulier des grandes vitesses des projectiles de l'artillerie, au terme proportionnel au carré de la vitesse, M. le général Piobert a été amené à ajouter un terme proportionnel au cube de cette même vitesse.

Chargé de professer la Balistique à l'École d'application de l'artillerie et du génie à Metz, j'ai dù m'occuper de la question dès 1837. J'ai bientôt reconnu que la difficulté ne résidait pas tant dans la méthode du calcul que dans l'hypothèse sur la loi de la résistance de l'air. Mais, si l'hypothèse simple de la résistance proportionnelle au

carré de la vitesse avait conduit à des solutions inexactes et dont néanmoins la complication forçait encore à se contenter d'un certain degré d'approximation, n'était-il pas à craindre que l'expression binôme de la résistance ne conduisit à des formules trop compliquées dans les applications au tir des projectiles?

Cependant, j'étais parvenu à des formules très-simples et à réunir, au moyen de tables spéciales, l'exactitude et la facilité du calcul.

Cela me permit de publier, en 1847, un Traité de Balistique qui satissit à un besoin réel; il sut bientôt adopté pour l'enseignement dans les écoles militaires. L'édition ne tarda pas à s'épuiser. Mais avant d'en entreprendre une autre, j'ai dù saire les nouvelles recherches que j'ai publiées sous le titre: Lois de la résistance de l'air sur les projectiles, in-8°, 1857, et qui permettent d'adopter avec consiance les coefficients de la résistance de l'air employés. J'ai pu, dès lors, donner de nombreux exemples numériques, asin de faciliter l'application des formules aux divers cas de la pratique.

En préparant la première édition de ce traité, j'avais eu l'intention de donner des règles applicables aux déviations des projectiles et à la probabilité d'atteindre des buts de formes et de dimensions déterminées; mais, les nombreux résultats d'observations qu'il eut fallu rapporter, eussent étendu l'ouvrage outre mesure. J'ai traité cette question sous le titre: Calcul des probabilités appliqué au tir des projectiles, in-8°, 1858, et j'ai pu, dès lors, dans cette nouvelle édition, me borner à un résumé qui suffira aux applications usuelles.

Je vais exposer sommairement la marche que j'ai suivie dans la deuxième édition de ce traité et qui ne diffère pas sensiblement de celle que j'ai adoptée dans la première.

Ce traité est divisé en dix sections.

La première section comprend les lois du mouvement des projectiles dans le vide. Elles sont fort simples dans cette hypothèse, et l'on arrive facilement à exprimer les relations dont on pourrait avoir besoin. Elles s'éloignent peu de la vérité dans certains cas de la pratique; tel est le tir des bombes où les projectiles sont de grand diamètre et de grande densité, et où, en même temps, les vitesses et les portées sont peu considérables.

La seconde section traite des lois de la résistance de l'air. On doit distinguer les expériences aux faibles vitesses, qui s'exécutent au moyen de certains appareils, des expériences aux grandes vitesses, qui ne peuvent être faites qu'au moyen du tir des projectiles avec des bouches à feu.

Jusqu'à ces derniers temps on ne possédait que les expériences de Hutton, exécutées sur des projectiles de petit calibre, lorsque M. le Ministre de la guerre, sur la demande du Comité de l'artillerie, institua à Metz, en 1833, une Commission chargée de rechercher les lois qui doivent servir à l'établissement des principes du tir. A la même époque, l'Académie des sciences faisait le sujet du grand prix de physique de la question de la résistance des fluides au mouvement des corps. Le Comité de l'artillerie et l'Académic donnèrent bientôt leur approbation à un travail présenté en commun par MM. Piobert, Morin et moi. Les expériences de 1839 et de 1840, faites pour déterminer la résistance de l'air sur des projectiles de différents calibres et animés de grandes vitesses, me permirent de déterminer avec plus d'exactitude la loi de cette résistance, et je repris de nouveau ces recherches qui furent, comme je l'ai dit, publiées en 1857. Ces expériences se continuent d'ailleurs encore à Metz, sur les nouveaux projectiles, par les soins de la Commission des principes du tir.

La section III comprend les lois du mouvement des projectiles, sous des angles de projection quelconques et avec l'expression binôme de la résistance de l'air. Sous les grands angles de projection, l'équation dissérentielle de la trajectoire n'est pas intégrable; mais on arrive à l'équation approchée d'un arc d'une certaine amplitude lorsque, dans cette étendue, on remplace la valeur variable du rapport d'un élément à sa projection par sa valeur moyenne, dans les termes où elle est multipliée par les coefficients de la résistance; on obtient ainsi, pour un point quelconque de cet arc et en fonction de l'abscisse, l'ordonnée, l'inclinaison de la tangente, la durée du trajet et la vitesse du projectile.

Les expressions de ces quantités sont très-simples; elles ne diffèrent de celles du mouvement qui avait lieu dans le vide qu'en ce que certains termes sont multipliés par une fonction de l'abscisse; cette fonction a cela de remarquable qu'elle ne dépend pas de la distance absolue du but ni des dimensions des projectiles, mais seulement du rapport de l'abscisse au coeficient du premier terme de la résistance et du rapport de la vitesse au quotient des deux coefficients; de cette façon, au moyen des tables qui ont été calculées avec l'exactitude désirable, et qui s'appliquent à tous les projectiles indépendamment des coefficients de la résistance, les quantités ci-dessus indiquées peuvent être déterminées avec une grande facilité.

Le nombre des arcs partiels à considérer n'est jamais considérable; de plus, dans le tir ordinaire des lourds projectiles, comme les bombes, sous de grands angles de projection et aux distances auxquelles ce tir conserve encore assez d'efficacité, et pour lequel les vitesses sont faibles, il n'est pas nécessaire de considérer la trajectoire comme divisée en plusieurs arcs distincts.

Lorsque les projectiles, comme les boulets et les obus, sont animés d'une grande vitesse, les angles de projection restent très-petits, afin que les portées ne dépassent pas celles où les déviations ne sont pas trop considérables. Alors, l'inclinaison des divers éléments de la trajectoire est très-faible, et leur rapport avec leur pro-

jection horizontale peut être regardé comme égal à l'unité dans les termes où il multiplie les coefficients de la résistance de l'air. Les formules, dans ce second cas, se déduisent immédiatement de celles du premier et deviennent très-simples; on arrive ainsi à la solution des divers problèmes qui peuvent se présenter dans l'application : c'est là l'objet de la section IV. On passe d'ailleurs avec une extrême facilité au cas où l'on suppose la résistance proportionnelle au simple carré de la vitesse.

Dans la section V se trouvent résumés et ramenés à des notations communes, qui permettent d'en mieux saisir l'ensemble, les travaux faits dans l'hypothèse de la résistance proportionnelle au carré de la vitesse, par Euler, Lambert, Borda, Legendre, Français, etc., etc.; j'ai indiqué les perfectionnements dont plusieurs des méthodes sont encore susceptibles; quelques-uns de ces travaux n'ont pas eu d'autre publicité que dans la première édition de ce traité.

Présentés au Comité de l'artillerie et à l'Académie des sciences, ces résultats analytiques avaient été accueillis favorablement. M. le Ministre de la guerre, sur le rapport du Comité de l'artillerie du 16 novembre 1845, m'avait engagé à les publier le plus tôt possible dans l'intérêt de l'enseignement à l'École d'application et aux Écoles régimentaires, et l'Académie des sciences, sur le rapport de M. Duhamel, le 23 mars 1846, en a voté l'insertion dans le Recueil des Savants étrangers (tome X).

Encouragé par des suffrages aussi honorables et par l'utilité, la facilité, l'exactitude que j'en avais retiré dans de nombreuses applications, je n'ai pas dù hésiter à en commencer la publication en 1846.

Mais, là ne devait pas se borner un Traité de Balistique; il devait conduire des théories du mouvement aux applications pratiques les plus simples.

Le tracé des trajectoires et la solution graphique d'un grand nombre de problèmes de balistique contenus dans

la section VI, permettent d'obtenir, par des tracés faciles et avec une exactitude suffisante, ce que donnent la plupart des formules des sections III et IV; mais avec l'avantage, que l'on a su apprécier, de parler davantage aux yeux. Ces solutions n'ont d'ailleurs pas de ressemblance avec les tracés antérieurement exécutés de certaines fonctions, et qui sont d'un emploi difficile et embarrassant.

La loi des pénétrations dans les milieux résistants se lie intimement avec le mouvement des projectiles dans l'air; elle fait le sujet de la section VII. Les formules qu'on en déduit permettent d'estimer les effets dans les milieux résistants des projectiles des divers calibres et à diverses distances.

La connaissance des vitesses initiales des projectiles est indispensable dans les applications au tir des bouches à feu. On a indiqué dans la section VIII les divers moyens qui ont été employés pour les déterminer, et en particulier le pendule balistique; cet instrument est actuellement en France employé pour des épreuves habituelles, et il est susceptible d'une grande précision; j'ai donné à ce sujet des formules de correction dont de nombreuses applications ont prouvé l'exactitude et l'utilité; mais depuis la publication de la première édition, de nouveaux procédés de mesure au moyen d'appareils électro-balistiques, ont donné lieu à des recherches nouvelles et plus étendues. Les résultats connus, analysés avec soin, n'ont pas donné lieu à modifier les lois admises.

Il était nécessaire de reconnaître si les formules des sections III et IV représentaient exactement le mouvement des projectiles dans l'air : on l'a fait dans la section IX; c'est une épreuve qu'ont tentée à plusieurs reprises les géomètres et les praticiens; mais, ces épreuves n'ont pas toujours été couronnées de succès, quoiqu'on se donnât presqu'arbitrairement la vitesse initiale et le coefficient de la résistance de l'air. Le désaccord tenait en partie à l'inexactitude de l'expression monôme de la résistance;

l'expression binôme que nous avons employée et l'observation que la ligne de projection dissère généralement un peu de la direction prolongée de l'axe de la bouche à seu, nous a donné beaucoup plus d'exactitude. Ainsi, pour les hauteurs moyennes des trajectoires d'un très-grand nombre de coups, l'accord entre les formules nouvelles et l'observation a dépassé de beaucoup-l'exactitude qu'on peut demander dans les applications les plus précises. Il en a été de même en ce qui concerne les balles sphériques.

Cependant, on est conduit à reconnaître que la force verticale de la pesanteur et la résistance de l'air, qui est tangente à la trajectoire, ne sont pas les seules forces à considérer; le mouvement de rotation habituel des projectiles est la cause de nouvelles résistances latérales: celles-ci font suivre au projectile une trajectoire différente de celle qu'il suivrait s'il n'était soumis qu'aux deux premières forces. Une force constante et verticale suffit pour représenter les hauteurs moyennes des projectiles: mais, dans le mouvement d'un projectile en particulier. on reconnaît que la force déviatrice est variable dans la longueur du traiet, non-seulement en grandeur, mais encore en direction. Dans la section IX, j'ai recherché quelles sont les diverses causes de déviations, et j'ai donné le moyen d'en calculer la grandeur et les effets souvent fort bizarres.

Dans cette deuxième édition, j'ai donné l'importance qu'elle comporte à la théorie du mouvement des projectiles oblongs tirés dans des canons rayés et qui sont par cela même animés d'un mouvement de rotation. Ce mouvement, dont il était moins utile de s'occuper précédemment, est cause d'une dérivation considérable, tant dans le plan vertical, que dans le plan horizontal. Je suis arrivé très-simplement aux formules de ce mouvement.

Des principes sur le pointage des bouches à feu et l'application à la pratique, le calcul des hausses, les corrections à apporter dans certains cas, sont contenus dans la section X. Celle-ci comprend aussi des tables qui donnent la relation des vitesses des projectiles aux poids des charges de poudre dans les bouches à feu et dans les armes à feu en usage en France, et les formules qu'on peut employer pour déterminer approximativement ces vitesses dans les autres cas.

Cette section comprend encore les moyens de former les tables de tir, tant pour les boulets sphériques avec les canons lisses, que pour les boulets oblongs avec les canons rayés.

Désirant rendre les applications plus faciles, les réduire pour ainsi dire à un mécanisme de calcul, j'ai donné dans un résumé les diverses formules dont l'application peut se présenter. Des renvois permettront de recourir facilement au texte quand il en sera besoin, soit pour des explications, soit pour des applications spéciales.

Enfin, je me suis efforcé de réduire la longueur des opérations numériques en calculant des tables spéciales. Les plus importantes et les plus étendues sont celles des fonctions par lesquelles les formules du mouvement dans l'air diffèrent de celles du mouvement dans le vide. Elles sont assez étendues pour les applications ordinaires, et il n'y a que quelques cas exceptionnels où l'on sera obligé de calculer de nouveaux nombres. J'y ai ajouté des tables auxiliaires qui simplifient beaucoup le plus grand nombre des problèmes et des extraits des tables des lignes trigonométriques naturelles d'une étendue convenable. Ces tables, jointes au résumé, formeraient ensemble un manuel qui suffirait aux applications. C'est ce qui a été fait pour l'Aide-Mémoire des officiers d'artillerie, en 1856.

Je présente avec confiance les théories que j'ai exposées, parce qu'ayant eu à en faire un grand nombre d'applications, j'en ai pu reconnaître l'utilité et l'exactitude.

Août 1860.

TABLE DES MATIÈRES.

AVANT-PROPOS.	PAG
1, 2. Définition et objet	1
SECTION I. — Houvement des projectiles dans le vide	0.
3. Utilité des lois du mouvement des projectiles dans le vide. — 4. Exposition de la théorie du mouvement des projectiles dans le vide. — 5. Équation de la trajectoire dans le vide. — 6. La trajectoire dans le vide est une parabole dont l'axe est vertical	3
7, 8. Amplitude et hauteur du jet. — 9. Sous des angles de projection également éloignés de 45°, les portées sont égales. — 10. Angle de plus grande portée et valeur de cette portée. — 11. Propriétés de l'angle de plus grande portée. — 12. Rapport entre les portées, les vitesses ini-	
tiales et les angles de projection	7
	11
initiale, soit l'angle de projection. — 18. Relation entre les deux angles, sous lesquels, avec une vitesse initiale donnée, on peut atteindre le but. — 19. Cas où ces deux angles se réduisent en un seul. — 20. Angle de plus grande portée, sur un plan incliné	14
passer par deux points donnés. — 22. Vitesse initiale et angle de projection d'un projectile qui doit arriver à	

XVł	TABLE DES MATIÈRES.	
	n point déterminé sous une inclinaison donnée avec corizontale	18
	SECTION II. — Résistance de l'air.	
de	Influence de la résistance de l'air sur le mouvement s projectiles; nécessité d'en tenir compte	22
da	omparaison des durées observées et des durées calculées uns le jet des bombes. — 26. Comparaison des portées us différents angles	23
27, 28. 29 sid	Notions préliminaires sur la résistance des fluides. — 9. Masse de fluide qui accompagne les corps. — 30. Con- dérations théoriques. — 31. Cas du mouvement varié. 1. 32. Influence de la compressibilité du milieu et de la	
34. E: fit ps	riation de la densité. — 33. Influence de la forme des rps sur l'intensité absolue de la résistance de l'air aposé des expériences concernant la résistance des nides, dans le mouvement de rotation. — 35, 36. Apareils employés. — 37, 38. Résultats des expériences. — 39, 40. Expériences sur le mouvement rectiligne. — Résistance dans le cas où le fluide est en mouvement	27
, co 46, 47, m de 51	le corps en repos. — 42, 43, 44, 45. Résistance des rps de diverses formes en mouvement dans un fluide. 48. Lois de la résistance de l'air à de grandes vitesses; oyen de la déterminer. — 49. Résultats des expériences e Hutton. — 50. Formule de M. le général Piobert. — . Premières expériences de Metz, en 1839. — 52. Ré-	35
53. N ve es mi	ltats des expériences de Metz, en 1839 et 1840 ouveau calcul des expériences de Hutton. — 54. Nou- eau calcul des expériences de Metz. — 55. La formule t indépendante du calibre des projectiles. — 56. Li- ite des vitesses que les projectiles peuvent acquérir par ur chute dans l'air. — 57. Expériences avec le pendule ectro-balistique	49 62
58. Ca	alcul de la densité de l'air. — 59. Table de la densité	75
	FION III. — Mouvement des projectiles dans l'ai:	• -

63. Equation finie d'un arc de la trajectoire. — 64. Inclinarson, durée, vitesse, expression de la durée du trajet	
en fonction de la vitesse à l'extrémité de ce trajet.	
65. Vitesse	90
66, 67. Relations entre les facteurs par lesquelles les équa-	
tions du mouvement dans l'air diffèrent de celles du	
mouvement dans le vide. — 68. Simplifications lorsqu'on	
suppose la résistance de l'air proportionnelle au carré de	
la vitesse. — 69. Tables des valeurs représentées par les	
caractéristiques F et F. — 70. Tables des valeurs représentées par les caractéristiques & et 5 (tab. X). —	
71. Table XI des valeurs représentées par les caractéris-	
tiques \mathfrak{O} et \mathfrak{Q} . — 72. Tables à trois décimales pour les	
valeurs 15, 5, 70 et (i)	98
73. Propriétés générales du mouvement des projectiles dans	•
l'air. — Vitesse. — 74. Asymptotes. — 75. Rayon de	
courbure	112
76. Rapport d'un arc à sa projection. — 77. Choix des points	
	116
78. Valeur de la projection d'un arc en fonction des incli-	
	123
81. Trajectoire des bombes considérée comme arc unique.	
- 82, 83. Solution des divers problèmes sur le jet des	
bombes. — Portées. — 84. Vitesse initiale d'un projectile	
qui doit avoir une portée déterminée. — 85. Cas où les portées sont peu considérables. — 86. Projectile qui doit	
passer par un point donné. — 87. Cas où les portées	
sont peu considérables. — 88. Angle de projection. —	
89. Angle et vitesse de chute, durée du trajet. — 90. De	
l'angle de plus grande portée	138
	100
SECTION IV Mouvement des projectiles sous les pe	tits
angles de projection.	
§ I. — TIR SOUS LES PETITS ANGLES.	
91. Simplifications	155
92. Solution des divers problèmes; lorsque le but n'est pas	
à hauteur de la bouche à feu. — Vitesse initiale. —	
93. Angle de projection. — 94. Vitesse et angle de pro-	
jection d'un projectile qui doit passer par deux points	
donnés. — 95. Vitesse et angle de projection d'un pro-	

jectile qui doit passer par un point donné; sous une inclinaison déterminée. — 96. Remarque	169 173
§ II. — MOUVEMENT DES PROJECTILES, ABSTRACTION FAITI DE LA PESANTEUR.	E
104. Mouvement des projectiles, abstraction faite de l'effet de la pesanteur. — 105. Les longueurs et les durées des trajets de deux projectiles différents qui passent d'une vitesse donnée à une autre vitesse donnée, sont proportionnelles au produit des diamètres par les densités. — 106. Démonstration directe. — 107. Tables fondées sur le principe précédent. — 108. Application au tir à grandes vitesses, sous de très-petits angles de projection.	177
§ III. — HYPOTHÈSE DE LA RÉSISTANCE DE L'AIR, PROPORTIONNE AU CARRÉ DE LA VITESSE DU MOBILE.	ELLE
 109. Circonstances dans lesquelles la résistance de l'air peut être représentée par un seul terme proportionnel au carré de la vitesse du projectile. — Simplifications qui en résultent. — 110. Formules qui résultent de l'hypothèse de la résistance de l'air, proportionnelle au carré de la vitesse	
sous une inclinaison donnée	

SECTION V. — Houvement des projectiles, en suppens la résistance de l'air proportionnelle au carré de viteure du mobile.	
§ I. — propriétés générales des trajectoires.	
 115. Exposé. — 116. Diverses méthodes d'approximation 117. Notations. — Propriétés générales de la trajectoire. — 118. Asymptotes. — 119. Rayon de courbure. — 120. Vitesse. 	
\S II. — méthode des quadratures et méthode d'euler.	
 121. Équations fondamentales. — 122. Méthode des quadratures. 123. Méthodes d'Euler. — 124. Construction par points. — 125. Correction de Legendre. — 126. Correction proposée. — 127. Degré d'exactitude des diverses méthodes. 	
§ III. — méthode des séries.	
 Méthode des séries. — Résultats de Lambert. — 129. Portée horizontale. — 130. Inclinaison. — 131. Durées. — 132. Résultats de Borda. — 133. Résultats de Tempelhof	
§ IV. — méthodes d'approximation.	
144. Méthodes d'approximation. — Méthode de Borda. — 145. Formules de Besout. — 146. Méthode de Legendre. — 147. Méthode de Français. — 148. Comparaison entre le degré d'approximation des méthodes de Legendre et de Français. — 149, 150. Modification proposée.	243

SECTION VI. — Tracé des trajectoires et solutions graphiques de divers problèmes de balistique.

§ I. — TRACÉ DES TRAJECTOIRES.

151.	Trajectoires des bombes. — 152. Modification qui donne	
	plus d'exactitude dans le tracé. — 153. Tracé dans le	
	cas de faibles courbures	25 2
154.	Propriétés générales des trajectoires. Sommet. Minimum	
	de la vitesse et du rayon de courbure. — 155. Appli-	
	cation au jet des bombes	26 0
156.	Tracé des trajectoires sous les petits angles de projec-	
•	tion. — 157. Simplifications. — 158. Tracé de la tra-	
	jectoire pour des points équidistants. — 159. Tracé des	•
	inclinaisons de la trajectoire. — 160. Durée du trajet;	ഹവ
404	vitesse	
101.	Courses des valeurs de lonctions 15, 5, 6, 7	2/1
8 II	— SOLUTION GRAPHIQUE DE DIVERS PROBLÈMES DE BALISTIO	TITE
y 11.	SOLUTION CHAILINGOL DE DIVERGE ROBBERGS DE BALIGITA	ZOE.
	Solution graphique de divers problèmes de balistique	274
163.	Déterminer l'angle de projection sur un plan horizontal.	
	- 164. Déterminer l'angle de projection du projectile	
	qui doit passer par un point donné. — 165. Vitesse	
	initiale. — Le but étant à hauteur du point de départ.	
	— 166. Le but n'étant pas à hauteur du point de départ.	275
167.	Déterminer l'angle et la vitesse de projection d'un	
	projectile qui doit passer par deux points donnés. —	
	168. Déterminer l'angle et la vitesse de projection d'un projectile qui doit passer par un point donné et sous	
	une inclinaison déterminée	ഹ
460	- Observations sur le rapport des échelles	
109. 470	Portées, durées, vitesses	70.F
	1010005, 4410005, 44000000111111111111111111111111111111	ıu.
SEC'	rion VII Lois de la pénétration des project	iles
	dans les milieux résistants.	
1 71.	Considérations générales. — 172. Considérations phy-	
- 	siques. — 173. Phénomènes observés	285
174.	Résistance au moment de la pénétration. — 175. Lois	
	•	290

Pénétration des projectiles oblongs dans les milieux résistants	
résistants	
Pénétration des boulets dans la maçonnerie. — 182. Pénétration dans les bois	
Pénétration des boulets dans la maçonnerie. — 182. Pénétration dans les bois	
nétration dans les bois	
304. Durée des pénétrations	
ECTION VIII. — Mesure de la vitesse des projectiles. 5. Exposé. — 186. Mesure des vitesses par les portées. — 187. Procédés à employer	
ECTION VIII. — Mesure de la vitesse des projectiles. 5. Exposé. — 186. Mesure des vitesses par les portées. — 187. Procédés à employer	
5. Exposé. — 186. Mesure des vitesses par les portées. — 187. Procédés à employer	
187. Procédés à employer	
187. Procédés à employer	
3. Mesure des vitesses par la hauteur et la durée de l'ascension verticale	
cension verticale	
 Mesure des vitesses par la durée du trajet. — 190. Machine de rotation de Mathey. — 191. Machine de Grobert. — 192. Procédé du colonel Debooz	
chine de rotation de Mathey. — 191. Machine de Grobert. — 192. Procédé du colonel Debooz	
bert. — 192. Procédé du colonel Debooz	
3. Mesure de la vitesse d'un projectile par celle qu'il imprime à une masse plus grande. — 194. Pendule-balistique de Robins. — 195. Nouveaux pendules-balistiques	
à une masse plus grande. — 194. Pendule-balistique de Robins. — 195. Nouveaux pendules-balistiques	
Robins. — 195. Nouveaux pendules-balistiques	
3. Description du pendule-balistique destiné au tir des boulets. — 197. Suspension des canons. — 198. Pendule-balistique pour le tir des balles de fusil.—199. Pendule en bois pour le tir à grandes distances	
boulets. — 197. Suspension des canons. — 198. Pendule-balistique pour le tir des balles de fusil.—199. Pendule en bois pour le tir à grandes distances	
dule-balistique pour le tir des balles de fusil.—199. Pendule en bois pour le tir à grandes distances	
dule en bois pour le tir à grandes distances	
201. Moyen de tenir compte des variations du poids du récepteur d'un coup à l'autre	
201. Moyen de tenir compte des variations du poids du récepteur d'un coup à l'autre	
du récepteur d'un coup à l'autre	
2. Mesure des divers éléments qui entrent dans la formule	
des vitesses. — 203. Mesure directe du moment statique.	
— 204. Choc sur les couteaux	
5. Examen des diverses suppositions. — 206. Correction	
relative à la direction du choc 207. Résistance pas-	
sive de l'appareil. — 208. Effet de l'explosion des gaz 343	
9. Vitesse initiale proprement dite 349	
0. Canon-pendule	
2. Application de l'électricité à la mesure de la vitesse	
des projectiles. — 213. Pendule électro-balistique. —	
214. Conjoncteur et disjoncteur. — 215. Mode d'opé-	
ration. — 216. Emploi de l'étincelle électrique 353	
5*. Vitesse du projectile déduite de celle du recul 361	

SECTION IX. ... Déviations des projectiles.

§ I.	— COMPARAISON ENTRE LES RÉSULTATS DES OBSERVATION ET CEUX DES FORMULES.	ons
220.	Exposé. — 217. Résultats des expériences anciennes. — 218. Expériences de Metz, en 1846. — 219. Trajectoires particulières	
<i>4</i> 21.	coefficient de la résistance de l'air. — 222. La cause déviatrice est variable dans l'étendue du trajet. — 223. Résumé.	38 0
	§ II. — CAUSES DES DÉVIATIONS DES PROJECTILES.	
224 .	Exposé	384
	Causes déviatrices initiales.	
	Variations dans les directions des projectiles sphériques, au départ. — 226. Mesure des variations dans les directions. — 227. Déviations dans les armes rayées en hélice. — 228. Déviations provenant du mouvement des armes. — 229. Vibrations des canons de fusil	385
230.	Variations dans les vitesses initiales. — 231. Influence de la variation du poids et du diamètre du projectile sur la vitesse initiale et sur les portées	390
Caus	es qui agissent sur le projectile durant son trajet dans l'	air.
232.	Dérivation due à l'effet du vent. — 233. Dérivation due au vent dans le tir sous de petits angles de projection. — 234. Simplifications. — 235. Applications	392
236.	L'inclinaison de la bouche à feu n'a pas d'influence sur la vitesse initiale du projectile. — 237. La proximité du	
238.	sol n'a pas d'influence sur la forme de la trajectoire Mouvement de rotation du projectile dû à la pression sur la partie inférieure de l'ame. — 239. Mouvement de rotation dû à l'excentricité du projectile. — 240. Moyens de mesurer l'excentricité. — 241. Mouvement de rota-	

	tion. — 242. Influence de la position de l'axe de rota-	
	tion, relativement aux axes principaux d'inertie du mo-	
	bile 243. Recherches analytiques de Poisson, sur	
	l'influence du mouvement de rotation 244. Le frot-	
	tement résultant du mouvement de rotation ne rend	
	compte ni du sens ni de la grandeur des déviations	401
245.	Influence du mouvement de rotation d'un projectile	
	dans l'air, due aux différences de densité du fluide. —	
	La déviation a lieu dans le sens du mouvement de l'hé-	
	misphère antérieur. — 246. L'influence du mouvement	
	de rotation démontrée par l'expérience	400
0/5		4 UU
247.	Excentricité dans les projectiles ordinaires. — 248. Ex-	
	plication de certaines déviations qui paraissent extraor-	
	dinaires. — 249. Moyens de diminuer les déviations des	
	projectiles. — 250. Emploi des rayures en hélice, pour	
	imprimer un mouvement de rotation. — 251. Stabilité	
	de l'axe de rotation. — 252. Dérivation particulière aux	
	balles oblongues de forme ogivale	417
2 53.	Régularité du tir résultant d'une position déterminée	
	du centre de gravité, relativement au centre de figure,	
	dans les obus excentriques 254. Placement du centre	
	de gravité des projectiles ordinaires. — 255. Moyen	
	d'obtenir la stabilité de l'axe de rotation	425
956	Variations dans les portées dues à la variation de la	
200.	densité de l'air	490
	densite de l'air	420
	§ III. — TRAJECTOIRES RÉELLES DES PROJECTILES.	
	ŭ	
257.	Données nécessaires pour déterminer la trajectoire réelle	
	d'un projectile. — 258. On tient compte séparément de	
	chacune des forces déviatrices. — 259. Application plus	
	particulière au tir sous de petits angles au-dessus de	
	l'horizon	4 32
260.	Représentation du mouvement réel des projectiles —	
	261. Cas où la direction de l'axe de rotation est instan-	•
	tanée. — 262. Trajectoire dans le cas de plusieurs causes	
	déviatrices coexistantes	436
§ 17	V. TRAJECTOIRE DES PROJECTILES OBLONGS DANS LES CANOS	NS
.,	RAYÉS.	

- 263. Nécessité de tenir compte de la dérivation. - 264. Équa-

TABLE	DES	MATIÈRES.

XXIV	TABLE DES MATIÈRES.	
	tion de la trajectoire des boulets oblongs. — La force déviatrice étant comparée à la pesanteur. — Inclinaison; durée; vitesse	442
_	§ V. — APPLICATION DU CALCUL DES PROBABILITÉS AU TIR DES PROJECTILES.	
	Point d'impact moyen. — 270. Trajectoire moyenne. — 271. Écart moyen; moyen écart	452
	sions diverses Expression des chances d'atteindre suivant les distances	
SE	CTION X. — Des différentes espèces de tir, pointag	e.
	vitease.	,-,
	· · · · · · · · · · · · · · · · · · ·	
	vitesse.	
274. 275.	§ I. — POINTAGE DES BOUCHES A FEU. Pointage des bouches à feu. — 276. Pointage des mortiers. — 277. Choix de l'angle de tir	465
274. 275. 278.	Vitesse. Des différentes espèces de tir	465 446 469
274. 275. 278. 283.	Vitesse. Des différentes espèces de tir	465 446 469 474

	TABLE DES MATIÈRES. Pointage par l'abaissement de la culasse. — 288. Iuclinaison des tourillons; erreur et correction dans le pointage. — 289. Conditions qui fixent la distance de but en blanc	XXV 481
	Vitesses initiales imprimées aux projectiles, à l'aide de la poudre, dans les bouches à feu. — 291. Tableau des vitesses initiales des boulets et des obus. — 292. Formules des vitesses initiales en fonction du poids des charges de poudre. — 293. Application au tir des armes à feu	483
	Des divers genres de tir. — Tir de plein fouet. — 295. Tir à feu plongeant. — 296. Limites des hauteurs auxquelles le tir à feu plongeant est encore possible, sous un angle de projection déterminé. — 297. Simplifications. — 298. Limite de la hauteur à laquelle on peut, en rasant la crête d'un parapet, toucher un point déterminé du terre-plein	495
	Calcul des tables de tir. — 300. Tables de tir de plein fouet. — 301. Tables de tir à feu plongeant. —	
303.	302. Tables de tir des mortiers	
§ 7	V. — POINTAGE, VITESSE, FORMULES ET TABLES DE TIR RELATIVES AUX CANONS RAYÉS.	s.
312.	Pointage. — 308. Vitesses initiales. — 309. Des divers genres de tir. — 310. Formules et tables de tir. — Tir de plein fouet. — 311. Simplification	

.

313.	Vitesse et angle de projection d'un projectile qui doit passer par deux points donnés. — 314. Vitesse et angle	
	de projection d'un projectile qui doit passer par un point donné sous une inclinaison déterminée	52 0
315.	Solutions des divers problèmes lorsque le but est à hauteur de la bouche à feu. — Vitesse initiale. — Angle	
	de projection Portée 316. Tables de tir	52 3
	Addition à l'article 81	
	Résumé des formules	525
	Tables	555

ERRATA.

- 168, 21, au lieu de +tangφ, lisez +tangθ.
- 2, en remontant, au lieu de $\frac{V}{r}$, lisez $\frac{v}{r}$.
- 7 et page 204, ligne 1, au lieu de M, lisez m.
- 205, 12, au lieu de en exposant, lisez e.
- 205, 20, première équation, au lieu de ; en exposant, lisez —;.
- 223, 5, an lieu de F(), lisez F'().
- 236, 14, au lieu de $F(x_i)$, lise: F'(x).
- 246, 15, an lieu de $1+ap^2$, lisez $1+ap^2$.
- 250, 5 après le tableau, au lieu de $\frac{1}{170}$, liscz $\frac{1}{179}$.
- 255, 4, au lieu de v, lisez V.
- 257, 4, après df, ajoutez de la figure 21.
- 263, 19, au lieu de OD, lisez ON.
- 263, 20, au lieu de D à la ligne OI, lise: N à la ligne OJ.
- 266, 9, supprimez OB.
- 4, en remontant, au lieu de $\frac{v}{r}$, lisez $\frac{V_1}{v}$.
- 4, après menée, ajoutez parallèlement.
- 269, 14, au lieu de qp, lisez qp.
- 269, 23, au lieu de p', lisez P,
- 270, dernière, au lieu de OK', lisez OL'.
- 2, en remontant, après demi-cercle, ajoutez qui coupera en H l'horizontale passant par le point M.
- 4 de la dernière colonne, au lieu de 3,87, lisez 3,37.
- 331, 15, au lieu de Fig. 45, lisez Fig. 44. 361, 10, au lieu de 215, lisez 215*.
- 362, 1, au lieu de 216, lisez 216*.
- 375, 4, 7, 9 du tableau, au lieu de 0.02; -0.73; -2.76, lisez
- -0.01; -0.74; -2.73. 396, dernière, après l'équation, ajoutez (4).
- 404, dernière, au lieu de haut en avant, lisez haut en bas.
- 413, 4, au lieu de rotation, lisez translation.
- 421, 9, après Fig. 52, ajoutez (bis).
- 424, 25, après Fig. 55, ajoutez (bis).
- 442, 14, au lieu de V, lisez v.
- 446, 6, dans la dernière équation, au lieu de W., lisez V.
- 449, dernière, au lieu de =... et de V =, mettez t =... et $V_1 =$.
- 457, 5, au lieu de à plus forte raison, lisez par conséquent.
- 463, 23, au lieu de trombes, lisez trompes.

- 471, 26, an lieu de inclinaisons, lisez distances.
- 474, 4, en remontant, au lieu de m, lisez m'.
- 480, 18, au lieu de $2\sin\frac{1}{2}\alpha$, lisez $2\sin^2\frac{1}{2}\alpha$.
- 510, 2, au lieu de KBP, lisez KBE.
- 511, 2 et 4, en remontant, au lieu de S... et SM, lisez So et SoM.
- 531, 6, en remontant, au lieu de $e^{\frac{z}{2}}$, lisez $e^{\frac{z}{2}}$
- 532, 6, en remontant, au lieu de 30° à -30°, lisez 0° à -30°.
- 538, 12, dans $\mathfrak{I}_{\mathbf{x}}(x, \mathbf{V})$, au lieu de x, lisez \mathbf{X} .
- 547, 16, dans $\frac{x^2}{4c}\frac{W}{V}$, à V substituez V_i .
- 585, avant-dernière, colonne 1,85, au lieu de 1,2952, lisez 1,2982.
- 588, dernière, colonne 0,50, au lieu de 0,9816, lisez 0,9616.
- Pl. I, Fig. 18, à l'intersection de la trajectoire Mn et de l'horizontale OP, mettez B.
- Pl. II, Fig. 24, à l'extrémité de la verticale DD', au lieu de F, mettez F'.
- Pl. IV, Fig. 34, par le point S menez une parallèle à OG jusqu'à sa rencontre avec OM prolongée et mettez T à cette intersection.
- Pl. IV, Fig. 35, mettez C' symétriquement à C.

TRAITÉ DE BALISTIQUE.

PRÉLIMINAIRES.

1. Définition et objet. La Balistique (ars balistica, du grec garra, je lance) est la science du mouvement des corps pesants dans l'espace, suivant une direction quelconque. Elle s'applique plus particulièrement aux projectiles de l'artillerie lancés en l'air à l'aide de la poudre et des bouches à feu.

On doit distinguer la science du mouvement accéléré du projectile, tant qu'il est soumis dans la bouche à feu à l'action des forces motrices des gaz enslammés de la poudre, ou la balistique intérieure, de celle du mouvement de ce projectile, hors de la bouche à feu, et soumis à l'action de la pesanteur et de la résistance de l'air, ou balistique extérieure; celle-ci, ou la balistique proprement dite, a pour objet de déterminer toutes les circonstances du mouvement des projectiles, et de donner les moyens d'exécuter avec justesse le tir des différentes armes et d'en obtenir le plus d'efficacité possible. Elle forme une partie importante de l'art de la guerre.

2. Jusqu'au milieu du seizième siècle, l'artillerie fut

Les lois du mouvement des projectiles dans l'intérieur des bouches à feu ont été traitées par M. le général Piobert dans la partie théorique de son Cours d'artillerie à l'École d'Application de l'Artillerie et du Génie; lithograp. à l'École en 1841 et en 1846.

traitée d'une manière empirique; on a cru longtemps que les boulets se mouvaient en ligne droite et que la trajectoire décrite par les bombes se composait d'un arc de cercle et de deux lignes droites. *Tartaglia*, le premier qui s'occupa de recherches scientifiques sur cet objet, démontra qu'aucune partie de la trajectoire n'était une ligne droite, et que l'angle d'élévation du tir de 45° donnait la plus grande portée. Torricelli se livra à des expériences; Galilée démontra que la trajectoire était une parabole, mais sculement lorsque la résistance de l'air ne la modifiait pas.

La loi de la résistance de l'air devint l'objet de beaucoup de recherches. On admit généralement l'hypothèse de Newton, d'après laquelle cette résistance est proportionnelle au carré de la vitesse du projectile, et les plus grands géomètres s'occupèrent de la recherche des lois du mouvement des projectiles. Robins, Hutton, d'Arcy, Borda, firent des expériences nombreuses pour déterminer la loi de cette résistance aux petites et aux grandes vitesses. Ces expériences ont été reprises dans ces derniers temps et ont conduit à des résultats importants.

On trouvera dans la section V de ce Traité une analyse des principaux travaux des géomètres sur cette partie de la science du mouvement des corps.

On s'occupera d'abord des lois du mouvement dans le vide, lois très-simples et qui peuvent être appliquées dans quelques cas de la pratique; on s'occupera ensuite des lois du mouvement dans l'air, particulièrement dans le cas du tir des canons et des obusiers. On donnera, pour ces divers cas, des applications numériques qui feront mieux comprendre l'emploi des formules.

SECTION I.

MOUVEMENT DES PROJECTILES DANS LE VIDE.

- 3. Utilité des lois du mouvement des projectiles dans le vide. Quoiqu'on ne puisse s'empêcher de reconnaître que l'air ait une influence souvent considérable sur le mouvement des projectiles, il est utile néanmoins de rechercher les lois de ce mouvement comme si cette influence n'existait pas; ces lois sont, en effet, une première approximation et une indication utile dans plusieurs cas de la pratique. La comparaison des résultats des formules du mouvement dans le vide et du mouvement dans l'air avec ceux de l'observation fera voir l'importance de la connaissance exacte des lois de cette résistance.
- 4. Exposition de la théorie du mouvement des projectiles dans le vide 1. Supposons un projectile lancé dans une direction quelconque, avec une vitesse initiale donnée. Il est d'abord évident que la pesanteur étant la seule force qui agisse sur le projectile, et la direction de celle-ci étant verticale, la courbe ou la trajectoire que suivra ce

Dans mon Cours élémentaire de Balistique, adopté par M. le Ministre de la Guerre pour l'enseignement des élèves de l'École spéciale militaire de Saint-Cyr, j'ai donné la théorie du mouvement des projectiles dans le vide et dans l'air d'une manière très-élémentaire. (In-4°, 3° édition, 1859.)

mobile sera tont entière dans le plan vertical de tir : ce plan contiendra nécessairement la tangente menée à la trajectoire au point de départ et que l'on nomme *ligne* de projection.

Cela posé: soit V la vitesse initiale du projectile; φ l'angle de projection, au-dessus du plan horizontal (Fig. 1); g la pesanteur ou la vitesse acquise par un corps au bout de la première seconde de sa chute dans le vide; x et y les coordonnées horizontale et verticale d'un point quelconque m de la trajectoire; t le temps écoulé depuis l'origine du mouvement, et v la vitesse du mobile à cet instant.

Si l'on nomme h la hauteur à laquelle est due la vitesse initiale V, dans une chute supposée verticale et dans le vide, on aura la relation connue $V^* = 2gh$ qui sera trèsfréquemment employée.

Puisque la pesanteur est la seule force accélératrice et qu'elle agit verticalement dans le sens opposé aux ordonnées positives, l'accroissement de la composante verticale de la vitesse v, relativement au temps, devra être égale à la pesanteur. Cette composante étant le rapport de l'accroissement de l'ordonnée verticale y, relativement au temps t, lequel est $\frac{dy}{dt}$, et l'accroissement de cette composante relative au temps, devant être égal à la force accélératrice, qui agit ici dans le sens des ordonnées négatives, on aura

$$\frac{d^3y}{dt^2} = -g.$$

La composante horizontale de la force accélératrice étant nulle, la composante horizontale de la vitesse du mobile étant $\frac{dx}{dt}$, et son accroissement, relativement au

temps, devant aussi être nul, on aura

$$\frac{d^3x}{dt^2} = 0.$$

En intégrant ces deux équations et en nommant C et C' deux constantes, on aura

$$\frac{dx}{dt} = C; \quad \frac{dy}{dt} = -gt + C'.$$

Ces équations font voir que les mouvements suivant les axes des x et des y sont indépendants entre eux et ne sont nullement modifiés l'un par l'autre; le premier, suivant l'axe dés x, est uniforme, et la vitesse constante est égale à C; le second est uniformément retardé et le même que si le projectile avait été lancé verticalement avec une vitesse C'. On aura la valeur des constantes C et C' en considérant qu'à l'origine du mouvement, ou quand t=0, on a

$$\frac{dx}{dt} = V\cos\varphi$$
 et $\frac{dy}{dt} = V\sin\varphi$;

par conséquent on aura pour les équations du mouvement

(1)
$$\frac{dx}{dt} = V\cos\varphi; \quad \frac{dy}{dt} = -gt + V\sin\varphi.$$

Intégrant de nouveau et remarquant qu'au commencement du mouvement, ou quand t=0, on a x=0 et y=0, et que par suite les constantes sont nulles, on aura

(2)
$$x = Vt\cos\varphi$$
; $y = -\frac{1}{2}gt^2 + Vt\sin\varphi$.

5. Équation de la trajectoire dans le vide. En éliminant t entre les deux équations [(1) et (2)] du mouvement, on aura une relation entre les coordonnées x et y ou l'équation de la trajectoire; elle sera

$$y = -\frac{g}{2} \frac{x^2}{\mathbf{V}^2 \cos^2 \varphi} + x \frac{\sin \varphi}{\cos \varphi}.$$

En remarquant qu'entre V et h il y a la relation V = 2gh, et en remplaçant $\frac{\sin \varphi}{\cos \varphi}$ par tang φ , on aura pour l'équation de la trajectoire

(3)
$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi}.$$

6. La trajectoire dans le vide est une parabole dont l'axe est vertical. A l'inspection de cette équation on reconnaît qu'elle appartient à une parabole. On peut, par une transformation des coordonnées, la mettre sous la forme habituelle et reconnaître immédiatement plusieurs des propriétés de la trajectoire.

En effet, dans cette équation mise sous la forme $4hy\cos^2\varphi = 4hx\sin\varphi\cos\varphi - x^2$, en rendant le deuxième membre un carré parfait, ce que l'on obtient en ajoutant $-(2h\sin\varphi\cos\varphi)^2$, on aura

$$4h\cos^2\varphi(h\sin^2\varphi-y)=(2h\sin\varphi\cos\varphi-x)^2.$$

Faisant $h \sin^2 \varphi - y = y'$ et $2h \sin \varphi \cos \varphi - x = x'$, l'équation de la trajectoire devient

$$x'^2 = 4h\cos^2\varphi y';$$

c'est celle d'une parabole rapportée au sommet comme origine des coordonnées. Les coordonnées de ce sommet, par rapport à l'origine primitive, sont $2h \sin \varphi \cos \varphi$ pour la distance horizontale, et $h \sin^2 \varphi$ pour la hauteur audessus du point de départ. On voit immédiatement : 1° que le sommet correspond au milieu de l'amplitude, puisque la courbe est symétrique par rapport à la verticale du sommet (Fig. 2); 2° que l'élévation du sommet, ou la hauteur du jet, est moitié de l'ordonnée correspondante à la ligne de projection, puisque l'abscisse est moitié de la sous-tangente; 3° que la branche ascendante AS et la

branche descendante SB sont semblables; 4º que l'angle de chute DBA est égal à l'angle de projection CAB.

On peut résoudre plusieurs questions fondées sur les propriétés de la trajectoire.

7. Amplitude et hauteur du jet. Soit X l'amplitude du jet ou la portée horizontale AB égale à 2AH (Fig. 2), et Y la hauteur HS du jet.

Pour avoir la portée horizontale X, faisons y = 0 dans l'équation de la trajectoire, elle deviendra

$$0 = X \tan \varphi 4h \cos^2 \varphi - X^*.$$

Cette équation est satisfaite par X=0, ce qui devait être, et n'apprend rien; mais après avoir divisé par X et en remarquant que $2\sin\varphi\cos\varphi=\sin2\varphi$, on aura

(4)
$$X = 4h\sin\varphi\cos\varphi = 2h\sin2\tau.$$

8. La hauteur du jet n'étant autre que la hauteur du sommet, on aura, d'après ce qu'on vient de voir (6),

$$Y = h \sin^2 \varphi$$
.

On arrive directement au même résultat, en égalant à zéro la valeur de $\frac{dy}{dx}$ tirée de l'équation de la trajectoire, ce qui donne

$$0 = \tan \varphi - \frac{x}{2h \cos^2 \varphi},$$

d'où

$$x = 2h\sin\varphi\cos\varphi.$$

Cette valeur substituée dans l'équation de la trajectoire donne pour l'ordonnée Y du sommet la valeur déjà obtenue

$$Y = h \sin^2 \varphi$$
.

Cette équation fait voir que la hauteur du jet croît avec

l'angle de projection ϕ , jusqu'à devenir égale à h, lorsque le projectile est lancé verticalement ou que $\sin \varphi = 1$, ce qui devait être par la définition même de h. Pour $\phi = 45^{\circ}$, angle pour lequel $\sin \phi = \sqrt{\frac{1}{2}}$, on a

$$Y = h \sin^2 45^\circ = \frac{1}{2}h$$

pour $\varphi = 30^{\circ}$,

$$Y = \frac{1}{4}h$$
.

APPLICATIONS NUMERIQUES 1. 1° Soit un projectile lancé sous l'angle de 45° avec une vitesse initiale de $48^{m:s}$, on aura $V=48^{m:s}$; $h=117^{m}44$; $\varphi=45^{\circ}$; tang $\varphi=1$; $\cos\varphi=0.7071$; $\sin^2\varphi=\cos^2\varphi=0.500$; l'équation de la trajectoire deviendra

$$y = x - \frac{x^3}{4 \times 117,44 \times 0,500} = x - \frac{x^3}{234,88}$$

¹ Dans les exemples numériques qu'on donnera dans ce Traité, on ne s'assujettira ordinairement qu'au degré de précision utile dans les applications; cela permettra d'employer dans les calculs les lignes trigonométriques naturelles avec quatre ou cinq décimales et d'éviter ainsi l'emploi des logarithmes. A cet effet, on a inséré dans ce Traité une table (Table I) des sinus, tangentes et cosinus naturels.

La pesanteur g varie avec la latitude et avec l'élévation du lieu au-dessus du niveau de la mer. On en trouvera une table dans la section VIII. On a adopté dans les applications une valeur moyenne égale à 9.809.

Pour passer facilement des valeurs de V à celles de $h=\frac{\mathbf{V}^2}{2g}$ et réciproquement, on fera usage d'une table calculée à cet effet (Table II).

On prendra pour unités le mètre, le kilogramme et la seconde sexagésimale; les vitesses seront comptées en mètres parcourus par seconde et exprimées par m:s.

Quelques applications ont été faites à l'aide d'une règle à calcul de 0^m50 de longueur qui donne des résultats suffisamment exacts dans la plupart des cas, quoique laissant parfois de l'incertitude sur le dernier chiffre.

En faisant y=0, on aura la portée horizontale $X=254^m88$ ou 235^m , en nombre rond. En prenant d'autres valeurs de x, on déterminera les ordonnées des points correspondants. Cette trajectoire se rapproche beaucoup de celle du globe du mortier éprouvette pour le cas d'une portée de 235^m . La hauteur du jet est $Y=117.44\times0.5=58^m72$.

2° Soit V = $62^{m:s}70$ et $\varphi = 45^{\circ}$, on aura $h = 200^{m}4$, tang $\varphi = 1$; et, pour l'équation de la trajectoire

$$y = x - \frac{x^2}{4 \times 200, 4 \times 0, 5} = x - \frac{x^2}{400, 8},$$

on aura pour y = 0, la portée horizontale $X = 400^{m}8$. C'est le cas qui se rapproche du tir ordinaire des bombes à 400^{m} . La hauteur du jet est $Y = 200^{m}4 \times 0.5 = 100^{m}2$.

3° Soit $\varphi = 12^\circ$, $V = 140^m$, on aura $\sin \varphi = 0.20791$; tang $\varphi = 0.21256$, $\cos \varphi = 0.9781$, $h = 999^m$; l'équation de la trajectoire sera

$$y = 0.21256 \ x - \frac{x^3}{4.999(0.9781)^3} = 0.21256 \ x - \frac{x^3}{3822},$$

X=812^m6. C'est le cas qui se rapproche du tir plongeant des gros projectiles de l'artillerie. La hauteur du jet est Y=999.(0,20791)²=43^m10.

- 9. Sous des angles de projection également éloignés de 45°, les portées sont égales. Puisque X = 4h sin φ cos φ, on voit immédiatement que si au lieu de φ on prend son complément, le sinus se changera en cosinus et réciproquement, et que la valeur de X restera la même; par conséquent, sous des angles également éloignés de 45°, comme 30° et 60° par exemple, les portées sont égales entre elles (Fig. 4).
- 10. Angle de plus grande portée et valeur de cette portée. La valeur de la portée (éq. 4) mise sous la forme $X = 2h \sin 2\varphi$, sera un maximum pour $2\varphi = 90^\circ$ ou pour $\varphi = 45^\circ$, c'est-à-dire pour $\sin 2\varphi = 1$, et cette portée sera X = 2h ou le double de la hauteur due à la vitesse

initiale. Cette vitesse déduite de la portée sous 45°, vu que $V^2 = 2gh$ et que par conséquent $X = \frac{V^2}{g}$ sera

$$V = \sqrt{gX}$$

On arrive directement à l'angle de plus grande portée èn égalant à zéro la valeur de $\frac{dx}{dx}$.

- 11. Propriétés de l'angle de plus grande portée. L'angle de plus grande portée est évidemment celui sous lequel on obtient une portée donnée avec la plus petite vitesse. Il procure en outre cet avantage, que de petites variations dans l'angle de projection, soit en plus soit en moins, ne produisent pas de différences notables dans les portées; cette propriété a pour effet d'augmenter la justesse du tir.
- 12. Rapports entre les portées, les vitesses initiales et les angles de projection. Si deux projectiles sont lancés sous le même angle φ , avec des vitesses différentes V et V', les portées étant X et X', on aura

$$X = 2h \sin 2\varphi = \frac{V^2}{g} \sin 2\varphi$$
 et $X' = \frac{V'^2}{g} \sin 2\varphi$,

de là,

$$\frac{X}{X'} = \frac{V^2}{V'^2} \quad \text{et} \quad \frac{V}{V'} = \frac{\sqrt{X}}{\sqrt{X'}}.$$

Donc, sous le même angle, les portées sont entre elles comme les carrés des vitesses, et réciproquement les vitesses sont entre elles comme les racines carrées des portées.

Si X" est la portée d'un projectile lancé avec la même vitesse V que le premier, mais sous un angle φ'' , on aura

$$X'' = \frac{V^2}{g} \sin 2\phi''$$
, et par conséquent, $\frac{X}{X''} = \frac{\sin 2\phi}{\sin 2\phi''}$,

c'est-à-dire que les portées des projectiles lancés avec la même vitesse, sont entre elles comme les sinus du double des angles de projection.

Si on appelle X, la portée sous l'angle de 45°, on aura

$$X_1 = 2h$$
 et $X'' = X_1 \sin 2p''$.

Si $\varphi'' = 15^{\circ}$ alors $\sin 2\varphi''$ ou $\sin 30^{\circ} = \frac{1}{2}$, on en conclut que la portée sous 15° est moitié de la portée sous 45°.

On a aussi la relation $\sin 2\varphi'' = \frac{X''}{X_t}$, au moyen de laquelle on déterminera l'angle de projection qui donnera une portée proposée, lorsqu'on connaîtra la portée sous 45°.

C'est sur cette relation entre les angles de tir et les portées qu'ont été calculées les anciennes tables de tir; au moyen de ces tables, connaissant par une épreuve la portée sous un angle donné, on déduisait l'angle qui, pour la même charge de poudre dans une bouche à feu ou pour la même vitesse initiale, répondait à la portée proposée. Ces tables, auxquelles on aurait pu substituer de simples tables de sinus, pouvaient présenter quelque utilité, tant qu'il ne s'agissait que de gros projectiles, comme les bombes, lancées à de moyennes distances; elles étaient tout à fait inexactes dans les autres cas.

13. Vitesse d'un projectile en un point quelconque de sa trajectoire. La vitesse v d'un mobile en un point quelconque de sa trajectoire est la résultante des deux composantes $\frac{dx}{dt}$ et $\frac{dy}{dt}$, dont les valeurs sont (art. 4, éq. 1) $\frac{dx}{dt} = V\cos\varphi$ et $\frac{dy}{dt} = -gt + V\sin\varphi$. On aura donc par suite

$$v^2 = \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = V^2(\cos^2\varphi + \sin^2\varphi) - 2g(Vt\sin\varphi - \frac{1}{2}gt^2),$$

et comme (art. 4, éq. 2) $y = -\frac{1}{2}gt^2 + Vt\sin\varphi$, on aura

$$v^2 = V^2 - 2gy$$
 ou $v = \sqrt{V^2 - 2gy}$ ou enfin $v = \sqrt{2g(h-y)}$.

On voit par là, que la vitesse du mobile ne dépend que de la hauteur y à laquelle il s'est élevé, et que cette vitesse est égale à celle d'un mobile tombant de la hauteur h-y.

Cette vitesse sera au minimum quand la valeur de y sera au maximum, c'est-à-dire au sommet de la trajectoire; or, cette hauteur représentée par Y est égale (art. 8) à $h\sin^2\varphi$; on aura donc

$$v = \sqrt{V^2 - 2hg\sin^2\phi} = V\sqrt{1 - \sin^2\phi} = V\cos\phi.$$

Cette valeur n'est autre que la composante horizontale de la vitesse V; ce qui devait être.

APPLICATION. Dans les trois exemples cités plus haut (art. 8), la vitesse au sommet: 1° pour $V = 48^{m:s}$ et $\varphi = 45^{\circ}$, sera $48.0,7071 = 34^{m:s}94$; 2° pour $V = 62^{m:s}70$ et $\varphi = 45^{\circ}$, sera $62.70 \times 0.7071 = 44^{m:s}34$; 3° pour $V = 140^{m:s}$, $\varphi = 12^{\circ}$, sera $140^{m}.0,9781 = 136^{m:s}93$.

14. Inclinaison de la trajectoire. L'inclinaison de la trajectoire ou celle de la tangente à cette courbe en un point déterminé est donnée par le rapport de l'accroissement de l'ordonnée à celui de l'abscisse ou par la valeur de $\frac{dy}{dx}$ tirée de l'équation 3 (art. 5) de cette courbe; en appelant θ cet angle, on aura

(5)
$$\tan \theta = \tan \phi - \frac{x}{2\hbar \cos^2 \phi}.$$

Sur un terrain horizontal la portée ayant pour valeur (art. 7, éq. 4) $X = 4h \sin \varphi \cos \varphi$, en la substituant à x et

en remplaçant $\frac{\sin \varphi}{\cos \varphi}$ par tang φ , on aura tang $\theta = -\tan \varphi$, c'est-à-dire que l'angle de chute est égal à l'angle de projection, et qu'il a l'ouverture dirigée dans le sens opposé.

15. Durée du mouvement. Déterminer la durée du mouvement.

La première des équations 2 (art. 4) qui est, $x = Vt\cos\varphi$, donne

$$t = \frac{x}{V\cos\varphi}.$$

La durée totale du trajet s'obtiendra en mettant pour x la valeur de la portée totale X (éq. 4); en appelant T cette durée, on aura

(6)
$$T = \frac{4h\sin\phi}{V} = \frac{V\sin\phi}{\frac{1}{2}g}.$$

APPLICATION. Dans les trois exemples cités plus haut : 1° pour $V = 48^{m:s}$ et $\varphi = 45^{\circ}$, on aura $T = \frac{48.0,7071}{4,9045} = 6^{\circ}92$; 2° pour $V = 62^{m:s}70$, $\varphi = 45^{\circ}$, on aura $T = 9^{\circ}04$; 3° pour $V = 140^{m:s}$, $\varphi = 12^{\circ}$, on aura $T = \frac{140^{m}.0,2079}{4,9045} = 5^{\circ}93$.

En substituant à V dans l'équation (6), sa valeur tirée de l'équation (4) mise sous la forme $X=\frac{2V^2}{g}\sin \phi\cos \phi$, on aura

$$T = \sqrt{\frac{\overline{X \tan g \, \varphi}}{\frac{1}{2} g}}.$$

C'est la durée du jet sur un terrain horizontal en fonction de la portée et de l'angle de projection.

Sous l'angle de 45°, tang $\varphi = 1$, et l'on aura simplement

en nommant T₁ la durée du jet sous cet angle

$$T_i = \sqrt{\frac{X_j}{\frac{1}{2}g}},$$

et par suite, sous un angle quelconque ? et pour une portée donnée, on aura

$$T = \sqrt{T_1 \tan \varphi}$$
.

16. La position du but étant donnée, trouver, soit la vitesse initiale, soit l'angle de projection. Lorsqu'on connaît la position d'un but, situé au-dessus ou au-dessous de la batterie, on a à déterminer l'une de ces deux choses quand l'autre est connue: la vitesse initiale ou l'angle de projection.

Soit a (Fig. 3) la distance horizontale du point à battre, b sa hauteur au-dessus du plan horizontal passant par le point de départ, appelons ϵ l'angle d'élévation du but pour lequel on aura tang $\epsilon = \frac{b}{a}$.

Puisque la trajectoire doit passer par le point dont les coordonnées sont a et b, on devra avoir d'après l'équation (3)

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi}.$$

Vitesse initiale. Si l'angle φ est donné et qu'on demande la vitesse initiale, on tirera de l'équation précédente, en divisant les deux membres par a et en remarquant que $\frac{b}{a} = \tan g$,

$$h = \frac{a}{4(\tan\varphi - \tan\varphi \cdot)\cos^2\varphi}.$$

Dans cette relation le dénominateur peut prendre cette

forme

$$4\cos^2\phi\Big(\frac{\sin\phi}{\cos\phi}-\frac{\sin\epsilon}{\cos\epsilon}\Big)=4(\sin\phi\cos\epsilon-\sin\epsilon\cos\phi)\frac{\cos\phi}{\cos\epsilon},$$

et comme $\sin \varphi \cos \varepsilon - \sin \varepsilon \cos \varphi = \sin (\varphi - \varepsilon)$, on aura

(7)
$$h = \frac{a}{4\sin(\varphi - \epsilon)} \frac{\cos \epsilon}{\cos \varphi}.$$

e sera positif ou négatif, comme tange, suivant que le but sera au-dessus ou au-dessous de la bouche à feu.

Application. Soit $a = 350^{\text{m}}$, $b = 8^{\text{m}}$, $\phi = 12^{\circ}$; on a tang ϕ =0.21256, tang $\epsilon = \frac{8}{350} = 0.02286$; tang $\epsilon = 0.18970$. et par suite

$$h = \frac{350}{4.0,18970(0,9781)^2} = 484 \text{ m} 16 \quad \text{d'où } V = 97 \text{m} : \text{s} 2.$$

L'inclinaison de la trajectoire au but (art. 4) est

$$\tan \theta = 0.21256 - \frac{350}{2.481,16(0.9781)^2} = -0.16762$$

 $\theta = -(9^{\circ} 30' 4).$ et

17. Si la vitesse initiale est donnée et qu'on demande l'angle de projection, en partant de l'équation $b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi}$, et en remplaçant $\frac{1}{\cos^2 \varphi}$ par sa valeur 1 + tang²φ, on aura

$$b = a \tan \varphi - \frac{a^2}{4h} (1 + \tan \varphi),$$

ďoù

(8)
$$\tan^2 \varphi - \frac{4h}{a} \tan \varphi + \frac{4hb}{a^2} + 1 = 0$$
,

équation qui donne pour tang p les deux valeurs

(9)
$$\tan \varphi = \frac{2h}{a} \pm \sqrt{\frac{4h^2}{a^2} - \frac{4hb}{a^2} - 1}$$

ou

$$\tan \varphi = \frac{2}{a} \left(h \pm \sqrt{h(h-b) - \frac{a^2}{4}} \right).$$

Ainsi il y a deux angles de projection sous lesquels on peut généralement atteindre le but, lorsque la vitesse initiale est donnée. Ces deux angles se réduiront à un seul lorsque la quantité sous le radical sera égale à zéro. Si a ou b étaient trop grands, les valeurs de ϕ seraient imaginaires, c'est-à-dire qu'avec la vitesse de projection donnée il deviendrait impossible d'atteindre le but.

APPLICATION. Soit $a = 350^{\text{m}}$, $b = 8^{\text{m}}$, $V = 140^{\text{m} \cdot 8}$, alors h = 999 et l'on a

$$\tan \varphi = \frac{2}{350} \left\{ 999 \pm \sqrt{999(999-8) - \frac{(350)^2}{4}} \right\} = 5,70857 \pm 5,59704,$$

d'où tang $\phi = 0.11153$ et $\phi = 6^{\circ} 21'8$, ou tang $\phi = 11.30561$ et $\phi = 85^{\circ} 3'$. La première valeur est la seule qui se rapproche du tir dans l'air.

18. Relation entre les deux angles sous lesquels, avec une vitesse initiale donnée, on peut atteindre le but. En désignant par φ' et par φ'' les deux angles cherchés, tang φ' et tang φ'' devront être les deux racines de l'équation 8 (art. 17), on aura donc

$$\tan \varphi' + \tan \varphi'' = \frac{4h}{a}$$
 et $\tan \varphi' \cdot \tan \varphi'' = \frac{4bh}{a^2} + 1$,

par conséquent

$$\frac{\tan \varphi' + \tan \varphi''}{1 - \tan \varphi' \cdot \tan \varphi''} \quad \text{ou} \quad \tan \varphi(\varphi' + \varphi'') = -\frac{1}{\frac{b}{a}} = \frac{1}{-\tan \varphi},$$

par conséquent aussi

$$\tan g(\phi' + \phi'')(-\tan g_s) = 1,$$

ce qui signifie que $e' + e'' - \epsilon = 90^{\circ}$ ou $e' - = 90^{\circ} - e''$. Cette relation fait voir que les deux lignes de projection OC, OD (Fig. 5), sous lesquelles un projectile partant avec une vitesse déterminée atteint le but B, font des angles égaux COB et DOH avec la ligne droite OB qui va au but et avec la verticale OH, et que par conséquent elles s'écartent également de la ligne OF qui divise en deux parties

19. Cas où ces deux angles se réduisent à un seul. Pour que les deux racines de l'équation 9 se réduisent à une seule, on devra avoir

égales l'angle HOB formé par ces dernières lignes.

$$\frac{4h^2}{a^2} - \frac{4hb}{a^2} - 1 = 0,$$

ct alors, on aura pour la valeur unique représentée par ç,

$$\tan \varphi_{\cdot} = \frac{2h}{a}.$$

D'après cette valeur et en observant que $\frac{b}{a} = \tan g \epsilon$, l'équation précédente devient

$$tang^2 \phi_1 - 2tang \phi_1 tang \varepsilon = 1$$
,

ou, en complétant le carré du premier membre et observant que $1 + \tan g^2 = \frac{1}{\cos^2 s}$, on aura

$$\tan g \phi_1 - \tan g_2 = \frac{1}{\cos \epsilon},$$

laquelle se réduit à

 $\sin \varphi_1 \cos \varepsilon - \sin \varepsilon \cos \varphi_1 = \cos \varphi_1$ ou $\sin (\varphi_1 - \varepsilon) = \sin (900 - \varphi_1)$,

c'est-à-dire que la ligne de projection est la bissectrice

de l'angle formé par la verticale et par la ligne droite dirigée sur le but.

20. Angle de plus grande portée sur un plan incliné. La direction de cette bissectrice est celle de plus grande portée sur une droite inclinée dirigée sur le but.

En effet, la portée sur la droite inclinée est représentée par $\frac{a}{\cos x}$ et elle sera un maximum en même temps que a.

Si on prend la différentielle de a par rapport à o dans l'équation (7) entre h et a (art. 16) et qu'on l'égale à zéro, on aura

$$\cos(\varphi - \varepsilon)\cos\varphi - \sin(\varphi - \varepsilon)\sin\varphi = 0,$$

d'où

$$\tan g(\phi - \epsilon) \tan g \phi = 1$$
 ou $\phi - \epsilon + \phi = 90$ ou $\phi = \frac{1}{2}(90^{\circ} + \epsilon)$,

La ligne de projection qui donne la plus grande portée est donc la bissectrice de l'angle formé par la verticale et par la droite qui va au but.

On voit que dans la question du tir sur un but élevé au-dessus de l'horizon, on arrive à des résultats analogues à ceux du tir sur un plan horizontal, et en faisant b=0 ou $\epsilon=0$, dans ceux-là on retombe sur les précédents.

21. Vitesse et angle de projection d'un projectile qui doit passer par deux points donnés.

Soient a et b les distances horizontale et verticale de l'un des points à la bouche à feu; a' et b' celles de l'autre point; V et φ la vitesse et l'angle cherchés.

Puisque la trajectoire doit passer par les deux points dont les coordonnées sont respectivement a et b, et a' et b', on aura les deux équations (art. 5)

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi}$$
 et $b' = a' \tan \varphi - \frac{a'^2}{4h \cos^2 \varphi}$

d'où l'on tire

$$\tan \varphi - \frac{b}{a} = \frac{a}{4h\cos^2\varphi}$$
 et $\tan \varphi - \frac{b'}{a'} = \frac{a'}{4h\cos^2\varphi}$.

En divisant ces deux équations membre à membre, on aura

$$\frac{\tan q - \frac{b}{a}}{\tan q - \frac{b'}{a'}} = \frac{a}{a'}, \quad \text{d'où} \quad \tan q = \frac{a' \frac{b}{a} - a \frac{b'}{a'}}{a' - a}$$

et de là l'angle e; on en déduira cos p. Retranchant ces deux mêmes équations membre à membre, on aura

$$\frac{b}{a} - \frac{b'}{a'} = \frac{a' - a}{4h\cos^2\varphi},$$

d'où l'on tire

$$4h\cos^2\varphi = \frac{a'-a}{\frac{b}{a}-\frac{b'}{a'}},$$

et, en observant que 2gh = V, on aura la valeur de V; et, par suite, celle de V,

$$V = \frac{1}{\cos \phi} \sqrt{\frac{g}{2} \cdot \frac{a' - a}{\frac{b}{a} - \frac{b'}{a'}}}.$$

APPLICATION. Le projectile doit raser la crête d'un parapet situé à 400^{m} de distance horizontale et à 8^{m} au-dessus de la bouche de la pièce, et doit en outre frapper le terre-plein du rempart à un point situé 13^{m} plus loin et à $2^{\text{m}}274$ plus bas; on aura $a=400^{\text{m}}$, $b=8^{\text{m}}$, $a'=413^{\text{m}}$, $b'=5^{\text{m}}726$, et

$$\tan \varphi = \frac{413 \frac{8}{400} - 400 \frac{5,726}{413}}{413 - 400} = 0,18763; \ \varphi = 10^{\circ}37'6, \cos \varphi = 0,9832,$$

et ensuite

$$V = \frac{1}{0.9832} \sqrt{4.9045 \cdot \frac{13}{\frac{8}{400} - \frac{5.726}{413}}} = 103^{\text{m} \cdot \text{s}} 58.$$

La durée calculée du trajet est $t = 4^{\circ}05$.

22. Vitesse initiale et angle de projection d'un projectile qui doit arriver à un point déterminé sous une inclinaison donnée avec l'horizontale.

Soient a et b les distances horizontale et verticale d'un point donné et θ l'inclinaison de la trajectoire en ce point; soient V et φ la vitesse initiale et l'angle de projection cherchés.

La trajectoire devant passer par le point donné, on devra avoir (art. 5)

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi},$$

d'où, en faisant $\frac{b}{a} = \tan g \epsilon$,

$$\tan \varphi - \tan \varphi = \frac{a}{4h \cos^2 \varphi}.$$

La tangente à la trajectoire devant faire en ce même point un angle θ avec l'horizon, on aura (art. 14, éq. 5)

$$\tan \varphi - \tan \theta = \frac{a}{2h\cos^2\varphi}.$$

Divisant les deux équations membre à membre, on aura

$$\frac{\tan q \phi - \tan q \theta}{\tan q \phi - \tan q \epsilon} = 2;$$
 d'où $\tan q \phi = 2 \tan q \epsilon - \tan q \theta$,

et de là l'angle o.

Retranchant ces mêmes équations membre à membre, on aura

$$\tan \theta = \frac{\alpha}{4h\cos^3 \phi},$$

et en remarquant que $2gh = V^2$, on aura

$$V = \frac{1}{\cos \varphi} \sqrt{\frac{g}{2} \cdot \frac{a}{\tan g \cdot - \tan g \cdot \theta}}.$$

APPLICATION. Le projectile doit raser la crête d'un parapet situé à 400^m de distance et à 8^m au-dessus de la bouche à feu, et, en outre, arriver sous un angle de 10° avec l'horizon:

On aura $a = 400^{\text{m}}$, $b = 8^{\text{m}}$, tang $\epsilon = 0.0200$, tang $\theta = \tan 10^{\circ}$ = -0.17653, et par suite, tang $\varphi = 0.04 + 0.17653 = 0.21653$, et $\varphi = 12^{\circ} 12'5$, $\cos \varphi = 0.9774$, et ensuite

$$V = \frac{1}{0.9774} \sqrt{4.9045 \cdot \frac{400}{0.19633}} = 10^{2m \cdot s} 2.$$

La durée du trajet calculée est t = 4.00.

SECTION II.

RÉSISTANCE DE L'AIR.

- 23. Influence de la résistance de l'air sur le mouvement des projectiles; nécessité d'en tenir compte. La théorie du mouvement d'un projectile soumis à l'action de la pesanteur, en négligeant l'effet de la résistance de l'air, est, d'après ce qu'on vient de voir, d'une grande simplicité, et la solution des divers problèmes qu'on pourrait proposer serait très-facile. Mais, dans la presque totalité des cas de la pratique, on ne pourrait négliger l'effet de cette résistance sans commettre des erreurs notables et souvent très-considérables. Les cas dans lesquels les formules de la théorie parabolique peuvent être appliquées avec une exactitude qui suffit à la pratique sont très-limités. Il est important de reconnaître ces différents cas par la comparaison des résultats des formules de cette théorie avec les résultats du tir. Faisons-le en commençant par ceux où l'influence de la résistance de l'air est la plus grande.
- 24. On sait, par expérience, que la plus grande portée de la balle sphérique du fusil d'infanterie à canon lisse, tirée avec la charge ordinaire de guerre, a lieu sous l'angle de 25° environ et qu'elle est alors d'environ 1 000 mètres; or, dans le vide, l'angle de plus grande portée serait celui de 45°. De plus, avec la vitesse d'environ 480 mètres par seconde qui correspond à la charge ordinaire de

guerre des fusils auxquels ces portées se rapportent, la portée déduite de la formule du mouvement dans le vide $X = 2h \sin 2\varphi = \frac{V^2}{g} \sin 2\varphi$ (art. 7) serait de 17993 mètres; c'est-à-dire environ dix-huit fois plus grande que la portée réelle.

Sous l'angle de 4º à 5º, la portée réelle est de 600 mètres environ. Sans la résistance de l'air et sous l'angle de 4º ½, elle serait 3 674, ce qui est encore six fois trop grand.

Le tir avec les bouches à feu présente des différences moins grandes; avec la charge en usage du tiers du poids du boulet dans les canons lisses de 8 et de 12 de campagne, de 16 et de 24 de siège, sous l'angle de 6°, on obtient les portées respectives de 1615 mètres, 1780 mètres, 1850 mètres et 2015 mètres; or, avec la vitesse initiale de 485 mètres par seconde que cette charge imprime au boulet sphérique, la portée dans le vide serait 4986 mètres, laquelle serait avec la portée réelle respectivement dans le rapport 3,05; 2,80; 2,69; 2,47.

Cette comparaison fait voir que l'influence de l'air est d'autant moindre que les projectiles sont plus gros. On peut donc prévoir que dans le tir des bombes l'influence de l'air sera encore moindre que dans le tir des boulets.

25. Comparaison des durées observées et des durées calculées dans le jet des bombes. Comme on ne connaît pas à priori la vitesse initiale du projectile, on ne peut pas calculer directement la portée; mais on peut comparer les durées observées du trajet et les durées calculées d'après ces portées.

Le tableau suivant contient les résultats de l'observation et du calcul des durées dans des expériences' sur les

¹ Traité d'artillerie, par Scharnhorst. Expériences faites en Prusse sur des bombes dites de 25^{lb} (stein) et 50^{lb} (stein), pesant respectivement 29^{k4} et 54^k34.

portées des bombes de 22 centimètres et de 28 centimètres, tirées comparativement sous des angles de 45° et de 30° avec les mêmes charges de poudre.

Tableau renfermant les portées des bombes sous les angles de 45° et de 30°, ainsi que les durées des trajets observées et les durées calculées d'après les portées.

ÉSIGNATION	POIDS des	PORTÉES sous les angles de		DURÉES DES TRAJETS			
des	CHARGES			sous 45°		sous 30°	
rojectiles.	de poudre	4 5°.	30°.	observ.	calcul.	observ.	calcul.
	Kilog.	Mètres.	Mètres.	Second.	Second.	Second.	Second.
	0,234	343	290	9,8	8,4	6,8	5,8
Bombe]	0,351	629	561	12,9	11,3	10,0	8,1
de 22c.	0,585	1146	1011	16,0	15,3	12,3	10,9
(0,994	1792	1690	20,8	19,1	16,9	14,1
l	0,468	457	383	11	9,7	7,5	6,7
Bombe de 28°.	0,693	734	637	14	12,2	10	8,7
	1,054	1132	980	17	15,2	12	10,7
	1,405	1555	1355	20	17,8	14	12,6
Į	1,639	1757	1516	23	18,9	15	13,4
de 28°.	1,405	1555	1355	20	17,8	14	

La comparaison des durées observées des trajets et des durées calculées comme dans le vide d'après les portées observées, pour les mêmes angles de projection, pour les mêmes charges de poudre et par conséquent pour les mêmes vitesses initiales, fait voir que les premières sont toujours plus grandes que les secondes. Cet effet est dû à la résistance de l'air qui retarde le mouvement du mobile; en considérant que les différences sont beaucoup moins considérables que dans la comparaison des portées

des boulets, on voit que le mouvement des bombes diffère moins du mouvement parabolique que celui des boulets et des balles de fusil.

26. Comparaison des portées sous différents angles. Les formules du mouvement dans le vide s'écartent moins encore de la vérité, quand on compare entre elles les portées sous différents angles de projection.

En effet, en calculant au moyen de la formule X' = X, sin 2, (art. 12) les portées sous l'angle de 30, d'après les portées moyennes observées sous l'angle de 45 et en les comparant aux portées moyennes observées sous 30, pour les mêmes charges de poudre et par conséquent pour les mêmes vitesses initiales, on aura les résultats contenus dans le tableau suivant:

TABLEAU des portées calculées sans tenir compte de la résistance de l'air et des portées observées.

PORTÉES des bombes de 28 centimètres :				PORTÉES des bombes de 22 centimètres :			
sous 45°: sous 30 degrés :				sous 45°:	SO	s 30 degrés :	
observ.	observ.			observ.	observ.	bserv. calculées	
Mètres. 457 734 1132 1555	Mètres. 383 637 980 1355	Metres. 396 637 982 1350	Metres. +13 0 + 2 - 5	Mètres. 343 629 1146 1792	Mètres. 290 . 561 1 011 1 690	Mètres. 298 545 993 1552	Mètres. + 8 - 16 - 13 -138
1757	1516	1522	+ 6				

On voit que les portées calculées ne différent pas beaucoup des portées réelles. Les différences qui sont dans un sens et dans l'autre, tiennent en partie à des inégalités qu'on ne peut éviter dans le tir; mais les différences sont considérables pour les très-grandes portées.

L'influence de la résistance de l'air est confirmée par les résultats ci-après du tir des bombes de 0^m226 du poids de 27^k, sous des angles de 43°, 35°, 30° et 25°, à des charges différentes, et exécutées, en Suède, en 1845.

POIDS de la	ANGLES		PORTÉES	DURÉES		
CHARGE.	PROJECTION	observées.	calculées.	dia.	observées.	calculées.
	Degrés.	Mètres.	Mètres.	Mètres.	Secondes.	Secondes.
	43	607	607	0	10,8	10,7
0,266	35	578	572	— 6	9,4	9,1
	30	533	527	— 6	8,1	7,9
	25	4 60	466	+6	6,7	6,6
	43	755	755	0	12,4	12,0
0,319	35	710	711	+1	10,3	10,1
0,519	30	655	655	0	8,7	8,7
	25	585	580	- 5	7,9	7,5
	l (43	1088	1088	0	15,1	14,4
0,425	35	1014	1025	+11	12,7	12,0
0,420	30	917	944	+27	10,4	10,4
	25	834	835	+ 1	9,0	8,9
	43	1 251	1 251	. 0	15,2	15,4
0,531	35	1212	1178	34	13,3	13,1
0,001	30	1171	1085	+14	11,9	11,7
	25	1 051	960	+ 9	10,5	10,0
				·	1	' I

Les portées calculées d'après la portée sous 43°, ne diffèrent pas beaucoup des portées observées jusqu'à 700m; elles sont sensibles aux distances de 1000^m et assez prononcées à 1200^m. Une partie des différences tient à l'incertitude qui reste sur les portées ou durées moyennes, quoiqu'elles résultent de 45 à 50 coups pour chaque angle de projection.

On doit conclure de ces comparaisons que, dans certains cas, et jusqu'aux distances auxquelles on fait le plus habituellement usage de ces projectiles, on peut calculer les portées sous un angle donné, d'après les portées sous un autre angle, en appliquant la théorie du mouvement des projectiles dans le vide au mouvement réel des bombes; on ne commet ainsi que des erreurs peu considérables; sous ce rapport, la théorie du mouvement dans le vide est très-utile. Mais lorsqu'il s'agit du tir des boulets et des balles ou du tir des bombes à de très-grandes distances, on commettrait des erreurs, parfois extrêmement graves, en négligeant l'effet de la résistance de l'air. On va exposer qu'elles sont les lois de cette résistance.

27. Notions préliminaires sur la résistance des fluides. La recherche des lois de la résistance que les fluides opposent au mouvement des corps solides présente de grandes difficultés, tant sous le point de vue mathématique que sous celui des expériences, à cause de la complication du phénomène. Aussi, malgré les travaux des plus célèbres géomètres, malgré les nombreuses expériences qui ont été faites, anciennement et récemment, la question est loin d'être résolue d'une manière générale, surtout en ce qui touche la forme des corps; mais, pour les mobiles de forme sphérique employés par l'artillerie, la question est beaucoup plus avancée.

Nous nous occuperons de la question de la résistance de l'air sous le rapport particulier du mouvement des projectiles dans l'air, en partant des notions générales nécessaires. Nous renvoyons, pour la question plus générale, au Traité de Mécanique industrielle de M. le général Poncelet. Ce savant géomètre a réuni dans ce traité les faits nombreux relatifs à la résistance des fluides au mouvement des corps solides; il les a discutés avec un grand soin et il y a ajouté des considérations physiques fort importantes. Nous y avons puisé une très-grande partie des notions que nous allons donner sur la résistance des fluides au mouvement des solides, et nous avons quelquefois cité textuellement.

28. Quand un corps se meut dans un milieu indéfini, sans tourner, avec une vitesse constante, il éprouve de la part des molécules de ce milieu et dans le sens même du mouvement une résistance qui varie suivant la forme, les dimensions et la vitesse du corps. Cette résistance ne peut évidemment provenir que du mouvement imprimé en commun aux molécules du milieu, c'est-à-dire de leur inertie, et de leurs déplacements relatifs qui mettent en jeu les forces de cohésion et d'adhérence.

Examinons les circonstances physiques qui accompagnent ce phénomène.

Supposons qu'un corps de forme quelconque, entièrement plongé dans un fluide indéfini, se meuve uniformément de A vers B (Fig. 6) avec une certaine vitesse, ce corps poussera devant lui directement ou indirectement un certain nombre de molécules fluides et les forcera à se dévier, à s'éloigner de part et d'autre de sa face antérieure avec une certaine vitesse qui croîtra avec la vitesse et les dimensions du corps.

Les molécules ainsi placées sur la route de ce corps

Introduction à la Mécanique Industrielle, Physique ou Expérimentale, par J. V. Poncelet. Deuxième édition, 1839; pages 522 à 697.

³ Idem, page 526.

suivront elles-mêmes certaines routes distinctes de la sienne et dans lesquelles elles seront suivies successivement par les molécules situées à la place qu'elles avaient primitivement occupée, en avant ou sur les côtés du corps : ces routes forment autant de filets contigus les uns aux autres et dont la représentation sur la figure 6 donne une idée dans le cas des faibles vitesses.

On voit que les filets qui, à partir d'une petite distance de la face antérieure du corps sont d'abord perpendiculaires à la direction AB de son mouvement, s'infléchissent ensuite de manière à devenir parallèles à ses faces latérales, puis se courbent de nouveau pour se rapprocher de leur première direction; mais qu'étant parvenus vers l'arrière de ce corps, ils s'y infléchissent de plus en plus, deviennent perpendiculaires, puis s'inclinent encore pour remplir continuellement l'espace vide qui tend à s'y former, d'où résulte, sur la route suivie par le corps, un courant qui l'accompagne et qu'on nomme le sillage du corps.

Quand le mouvement est plus rapide, lorsque la vitesse du corps dépasse 1 ou 2 mètres par seconde, le fluide vient former en arrière de ce corps (Fig. 7), par suite de l'excès de force vive qu'il y possède, une série de tourbillons qui marchent symétriquement par les parties diamétralement opposées du corps, et qui, se succédant les uns aux autres dans des sens alternatifs et contraires, finissent bientôt par s'écarter de la route du corps en s'étendant et se disséminant dans toute la masse fluide.

29. Masse de fluide qui accompagne les corps. Le corps dans son mouvement déplace ainsi non-seulement le fluide situé dans l'espace qu'il doit occuper progressivement, mais son action s'étend latéralement de proche en proche, et il en résulte un déplacement relatif des molécules, un changement de densité, et des inégalités dans la distribu-

tion des pressions autour de chaque point. Cette inégalité, qui n'a pas lieu dans l'état de repos ou de mouvement parallèle et uniforme des fluides, est due à l'inertie opposée par leurs molécules à tout changement de mouvement. Le déplacement de ces molécules, l'adhérence et les frottements des filets fluides entre eux ne peuvent avoir lieu sans que le corps n'en éprouve une certaine résistance, ne perde une partie de sa force vive qui dépend de la forme et des dimensions de ce corps.

Il en résulte que les molécules du milieu, qui sont contraintes de cheminer dans le sens perpendiculaire à la direction aussi bien que celles qui tourbillonnent à l'arrière du corps, sont comme en repos par rapport à ce corps et forment en quelque sorte partie de sa propre masse; on les a désignées par le nom de proue et de poupe fluide.

Le volume de cette proue et poupe fluide peut être trèsconsidérable par rapport à celui des corps minces frappés perpendiculairement à leur plus grande surface; le volume absolu augmente avec la longueur du corps. Pour des sphères, Dubuat a trouvé ', soit pour l'air, soit pour l'eau, que le volume entraîné s'écartait fort peu des 0,6 de celui des sphères.

Ce phénomène se remarque dans le jet des bombes. Lorsqu'elles sortent du mortier, on aperçoit à leur partie postérieure (Fig. 8) une masse de fluide noirâtre de la forme d'un paraboloïde, dont la longueur est d'au moins deux ou trois fois le diamètre de la bombe. Cette masse persiste pendant un trajet de plus de 30 mètres et se dissipe peu à peu .

^{&#}x27; Principes d'hydraulique, tome II, sect. I et II.

² J'ai observé maintes fois ce phénomène dans les écoles à feu d'artillerie, avec les vitesses qui sous 45° donnent des portées de 600m; d'autres fois il n'était pas perceptible.

D'après ce résultat obtenu pour de grandes vitesses, le volume de la poupe fluide serait plus considérable que d'après les observations de Dubuat, relatives à des vitesses beaucoup moindres.

Cette masse de fluide qui n'a pas d'insluence sur la résistance du corps dans le mouvement unisorme, en a lorsque le mouvement est varié, et elle doit être regardée comme faisant partie de celle du corps. Mais quand il s'agit de projectiles tels que ceux de l'artillerie, leur densité, par rapport à celle de l'air, est assez grande pour qu'il soit permis de saire abstraction de la masse de la poupe sluide.

Nous ne nous occuperons pas autrement de l'analyse des mouvements compliqués des molécules du fluide dans lequel se meut un projectile, nous nous contenterons de considérations plus simples qui nous conduiront immédiatement aux lois de la résistance de l'air et de l'exposé des principales expériences que l'on a faites pour mesurer la résistance de ce fluide au mouvement des projectiles.

30. Considérations théoriques. Considérons le cas d'un fluide en repos, dans lequel un corps chemine parallèlement et uniformément. Soit V la vitesse du corps, de l'espace parcouru pendant le temps infiniment court dt. Il paraît évident qu'à circonstances égales d'ailleurs, la somme des molécules déviées ou entraînées, sera d'autant plus grande que le corps occupera lui-même un plus grand espace dans le sens perpendiculaire au mouvement, et qu'en nommant S la projection de ce corps sur un plan perpendiculaire à la direction du mouvement, la portion de l'espace qui sera successivement occupée par le corps en remplacement du fluide déplacé sera proportionnelle à S.

^{&#}x27; Introduction à la Mécanique Industrielle de J. V. Poncelet, page 540.

Cet espace croîtra aussi comme l'espace ou le chemin de décrit dans chacun des instants égaux dt. Et si l'on nomme Q le volume total, on verra que Q est proportionnel à Sde.

D'un autre côté, le corps en cheminant dans le fluide imprime aux molécules de volume Q une vitesse d'autant plus grande que la sienne l'est elle-même davantage, conséquemment la vitesse de ces molécules croît comme V et leur force vive comme V²; nommant \mathcal{S} le poids de l'unité de volume du fluide, le poids du volume Q du fluide sera $Q\mathcal{S}$; la force vive qui lui est imprimée dans le temps dt peut donc être regardée, en représentant par g la pesanteur, comme proportionnelle à $\frac{\delta Sde}{\sigma}$ V².

Le corps ayant ainsi communiqué cette force vive au fluide, celui-ci a nécessairement opposé au mouvement uniforme du corps une résistance totale ρ qui, restant la même pour la longueur infiniment petite de, aura détruit une quantité de travail ρde proportionnelle à la moitié de $\frac{\delta SV^2 de}{g}$, de sorte que ρde sera proportionnel à $\frac{\delta SV^2 de}{2g}$ ou, ce qui revient au même, ρ sera proportionnelle à $\frac{\delta SV^2}{2g}$ ou à σSh , en représentant par σSh la hauteur due à la vitesse σSh .

On peut admettre que le rapport de f à JSh ou à $\frac{\delta SV^2}{2g}$ dans un même fluide ou dans des fluides différents, avec des vitesses V rigoureusement uniformes quoique distinctes et pour un même corps ou pour des corps semblables, est constant. Nommant k ce rapport constant qui, dans chaque cas, devra être fourni par les données immédiates de l'expérience et dépendra essentiellement de la forme du corps et de quelques autres circonstances, on

aura pour calculer la résistance lorsque le coefficient k sera connu

$$ho = k \delta S \frac{V^2}{2g}$$
 ou $ho = k \delta S h$.

On voit par là que la résistance qu'éprouve un corps en mouvement dans un fluide, est proportionnelle à la densité de ce fluide, au carré de la vitesse du corps et à la projection de celui-ci sur un plan perpendiculaire à la direction du mouvement, ou autrement proportionnelle au poids d'un prisme de fluide qui aurait pour base la projection de ce corps et pour hauteur la hauteur due à la vitesse du corps.

31. Cas du mouvement varié. Si la vitesse du corps n'était pas uniforme, et c'est ce qui a lieu dans le mouvement des projectiles, on devrait avoir égard à la masse du fluide qui accompagne le corps et qui en augmente l'inertie de manière à accroître la résistance quand le mouvement s'accélère et à la diminuer quand il vient au contraire à se ralentir. Si on représente par m' cette masse, et par dV la variation de la vitesse V dans le temps infiniment petit dt, la résistance sera diminuée ou augmentée de $m'\frac{dV}{dt}$, suivant que le mouvement sera accéléré ou retardé.

Outre cette résistance due à la force vive imprimée aux molécules fluides déplacées, il existe des résistances telles que la cohésion et les frottements des molécules fluides entre elles, et que l'on a représentées par un terme constant ou simplement proportionnel à la vitesse; comme cette résistance n'aurait pas d'importance relativement au mouvement des projectiles de l'artillerie, nous ne nous en occuperons pas ici.

32. Influence de la compressibilité du milieu et de la

variation de la densité. Pour des milieux gazeux, comme l'air atmosphérique, qui sont réductibles de volume sous l'influence de la pression, la densité est plus forte en avant et plus faible en arrière que celle qui correspond à l'état d'équilibre du fluide. Ce fait peut expliquer comment, pour de très-grandes vitesses, comme celle des projectiles de l'artillerie, la résistance croît d'une manière plus rapide que le carré de la vitesse; de sorte que dans l'expression $kJS\frac{V^2}{2g}$ de la résistance, le coefficient k ou la densité J du fluide devrait être augmenté d'une fraction proportionnelle elle-même, soit à la vitesse, ce qui revient à ajouter à l'expression $kJS\frac{V^2}{2g}$ un terme proportionnel au cube de cette même vitesse, soit à une puissance de la vitesse supérieure à la première.

Nous devons mentionner un phénomène « qui, dans » l'opinion de beaucoup d'auteurs, peut se présenter lors » de ces mouvements très-rapides; la production d'un » vide plus ou moins parfait, en arrière du corps, vide » qui se trouverait complétement formé dès l'instant où » la vitesse du projectile atteindrait ou dépasserait celle » avec laquelle le fluide ambiant tendrait à s'y précipiter » et s'y précipiterait en effet sous la seule influence de » la pression statique, si les filets déviés en avant du » corps et qui ont acquis une vitesse comparable et » contraire à la sienne propre, ne venaient combler en » partie ce vide, au fur et à mesure de sa formation. » Il existe d'ailleurs une grande incertitude sur la vitesse de la rentrée de l'air dans le vide, de sorte que la considération de cet élément dans les lois de la résistance de

J. V. Poncelet, ouvrage cité, page 535 et note.

l'air perd de son importance ici, et qu'il n'y a pas lieu de s'en occuper davantage.

33. Influence de la forme des corps sur l'intensité absolue de la résistance de l'air. La formule $\rho=kJSh$ ne s'applique qu'à la résistance exercée par le fluide contre un même corps ou contre des corps de formes semblables, mais quand les corps diffèrent soit par ces formes, soit par la manière dont ils reçoivent l'action de ces fluides, les résistances ne sont plus comparables et jusqu'à présent l'expérience seule peut faire connaître avec une exactitude suffisante les valeurs relatives à chaque forme particulière du corps.

La forme antérieure du corps plus ou moins aiguë, plus ou moins bien raccordée avec les faces latérales, facilitant l'écoulement du fluide, diminue les effets d'une déviation trop brusque et permet au fluide de reprendre progressivement une direction parallèle; cela tend à empêcher les tourbillons et à diminuer les pertes de force vive. Cependant un allongement trop considérable de la partie antérieure, en augmentant les frottements augmenterait la résistance plus que l'acuité de cette proue ne la diminuerait.

La longueur du corps diminue aussi jusqu'à un certain point la résistance du fluide. La forme de la partic postérieure du corps ou de la proue, favorisant aussi le dégagement du fluide à l'instant où il quitte le corps et empêchant la formation des tourbillons, elle diminue la résistance, mais elle a moins d'influence que la forme antérieure.

34. Exposé des expériences concernant la résistance des fluides, dans le mouvement de rotation. Après les considérations dans lesquelles nous venons d'entrer sur la résistance que les fluides opposent au mouvement des corps, nous allons parler du résultat des expériences faites

pour déterminer la valeur absolue de cette résistance, laquelle est indiquée par celle de k dans la formule $\rho = kJS\frac{V^2}{2g}$ et variera, comme on l'a dit, suivant la forme du corps.

Si par une expérience faite avec un corps de forme déterminée, animé d'une certaine vitesse, dans un certain fluide, c'est-à-dire pour lequel S, V et F sont connus, on parvient à connaître la résistance F qu'il éprouve; on aura évidemment la valeur de F par la relation

$$k = \frac{\rho}{\delta S} \frac{2g}{\overline{V}^2}.$$

Les expériences devront en outre indiquer dans quelle étendue les valeurs de S et de V pourront varier sans faire changer celle de k, ou de combien devra varier k avec les diverses valeurs de ces quantités.

Nous établirons une distinction entre les expériences faites sous de petites vitesses, sur des corps de diverses formes au moyen de certains appareils, et les expériences aux trèsgrandes vitesses, qui n'ont pu être faites qu'au moyen des projectiles lancés par les bouches à feu de l'artillerie.

Nous commencerons par les expériences relatives au mouvement circulaire, parce qu'il a été plus facilement et plus complétement étudié.

35. Appareils employés. Borda a employé pour ses expériences une espèce de volant (Fig. 9) dont l'axe horizontal AB porte un petit cylindre C sur lequel s'enroule un cordon à l'extrémité duquel est suspendu un poids E qui fait tourner le volant. Une verge mince FGK, taillée en couteau, forme les deux bras du volant, aux extrémités desquels étaient adaptées deux surfaces égales F et K; leur centre se trouvait à 1^m20 environ de l'axe de rotation. Le

Mémoire de l'Académie des sciences, 1763.

cordon portait deux marques bien visibles; à l'aide d'un pendule à demi-seconde, on mesurait à un quart de seconde près l'intervalle de temps entre le passage des deux marques, et, comme on connaissait le nombre de tours auquel correspondait la longueur du cordon comprise entre elles, on en déduisait la vitesse de rotation, et par conséquent la vitesse absolue du centre des surfaces mises en expérience; on s'était assuré qu'à partir du passage de la première marque au cinquième tour, la vitesse était devenue et demeurait uniforme. Durant les vingt-deux tours qui correspondaient à l'intervalle de deux marques, le poids moteur faisait par conséquent équilibre à la résistance de l'air, et, d'après le rapport des rayons du volant et du cylindre, on concluait la résistance qu'éprouvait chacune des surfaces mises en expérience. En employant des poids différents, on obtenait les résistances pour des vitesses différentes.

Pour estimer les résistances inhérentes à l'appareil, on le chargeait de poids faibles, en observant la vitesse que chacun lui imprimait et l'on retranchait du poids moteur celui qui imprimait la même vitesse à l'appareil seul.

36. D'autres expériences avaient été faites antérieurement à celles-ci par Robins, avec un appareil de rotation, que Hutton employa postérieurement, de 1786 à 1788.

Cet appareil' est composé d'un cylindre en cuivre BCDE (Fig. 10) qui tourne autour d'un axe maintenu vertical à l'aide d'un châssis solidement fixé et presque sans frottement. A la partie supérieure est fixé un cône creux AG; une longue pièce de bois GH très-mince taillée en lame d'aviron, part de la base du cône et porte à son

Voir pour plus de détails, Nouvelles expériences d'artillerie de Hutton, deuxième partie, traduction de O. Terquem, page 84.

extrémité le corps léger P destiné à recevoir le mouvement circulaire dans l'air. Un fil de métal AH fixé d'un côté au sommet A du cône, de l'autre à l'extrémité H du bras empêche ce bras de fléchir sous le poids du corps. Le cylindre est enveloppé d'un fil de soie très-mince, qui, après avoir fait plusieurs tours passe sur une poulie L, et tient suspendu le poids moteur M. Celui-ci descendant en vertu de la pesanteur fait tourner le cylindre, le bras et le corps mis en expérience. Le mouvement du corps s'accélère et la résistance qu'il éprouve de la part de l'air augmente jusqu'à ce qu'elle fasse équilibre au poids moteur, alors le mouvement devient uniforme.

Pour opérer, on attendait le moment où la machine parvenait au mouvement uniforme, ordinairement après cinq ou six révolutions, on prenaît le temps moyen de plusieurs révolutions; ensuite on détachait le corps P et on le remplaçait par un morceau de plomb aplati, de même poids et placé horizontalement; on substituait au poids M un poids m suffisamment réduit et déterminé par quelques tâtonnements pour qu'il imprimât au bras la même vitesse que lorsque celui-ci portait le corps. L'excès du poids M sur le dernier mesurait la résistance qu'éprouvait le corps de la part de l'air. Cet excès multiplié par le rapport du bras GH au rayon du cylindre, donnait la mesure absolue de la résistance. La vitesse du corps était déterminée par le rapport entre la circonférence décrite par le centre du corps et la durée d'une révolution. En faisant varier le poids moteur, le corps restant le même, on faisait varier la vitesse et l'on obtenait ainsi une relation entre la résistance et la vitesse. La distance du centre du corps à l'axe de rotation était d'environ 1^m36; les vitesses ont varié depuis 1^m jusqu'à 8^m par seconde.

Des expériences ont été exécutées postérieurement, à

Brest, par M. Thibault, officier de marine¹, avec un appareil semblable à celui de Borda. La distance du corps à l'axe de rotation était de 1^m37, les vitesses ont varié entre 0^m5 et 11^m par seconde. La manière dont on mesurait les résistances de l'appareil était analogue à celle de Hutton.

37. Résultats des expériences. Examinons les résultats de ces diverses expériences.

D'après les expériences de Borda faites sur des plans animés d'une vitesse uniforme, variant de 1^m à 4^m par seconde, le coefficient de k aurait varié avec l'étendue de la surface dirigée dans le plan de l'axe de rotation et du rayon du volant, et, en exprimant la superficie en mètres carrés

pour....
$$S = 0^{m^2}021$$
, $S = 0^{m^2}026$, $S = 0^{m^2}059$, l'on aurait $k = 1,39$, $k = 1,49$, $k = 1,61$.

Ces résultats présentent quelqu'incertitude, parce qu'on n'a pas tenu compte d'une manière suffisamment exacte, ni des changements de la densité de l'air à chaque expérience, ni des résistances inhérentes à la nature de l'appareil qui croissaient nécessairement avec l'intensité des efforts et des vitesses sous lesquels on opérait.

D'après les expériences de Hutton,

pour...
$$S = 0^{m^2}011$$
, $S = 0^{m^2}021$, on aurait $k = 1,24$, $k = 1,43$.

Ces nombres sont un peu plus faibles que leurs correspondants ci-dessus, parce que dans cette méthode, on

Recherches expérimentales sur la résistance de l'air, par L. A. Thibault, lieutenant de vaisseau; Brest, 1826, pages 11, 62, 128, etc.

² Introduction à la Mécanique Industrielle, par J. V. Poncelet, page 574.

désalque, en l'exagérant un peu, l'influence des résistances étrangères.

Ces résultats particuliers concernant le mouvement circulaire et quelques autres, avaient fait croire que la résistance des surfaces planes croissait en général, dans un plus grand rapport que leur étendue, mais les expériences de M. Thibault ne permettent plus d'admettre ce principe dans sa généralité.

D'après les expériences faites par cet officier sur des carrés en carton mince

pour...
$$S = 0^{m^2}026$$
, $S = 0^{m^2}103$, on aurait $k = 1,525$, $k = 1,784$.

La résistance pour une même surface croissait un peu plus rapidement que le carré de la vitesse, comme Hutton l'avait remarqué; cependant cet accroissement était tout à fait négligeable pour des vitesses au-dessous de 8^m par seconde, mais il est certain que dans le mouvement circulaire la résistance croît dans un plus grand rapport que l'étendue des surfaces.

Pour mettre cette influence hors de doute, M. Thibault a fait mouvoir dans des circonstances identiques et sous l'action d'un même contre-poids, trois plans minces de 0^m,10304 de surface chacun: le premier était un carré et les deux autres des rectangles égaux dont le long côté double de l'autre fut alternativement dirigé dans le sens du rayon du volant et dans le sens perpendiculaire, de manière que les centres se trouvassent pour les trois cas situés à la même distance 1^m37 de l'axe de rotation.

Il a ainsi obtenu

```
pour le rectangle, le côté 0^m454 dans le sens du rayon, k = 1,900, pour le carré de ...... 0^m321 de côté ...... k = 1,784. pour le rectangle, le côté 0^m227 dans le sens du rayon, k = 1,677.
```

Enfin M. Thibault ayant fait mouvoir sous un même

contre-poids, trois carrés minces de 0^m323, 0^m227, 0^m161 de côté, aux distances respectives de 1^m370, 0^m966 et 0^m685 proportionnelles à leurs côtés, les résistances sous une même vitesse ont été trouvées sensiblement égales entre elles.

38. De ces expériences on est en droit de conclure que dans le mouvement circulaire les résistances qu'éprouve un corps sont d'autant plus petites qu'il est placé à une plus grande distance de l'axe de rotation, mais que si ce mouvement ne peut pas donner la résistance absolue, il peut du moins servir à en donner les valeurs comparatives quand, étant semblables, les surfaces sont en outre placées à des distances de l'axe de rotation proportionnelles à leurs côtés homologues.

Remarquons qu'à mesure que les dimensions de la surface dirigée dans le sens du rayon diminuent, l'influence du mouvement circulaire devient moindre pour un même rayon, et qu'il en est alors comme si la surface de mêmes dimensions était placée à une distance de plus en plus grande de l'axe de rotation; ce mouvement se rapproche ainsi du mouvement rectiligne; l'on voit ainsi que l'on peut se servir des expériences de M. Thibault pour déterminer la résistance de l'air dans ce dernier cas. Pour cela, on a pris pour abscisses les dimensions 0^m454, 0^m321, 0^m227 placées dans le sens du rayon et pour ordonnées les trois valeurs de k correspondantes 1,900, 1.784, 1.679; par les trois points ainsi déterminés, on a fait passer une courbe (Fig. 11); on l'a prolongée par analogie du côté de l'origine, par cette seule considéra-. tion que pour des diminutions égales des dimensions suivant le rayon, les diminutions des différences des ordonnées k étaient égales entre elles; on a trouvé que pour une dimension extrémement petite ou à la limite, la valeur de k serait égale à 1,28; cette valeur doit se rapporter à

celle du mouvement circulaire d'un très-grand rayon et se confondre ainsi avec le mouvement rectiligne.

D'après une formule de M. le général Duchemin', relative à la résistance au mouvement circulaire suivant la distance du corps à l'axe de rotation, on aurait k=1,254.

39. Expériences sur le mouvement rectilique. Il a été fait à Metz en 1835 et en 1836 des expériences sur le mouvement rectiligne des corps mus dans l'air ou dans l'eau. Dans les premières, le plateau AB (Fig. 12) avec lequel on opérait était horizontal et fixé à l'extrémité d'un cordon de soie de petit diamètre; ce cordon s'enroulait sur une poulie CD à axe horizontal et assez élevé pour donner une chute suffisamment grande; le corps descendait par l'effet de la pesanteur seule; l'on accélérait ou l'on diminuait sa vitesse de chute par des poids additionnels ou par des contre-poids. Un pinceau chargé d'encre de Chine était fixé à la poulie parallèlement à l'axe; à côté de la poulie était un plateau circulaire FG vertical recouvert d'une feuille de papier blanc auquel on communiquait un mouvement uniforme de rotation; on en observait la vitesse avec une grande précision, au moyen d'un chronomètre à pointage de Breguet, donnant les dixièmes de seconde. Le pinceau de la poulie décrivait sur ce plateau une courbe dont la forme dépendait des vitesses relatives de la poulie et du plateau. Cette trace du mouvement permettait, après que l'expérience était terminée, de connaître la vitesse de la poulie et par conséquent celle

[·] Recherches expérimentales sur les lois de la résistance des fluides, insérées au Mémorial d'Artillerie, No 5, page 206, et Introduction à la Mécanique, par J. V. Poncelet, page 577.

^{*} Mémoire présenté à M. le Ministre de la guerre et au concours pour le grand prix de Mathématiques de l'Institut, sur la Résistance des fluides, par MM. Piobert, Morin et Didion, 1837, et Mémorial d'Artillerie, N° 5, page 553.

du corps à chaque instant de sa chute; comme de plus on connaissait le poids moteur, on déterminait la résistance variable que le plateau éprouvait à chaque instant durant la première partie de sa chute où le mouvement était accéléré; on l'obtenait plus particulièrement vers la fin et lorsque le mouvement était devenu uniforme, alors que la résistance était devenue constante. On tenait compte d'ailleurs avec un très-grand soin des résistances passives de l'appareil, calculées directement et vérifiées par des expériences spéciales.

Les expériences dans l'air ont été faites sur des plateaux carrés de 0^m500 et de 1^m000 de côté, mus verticalement dans une étendue de 12^m environ, et avec des vitesses qui ont varié entre 0^m et 9^m par seconde. L'ensemble des résultats nous a conduit à la formule

$$\rho = S \frac{\delta}{\delta'} (0.036 + 0.084 \, V^2).$$

En remarquant que J' représente le poids 14214 d'un mêtre cube d'air à la température et à la pression auxquelles on a rapporté les résultats, cette formule devient

$$\rho = \delta S(0,03 + 1,357 H).$$

Ici, comme on le voit, pour les très-grandes surfaces sur lesquelles on a opéré, se présente un terme indépendant de la vitesse; mais pour les vitesses de 4m à 9m, limites de celles qui ont été observées, on pourra prendre sans erreur sensible

$$\delta = 1,357 \delta SH$$
 ou $k = 1,357$.

REMARQUE. Le terme indépendant de la vitesse conduirait à ce résultat qu'un corps qui se mouvrait horizontalement dans l'air finirait par s'arrêter entièrement, ce qui n'aurait pas lieu si la résistance ne dépendait que d'une puissance plus grande que

l'unité; cela, néanmoins, ne présente rien de contradictoire. Ce terme constant sert d'ailleurs à représenter les frottements de toute espèce que l'air exerce sur le corps, obligé qu'est le fluide de circuler tout autour du corps, pour lui faire place, en passant de l'avant à l'arrière. Le frottement existe ainsi quelque lent que soit le mouvement; mais, sans trop s'arrêter sur ce sujet, on peut remarquer que le mouvement des plateaux ayant eu lieu de haut en bas et à travers une ouverture du plancher d'un grand bâtiment, il a pu exister un léger courant ascendant à travers cette ouverture, quelque soin qu'on'ait pris de fermer les portes et les fenêtres. Ce courant, peu appréciable aux moyens ordinaires d'observation, a dû avoir le même résultat qu'une augmentation constante de vitesse dont on n'aurait pas tenu compte. Cette erreur dans l'estimation de la vitesse relative du plateau et de l'air, a dû en causer une autre dans le calcul des résistances et les augmenter. Cette erreur augmentant d'une manière plus sensible les résultats relatifs aux petites vitesses, elle a dû produire une exagération dans le terme constant, et peut-être lui donner paissance; elle a dû augmenter également l'autre terme. Cela expliquerait aussi l'excès de la valeur de k sur celle qui est déduite des expériences sur le mouvement de rotation, corrigées d'après le résultat des expériences de M. Thibault.

- 40. D'après les résultats de toutes ces expériences et ceux d'autres expériences faites sur la résistance de l'eau, M. Poncelet propose en attendant des expériences décisives, la valeur moyenne k=1,30 pour le cas des plans minces en mouvement dans un fluide en repos et sauf à décider ultérieurement si l'étendue effective des surfaces offre ou non une influence dont il soit nécessaire de tenir compte dans les calculs, du moins pour les très-petites surfaces. Nous verrons plus loin qu'il n'en est rien en ce qui concerne le mouvement des projectiles,
 - 41. Résistance dans le cas où le fluide est en mouve-

Introduction à la Mécanique, page 587.

ment et le corps en repos. Le cas que nous avons considéré jusqu'ici est celui d'un corps en mouvement dans un fluide en repos; mais lorsqu'au contraire le corps est en repos et le fluide en mouvement, la résistance paraît notablement plus considérable; sans nous occuper de la cause de cette différence ni des expériences faites à cet égard, nous nous contenterons de rappeler que M. Poncelet 'admet pour le coefficient de cette résistance k=1.85.

42. Résistance des corps de diverses formes en mouvement dans un fluide. Il nous reste à examiner la résistance que les corps de diverses formes éprouvent lorsqu'ils se meuvent dans l'air.

Quoique la forme de la sphère soit celle des mobiles les plus généralement en usage, il sera nécessaire de s'occuper aussi des autres formes, parce qu'elles sont maintenant appliquées aux boulets oblongs, récemment adoptés pour les bouches à feu, aux balles oblongues des armes à feu nouvelles et qu'elles sont nécessaires pour les fusées de guerre.

Des expériences ont été faites pour déterminer l'influence de la forme de différents corps pleins, tels que prismes ou coins triangulaires à face plane ou courbe, cônes, demi-cylindres, sphères et hémisphères, mus circulairement dans l'eau et dans l'air sous des vitesses médiocres et de manière à leur faire présenter alternativement la saillie ou convexité et la base, à l'action directe du milieu. Les résultats auxquels on est parvenu, en comparant pour chaque cas spécial la résistance sur la convexité à celle sur la base, sont consignés dans le tableau suivant².

Introduction à la Mécanique, page 587.

³ Idem, page 612.

Rapport de la résistance des différents corps.

Du coin triangulaire à faces planes, à celle de sa base rectangulaire, l'angle au sommet étant de [90° (Hutton) 0,520] Du coin triangulaire à faces courbes for-
mées de deux arcs de 60°, décrits du sommet opposé comme centre, à celle de sa base rectangulaire (Borda)
Du demi-cylindre elliptique (ellipse circonscrite au triangle équilatéral), à celle de sa base rectangulaire (Borda) 0,430
Du demi-cylindre circulaire, à celle de
sa hase rectangulaire (Borda) 0,570
De la convexité du cône, à celle de sa (90° Borda 0,691
base circulaire, l'angle au sommet 600 (Id.) 0,543
étant de (51° 24′ (Hutton) 0,433
De la demi-sphère, à celle de la sphère
entière (Borda et Hutton). 0,990
De la demi-sphère, à celle de son plan (Moyne d'apr. Borda 0,405
diamétral (mayonna 0 407)
(Vince 0,403)
« On doit regretter que les résistances de chaque espèce
» n'aient point été comparées directement à celle des
» plans minces, de même forme et surface que les bases
» indiquées au tableau, car elles eussent mis à même
d'apprécier l'influence comparative des poupes isolées.
» Tout ce qu'il est permis de conclure de l'ensemble des
» résultats obtenus par Hutton, dans des circonstances
» qui, malheureusement, ne peuvent être considérées
» comme absolument identiques, c'est que la première
» de ces résistances, celle des plans minces, eût été géné-
» ralement trouvée un peu moindre que la seconde, celle
» des mêmes plans accompagnés de leurs poupes. Pour
» les bases de l'hémisphère et du cône soumis à l'expé-
» rience par Hutton, la résistance, dans l'air, et sous des
» vitesses de 3 à 4 metres, a surpasse de 0,01 et 0,02

- » environ de sa valeur, celle du plan mince correspon-
- dant. Ce résultat joint à ce que le rapport des résis-
- rances doit, d'après les observations déjà faites (37,
- 38), rester à peu près le même dans le mouvement
- rectiligne et le mouvement circulaire, permettra de dé-
- » terminer par le calcul, la résistance absolue des corps
- » indiqués au tableau ci-dessus, si celles des plans minces
- » était exactement connue. »
- 43. D'après le résultat des expériences de Hutton', le rapport de la résistance de l'air sur la sphère entière et sur le plan dans le mouvement circulaire diminuerait un peu avec les vitesses; pour celle de 6 à 7 mètres, il serait de 0,42, et en adoptant l'un des nombres 1,254, 1,28 ou 1,30 (37, 40) pour la valeur de k relative au plan dans le mouvement rectiligne, on aurait pour la valeur de k relative à la sphère 0,53, 0,538 ou 0,546.

Hutton ne tenant pas compte de l'influence du mouvement de rotation trouvait k = 0,594 et avait adopté 0,60 pour des vitesses de 2^m par seconde dans l'air.

D'autres expériences entreprises par Newton sur la chute verticale dans l'air, de globes en verre de même diamètre, ont donné d'après les calculs de Dubuat k=0.537 sous des vitesses de $0^{\rm m}$ à $9^{\rm m}$ par seconde. On voit d'après ces divers résultats que la valeur du coefficient k de la résistance dans l'air, pour des vitesses qui ne dépassent pas 8 à $9^{\rm m}$ par seconde, doit être d'environ 0.54.

44. Les expériences sur les plans minces ont fait voir que dans le mouvement rectiligne, la résistance pouvait être regardée comme proportionnelle à l'étendue des surfaces, du moins dans de certaines limites. Cependant

^{&#}x27;Nouvelles expériences d'artillerie, deuxième partie, traduites par M. O. Terquem, page 110, tableau.

² Introduction à la Mécanique, par J. V. Poncelet, page 615.

Hutton avait trouvé que dans le mouvement circulaire, en passant d'une sphère de $0^{m}121$ de diamètre, à une autre de $0^{m}162$, il fallait augmenter de $\frac{1}{7}$ le coefficient de la résistance. Mais, d'après ce qu'on a vu (37), cet accroissement doit être attribué à la nature particulière du mouvement et ne se présenterait pas dans le mouvement rectiligne.

Dans des expériences sur le mouvement rectiligne vertical de sphères dans l'eau, exécutées à Metz en 1836 pour des diamètres de 0m118, 0m129, 0m148, 0m162, 0m330, le coefficient de la résistance proportionnelle au carré de la vitesse et rapportée à une section de 1m carré a été respectivement 21,2, 21,2, 22,4, 22,9, 24,5. Il est probable que les plus gros projectiles ont éprouvé d'une manière sensible l'influence du fond du bassin dans lequel on faisait les expériences, et que par suite les derniers nombres sont trop forts. De sorte que pour des sphères dont les diamètres ont varié dans un grand rapport l'accroissement, s'il est réel, serait très-faible.

Trois cylindres équilatères de 0^m1, de 0^m2, de 0^m8 de diamètre et dont les superficies variaient ainsi dans le rapport de 1 à 9, ont présenté des résistances qui ne croissaient pas plus rapidement que ces superficies.

D'après cela, on pourra regarder, au moins dans les limites ordinaires des calibres des boulets et des obus et aux faibles vitesses, la résistance comme sensiblement proportionnelle à la superficie; des expériences qui seront rapportées plus loin ont mis cette question hors de doute pour les projectiles.

^{&#}x27; Mémoire présenté à M. le Ministre de la guerre et au concours pour le grand prix de mathématiques de l'Institut, par MM. Piobert, Morin et Didion; *Mémorial d'Artillerie*, No VII, 1852.

- 45. Les expériences dont on vient de parler permettent de déterminer la résistance comparative des cylindres terminés par un hémisphère et par des cônes plus ou moins aigus, comme ceux qu'on emploie pour les fusées. Elles ont été faites sur des cylindres équilatères de 0m10 de hauteur et de diamètre, surmontés d'un cône dont la hauteur a été respectivement 1, 1 ½, 2, 3, 4 fois le rayon de la base; on a trouvé que la portion de la résistance proportionnelle au carré de la vitesse rapportée à une section d'un mètre carré a été respectivement 73k26, 53k99, 47k74, 44k29, 40k69, elle a ainsi diminué avec l'acuité du cône dans les limites de l'expérience. Le même cylindre surmonté d'un hémisphère, a donné 43k03 pour coefficient de résistance; de façon que le cylindre terminé par un hémisphère, présente la même résistance que s'il était terminé par un cône dont la hauteur serait égale à 3 ½ fois le ravon.
- 46. Lois de la résistance de l'air à de grandes vitesses; moyen de la déterminer. Dans ce qui précède, nous n'avons considéré la résistance de l'air que dans le cas de vitesses faibles en comparaison de celles dont les projectiles de l'artillerie sont animés et nous avons trouvé que pour des vitesses de 1^m à 8^m la résistance était sensiblement proportionnelle au carré des vitesses; cependant nous avons été amené à pressentir que pour des vitesses beaucoup plus grandes, la résistance devait croître plus rapidement.

Pour mesurer la résistance de l'air au mouvement des projectiles de l'artillerie, on a recours à des procédés particuliers. Pour cela, on mesure au moyen d'un appareil, le pendule balistique ou le pendule électro-balistique', la vitesse d'un projectile, à deux distances différentes de la bouche à feu qui l'a lancé, et l'on compare à la longueur

^{&#}x27; Voir section VIII, la description et l'emploi de ces appareils.

du chemin parcouru les vitesses au commencement et à la fin du trajet; on peut le faire de plusieurs manières:

1º Soit P le poids d'un projectile, V sa vitesse à la distance a de la bouche à feu, V' sa vitesse à la distance a', g étant la pesanteur, la force vive du projectile sera $\frac{P}{g}V^{2}$ au premier point considéré, et $\frac{P}{g}V'^{2}$ à la fin du trajet. La force vive perdue sera donc $\frac{P}{g}(V^{2}-V'^{2})$. Mais si l'intervalle a'-a entre les deux points est assez peu considérable pour que V et V' différent peu entre eux, la résistance à chaque instant variera peu elle-même, et en appelant p la résistance moyenne, le projectile, pour la surmonter, aura consommé une quantité de travail représentée par p(a'-a); par conséquent, en supposant que la direction du mouvement soit horizontale et en vertu du principe connu des forces vives, on aura l'équation

$$\rho(a'-a) = \frac{1}{2} \frac{P}{g} (V^2 - V'^2),$$

d'où l'on tire

(1)
$$\rho = \frac{P}{2g} \frac{V^2 - V'^2}{a' - a}.$$

Cette résistance moyenne est relative à la vitesse moyenne $v = \frac{V + V'}{2}$. En la divisant par la section du grand cercle de la sphère, et le carré de la vitesse moyenne, on aura pour le coefficient ρ' de la résistance

(2)
$$\rho' = \frac{\rho}{\sigma R^2 v^2} = \frac{P}{\sigma R^2 g} \frac{V - V'}{(a' - a)v}.$$

Si l'on opère de la même manière pour d'autres vitesses,

on aura autant de valeurs particulières de la résistance; on pourra donc déterminer la relation entre les vitesses et les résistances. La quantité $\frac{V-V'}{a'-a}$ est, dans chaque expérience, la vitesse perdue durant un trajet égal à l'unité de longueur.

Connaissant la valeur de ρ pour la vitesse moyenne, le diamètre du projectile, ou la section d'un grand cercle de la sphère et la densité de l'air, on déterminera la valeur de k correspondante (art. 34) qui sera

$$k = \frac{\rho}{Sv^2} \frac{2g}{\delta} = \frac{2P}{\delta \sigma R^2} \frac{V - V'}{(a' - a)v}.$$
 (3)

Comme on ne peut avec le pendule balistique mesurer la vitesse d'un projectile qu'en un seul point de son trajet, on tire sur cet appareil de deux distances différentes a et a', mais avec la même charge de poudre, avec des projectiles égaux et dans des circonstances aussi égales qu'il est possible, afin d'obtenir à chaque coup des vitesses initiales égales ou très-peu différentes entre elles, et par conséquent la vitesse qu'aurait eue le même projectile à chacune des deux distances a et a'; pour avoir plus d'exactitude, on répète l'expérience un certain nombre de fois à chaque distance, et on prend la moyenne des vitesses obtenues.

2º Au lieu de supposer la résistance de l'air constante dans l'étendue du trajet observé, on peut la regarder comme proportionnelle au carré de la vitesse du projectile, ce qui s'approche davantage de la vérité et donne un peu plus d'exactitude.

P étant le poids du projectile, $\frac{P}{g}$ sa masse, la résistance variable ρ dans le trajet α dépendra de la vitesse variable ν à chaque instant, et aura pour expression $\rho = \rho' \pi R^2 \nu^2$,

 ρ' étant la constante à déterminer; la force retardatrice sera $\rho \cdot \frac{g}{P}$ ou $\rho' \pi R^3 v^3 \cdot \frac{g}{P}$. On fera $\frac{\rho' \pi R^3 g}{P} = \frac{1}{2c}$ ou $\frac{P}{\rho' \pi R^3 g} = 2c$; la force retardatrice sera $\frac{v^2}{2c}$.

En considérant le mouvement comme horizontal, représentant à chaque instant le trajet parcouru par x, le temps écoulé par t, la vitesse sera $\frac{dx}{dt}$, l'accroissement de vitesse $\frac{dv}{dt}$, et l'on devra avoir $\frac{dv}{dt} = \frac{v^2}{2c}$; et, comme on a $v = \frac{dx}{dt}$, en éliminant dt, on aura $\frac{dv}{v} = \frac{dx}{2c}$; d'où, en intégrant depuis x = a jusqu'à x = a', ou depuis v = v jusqu'à v = v', on aura

$$\log V - \log V' = \frac{a' - a}{2c}.$$

En faisant a' - a = a, on aura, en représentant par e la base des logarithmes népériens,

$$(4) V' = Ve^{-\frac{\alpha}{2c}}$$

Pour chaque expérience on connaît V, V' et a; on pourra donc déterminer 2c, qui, d'après les relations cidessus, sera, en désignant par Log les logarithmes tabulaires,

$$\frac{1}{2c} = \frac{1}{\alpha} \frac{\text{Log V} - \text{Log V'}}{\text{Log } e} \quad \text{et de lå} \quad \rho' = \frac{1}{2c} \frac{P}{\sigma R^2 g}.$$

3º Lorsqu'on adopte, pour exprimer la résistance de l'air, deux termes, l'un proportionnel au carré de la vitesse du projectile et l'autre au cube de cette vitesse, on a une expression de la forme $\rho' = A\left(1 + \frac{v}{r}\right)$; et, lorsqu'on

connaît déjà, au moins approximativement, ou qu'on se donne, le rapport $\frac{1}{r}$ des deux termes, on obtient dans la détermination du premier terme A une exactitude qui ne laisse rien à désirer.

Dans l'hypothèse en question, la résistance de l'air est $\rho = A\left(1 + \frac{v}{r}\right)v^2\pi R^s$ et la force retardatrice est $A\left(1 + \frac{v}{r}\right)v^2\pi R^s\frac{g}{p}$; en faisant $\frac{A\pi R^2g}{p} = \frac{1}{2c}$, d'où $A = \frac{P}{g\pi R^s} \cdot \frac{1}{2c}$, la force retardatrice sera $\left(1 + \frac{v}{r}\right)\frac{v^2}{2c}$. (5)

En supposant le mouvement horizontal, le trajet étant x et le temps t, on aura

$$\frac{dv}{dt} = -\frac{v^2}{2c} \left(1 + \frac{v}{r} \right);$$

et, vu que $v = \frac{dx}{dt}$, on aura $\frac{dv}{dx} = -\frac{v}{2c} (1 + \frac{v}{r})$; d'où

$$dx = -2c \frac{dv}{v\left(1 + \frac{v}{r}\right)}$$

Intégrant par les moyens connus, en mettant cette équation sous la forme $dx = -2c\left(\frac{dv}{v} - \frac{dv}{r\left(1 + \frac{v}{r}\right)}\right)$,

on aura

$$x = -2c \left[\log v - \log \left(1 + \frac{v}{r} \right) \right] + \text{const} = 2c \log \frac{1 + \frac{v}{r}}{v} + \text{const.}$$

Prenant cette intégrale entre les limites a et a', aux-

quelles correspondent les vitesses V et V', et remarquant que a'-a=a, on aura

$$\alpha = 2c \log \frac{\left(1 + \frac{V'}{r}\right)V}{\left(1 + \frac{V}{r}\right)V'} \quad \text{ou} \quad 1 + \frac{r}{V'} = \left(1 + \frac{r}{V}\right)e^{\frac{\alpha}{2c}},$$

d'où l'on tire, en représentant par Log les logarithmes des tables,

$$Log\left(1+\frac{r}{V'}\right) = Log\left(1+\frac{r}{V}\right) + \frac{\alpha}{2c}Log e;$$

et,

$$\frac{1}{2c} = \left[\text{Log} \left(1 + \frac{r}{\overline{V}'} \right) - \text{Log} \left(1 + \frac{r}{\overline{V}} \right) \right] \frac{1}{\alpha \text{Log} e},$$

et comme (éq. 5) $A = \frac{P}{a_{\varpi}R^2} \frac{1}{2c}$, on aura

$$\mathbf{A} = \frac{\mathbf{P}}{g_{\varpi}\mathbf{R}^2 \operatorname{Log} e} \frac{1}{\alpha} \left[\operatorname{Log} \left(1 + \frac{r}{\mathbf{V}^{\prime}} \right) - \operatorname{Log} \left(1 + \frac{r}{\mathbf{V}} \right) \right].$$

Cette valeur est tout à fait exacte si celle de r est bien choisie. Il suffit que cette dernière soit approchée pour que la formule présente toute l'exactitude désirable.

47. En comparant entre elles les trois méthodes, on voit que les résultats diffèrent par les trois termes suivants qui se remplacent mutuellement, les logarithmes étant népériens,

$$1^{\circ} \frac{V - V'}{\frac{1}{2}(V + V')}; \quad 2^{\circ} \log \frac{V}{V'}; \quad 3^{\circ} \left(1 + \frac{\frac{d}{2}(V + V')}{r}\right) \log \frac{1 + \frac{r}{V'}}{1 + \frac{r}{V}}.$$

Une comparaison des résultats numériques fera mieux ressortir les degrés respectifs d'exactitude des trois méthodes.

Dans une expérience de tir d'un boulet de 24 dans un canon de siège à la charge de 1^k50 de poudre, les vi-

tesses des boulets (moyennes sur plusieurs coups) aux distances de $15^{\rm m}$ et $90^{\rm m}$ du pendule balistique, ont été respectivement $365^{\rm m}72$ et $346^{\rm m}03$; le diamètre du boulet étant $2R = 0^{\rm m}14804$, son poids $P = 12^{\rm k}010$, la densité moyenne de l'air étant 1,2031 (poids d'un mètre cube en kilogrammes), la pesanteur $9^{\rm m}809$; prenant pour r la valeur de $435^{\rm m:s}$, les trois expressions ci-dessus donneront respectivement:

$$\rho' = 0.052485$$
; $\rho' = 0.052490$; $\rho' = 0.052505$.

La première donne un résultat trop faible de $\frac{2}{5250}$ relativement au véritable; la différence relative à la seconde est réduite aux trois quarts de cette fraction.

Ces quantités sont réellement négligeables dans la recherche de la résistance de l'air, elles ne correspondent qu'à trois dixièmes de millimètre sur la hauteur du baromètre à mercure dans l'estimation de la densité de l'air.

Dans le cas le plus défavorable qu'on aura à considérer, l'erreur relative ne sera que de 0,001, quantité qui correspond à trois quarts de millimètre de mercure sur l'estimation de la hauteur du baromètre dans la détermination de la densité de l'air.

La dernière méthode, outre sa plus grande exactitude, a l'avantage de se prêter beaucoup mieux à la détermination du coefficient que l'on cherche, lorsque les vitesses observées ne résultent pas de l'observation du mouvement d'un même projectile, parce que, quand r est connu approximativement, la valeur de A peut se déterminer par la moyenne sur des observations à diverses vitesses. Elle se prête particulièrement à l'emploi des procédés graphiques '.

^{&#}x27; Lois de la résistance de l'air sur les projectiles, par Is. Didion; in-80, 1857.

48. Expériences de Robins. Les premières expériences entreprises pour apprécier directement et d'une manière assez exacte la vitesse d'un projectile, l'ont été par Robins, en Angleterre, antérieurement à 1742, sur des balles de plomb, et à l'aide du pendule balistique qu'il avait imaginé '.

Les expériences peu étendues ont été faites sur des balles de fusil de 0^m019 de diamètre. Il en a conclu qu'aux petites vitesses des balles, la résistance était plus grande que ne l'indiquait la théorie de Newton, et que le rapport croissait avec les vitesses.

49. Résultats des expériences de Hutton. Les expériences de Hutton ont été exécutées à Wolwich, de 1787 à 1791. Hutton a opéré sur les calibres de 1^{liv}, 3^{liv} et 6^{liv} (avoir du poids), avec le pendule balistique de Robins persectionné; il tirait à des distances qui ont varié de 10^m à 130^m. Avec le boulet de 1^{liv}, il a observé des vitesses qui ont varié depuis 100^{m:s} jusqu'au delà de 600^{m:s}; avec le boulet de 3^{liv}, depuis la vitesse de 275^{m:s} jusqu'à celle de 520^{m:s}; et avec le boulet de 6^{liv}, depuis 365^{m:s} jusqu'à 550^{m:s}. Hutton en a déduit les résistances correspondantes aux vitesses des projectiles; d'après ces quantités, la résistance croîtrait plus rapidement que le carré des vitesses, jusqu'à un certain point, passé lequel la résistance croîtrait moins rapidement. Cette résistance exprimée par le coefficient k de la formule (art. 46, éq. 3)

 $k = \frac{\rho}{\delta S} \frac{2g}{V^2}$ est approximativement *:

Vitesse (met: sec.) 1, 3, 5, 10, 25, 50, 100, 200, 300, 400, 500, 600. Valeurs de k...... 0,59, 0,61, 0,63, 0,65, 0,67, 0,69, 0,71, 0,77, 0,88, 0,99, 1,04, 1,01.

^{&#}x27; Nouveaux principes d'artillerie, par Robins, chap. II, proposition II.

² Introduction à la Mécanique, page 618.

Les nombres qui représentent les résistances ont été obtenus par des méthodes d'interpolation imparfaites, et ces résultats ne s'accordent pas avec les effets naturels, surtout pour les faibles et pour les grandes vitesses.

M. Piobert a remarqué que pour les grandes vitesses le coefficient de la résistance avait été déterminé par les plus faibles résultats de l'expérience et non par leur moyenne; de sorte que l'existence de ce maximum n'est pas démontrée. Quant aux faibles vitesses, le coefficient ayant été déterminé d'après les résultats obtenus dans le mouvement circulaire, est par cela même trop grand quand il s'agit du mouvement rectiligne. Ilutton ne tenait pas compte de l'influence qui pouvait être due à la grandeur du diamètre des projectiles.

50. Formule de M. le général Piobert. M. le général Piobert, en 1836, reprenant les résultats immédiats des expériences de llutton sur les boulets et non les résultats portés dans les tableaux des vitesses dites régulières, en a construit une courbe dont les ordonnées représentaient les vitesses successives que possédait le boulet en traversant des couches d'air proportionnelles aux abscisses, et a obtenu des résistances régulières. Les résultats relatifs au boulet de fonte de une livre ou de 0m04996 de diamètre et exprimés en mesures métriques, sont indiqués ci-après':

Vitesses en mètres 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600. Résistes en kilog. 0,81,1,95,3,68,6,10,9,35,13,50,18,50,24,60,31,80,40,30,50,00.

Ces nombres font voir que les résistances croissent plus rapidement que les carrés des vitesses et M. le général

Mémoire présenté au concours pour le grand prix de mathématiques de l'Institut, par MM. Piobert, Morin et Didion, en 1837.

² Introduction à la Mécanique, par J. V. Poncelet, page 620.

Piobert a reconnu que par l'addition d'un terme proportionnel au cube des vitesses on représentait assez bien ces résultats; de façon que le carré de la vitesse devait être remplacé par $V' + BV^3$ et que la valeur de B = 0,0017 satisfaisait assez bien pour toutes les vitesses.

La formule de M. le général Piobert, basée en partie sur le résultat des expériences de Hutton aux petites vitesses, avant qu'on eût reconnu l'influence du mouvement circulaire sur la valeur de la résistance, devait par cela même donner des résultats un peu forts pour les gros projectiles et pour les faibles vitesses, ainsi que cet officier l'a reconnu lui-même. En se basant sur cette expression binôme de la résistance de l'air, ce savant officier a pu donner dès lors des formules exactes de l'étendue et de la durée du trajet, en fonction de la vitesse du projectile, et en former une table qui pouvait s'appliquer au tir.

51. Premières expériences de Metz en 1839. D'après l'examen des résultats des expériences faites à Metz en 1839 et 1840, par la commission des principes du tir, avec des boulets des calibres de 8, de 12, de 24 et des obus de 22 centimètres, nous avions reconnu qu'effectivement la formule de M. Piobert donnait des résistances trop grandes; et que le coefficient du carré de la vitesse devait être diminué, tandis que le rapport des deux coefficients devait être augmenté, et qu'enfin, le résultat pour les gros projectiles et pour l'état atmosphérique moyen durant l'été, pour lequel la densité de l'air avait été 1,174, était assez bien représenté par la formule $\rho = \pi R^2 \cdot 0.024(1 + 0.0023 V) V^2$.

M. le général Piobert, en reprenant la discussion des

^{&#}x27; Mémoire sur la Balistique, présenté au Comité d'Artillerie, en 1844.

résultats des expériences de Hutton, a été conduit à modifier la première expression et à lui substituer

 $\sigma R^{V} (0.030586(1 + 0.0023 V))$

trouvant ainsi pour le rapport des coefficients le nombre 0,0023 qui résultait des expériences de Metz; coïncidence remarquable qui rapprochait déjà les résultats obtenus sur des projectiles de fort et de petit calibre.

52. Résultat des expériences de Metz en 1839 et 1840. Les expériences faites à Metz en 1839 et 1840, par la commission pour l'établissement des principes du tir, sur des projectiles de fort calibre et sous les vitesses habituelles des boulets et des obus, sont les plus propres à faire connaître la loi de la résistance de l'air au mouvement des projectiles.

Ces expériences ont été faites avec des boulets de 24, de 12, de 8 et des obus de 22°, surtout des deux premiers calibres, au moyen d'un pendule balistique, sur lequel on tirait à la distance de 15^m, et à des distances augmentées de 25^m, 50^m, 75^m et 100^m. On a déterminé, par la différence des vitesses, les pertes de vitesses sur des trajets de cette longueur. Les projectiles de 12 et de 24 ont été tirés à des charges variées depuis ½ du poids du boulet jusqu'au ½ de ce poids, avec des canons de côte en fonte, ce qui donnait des vitesses de 200^m à 460^m. On a dépassé ces vitesses en tirant à moitié du poids du boulet, dans le canon de 12 de place en bronze, et en tirant à grandes charges des obus dans les canons. On a été ainsi jusqu'à 560^m et on a dépassé les plus grandes vitesses qu'on obtient dans le service.

On a déterminé pour chacune des vitesses moyennes la valeur du coefficient ρ' (art. 46, éq. 2), qui doit multiplier le produit du carré de la vitesse, par la section du

grand cercle, pour donner la résistance éprouvée par le projectile sous cette vitesse, d'où l'on déduit k par la relation $k=\rho'\frac{2g}{\delta}$. Toutes ces valeurs ont été ramenées à ce qu'elles eussent été si la densité de l'air eût été constante et égale à 1,2083 qui est celle de l'air à la température de 15°, à la pression barométrique de 0^m750 de mercure et à moitié saturé de vapeur d'eau.

Pour déterminer la relation de ce coefficient ρ' ou de k suivant les vitesses et reconnaître particulièrement s'il croissait proportionnellement à la vitesse, on a formé trois groupes composés chacun d'un égal nombre d'expériences, on a pris pour chacun la moyenne des vitesses et la moyenne des valeurs de ρ' ; on a eu ainsi un résultat moyen fourni par l'observation de la perte de vitesse, sur des trajets dont la somme est pour chaque groupe de $2400^{\rm m}$ environ, et qui par conséquent doit être regardé comme très-précis. Ces résultats se résument ainsi qu'il suit:

Vitesses 337m22, 428m81, 535m15, Coefficient ρ' ... 0,0479, 0,0535, 0,0616.

Les deux premiers termes se rapportent aux vitesses comprises entre $288^{m:s}$ et $453^{m:s}$, qui sont dans les limites habituelles du tir, et l'on doit plus particulièrement s'attacher à les représenter. Le troisième se rapporte aux vitesses de $466^{m \cdot s}$ à $629^{m:s}$ qui dépassent les valeurs les plus habituelles. En prenant les vitesses pour abscisses et les valeurs de p' pour ordonnées, on a trois points qui sont presque en ligne droite. Le dernier point n'est au-dessus de la ligne qui passe par les deux autres que d'une petite quantité; les deux premiers suffisent pour donner les coefficients de l'expression p' = A + BV. On

trouve B = 0,00006114 et A = 0,0273, et par suite $\frac{B}{A}$ = 0,00224. L'expression de ρ' qui satisfait le mieux aux vitesses comprises entre $288^{m:s}$ et $453^{m:s}$ est donc ρ' =0,0273(1+0,00224 ν). Cette formule, pour ν =535 m 15, donne ρ' =0,0600, très-peu inférieure à la valeur observée. En s'arrêtant pour $\frac{B}{A}$ à deux chiffres, et prenant le nombre rond au-dessus, c'est-à-dire 0,0023, qui diminuera un peu la différence, l'on arrive à la valeur déjà indiquée. En l'adoptant, et en cherchant à satisfaire à la valeur de ρ' observée pour ν = 428 $^{m:s}$ 81, on arrive à l'expression

$$e' = 0.027(1 + 0.0023 \text{ V})$$
 ou $e' = 0.027\left(1 + \frac{v}{434.78}\right)$, (6)

et, la résistance absolue, en supposant la densité de l'air égale à 1,2083, est assez exactement représentée par la formule

$$\rho = \varpi R^2 v^2 \cdot 0.027 (1 + 0.0023 V)$$

ou

$$\rho = \sigma R^2 v^2 \cdot 0.027 \left(1 + \frac{v}{435} \right). \tag{7}$$

D'après les expériences faites par Newton sur la chute des corps dans l'air, où la vitesse allait en s'accélérant, et celles dans lesquelles on observait avec un appareil de rotation la résistance éprouvée dans les mouvements uniformes, où les vitesses ont été jusqu'à 9^m seulement, et où les diamètres ont été compris entre ceux des boulets de 12 et de 24, on a (art. 43) k=0.537 ou $\rho'=0.0331$; tandis que pour une vitesse moyenne de $6^{m:s}$, on aurait, d'après la formule trouvée plus haut, $\rho'=0.0274$.

Cette différence s'explique parce que pour les projectiles la vitesse est constamment décroissante, et que la poupe fluide que le projectile entraîne après lui a la même vitesse que ce mobile et agit sur lui comme une masse supplémentaire, masse qui a pour effet de rendre la diminution de la vitesse moins rapide.

Lorsqu'on sépare le groupe des expériences sur les boulets de 12 de celui qui se rapporte au boulet de 24, on trouve, pour chacun, des résultats peu différents.

Cependant, si l'on compare la formule ci-dessus, déduite des expériences sur ces deux calibres de 0^m12 et 0^m15 de diamètre, avec celles de M. le général Piobert, d'après le résultat des expériences de Hutton faites principalement avec les calibres de 1^{liv} ou de 0^m05 de diamètre, on trouve que les valeurs de p' seraient dans le rapport de 0,0270 à 0,0306 et iraient en augmentant quand les calibres diminuent. Mais, en remarquant que dans ces dernières on n'avait pas apporté les corrections qui l'avaient été dans les autres, on ne peut rien conclure relativement à la variation de la résistance avec le diamètre des projectiles. Nous avons donc repris les résultats d'expériences et y avons apporté diverses corrections.

53. Nouveau calcul des expériences de Hutton. Après les corrections indiquées plus haut, les résultats des expériences de Hutton relatives au boulet de 1^{liv} se trouvent ramenés aux nombres indiqués dans le tableau ci-après où l'on a conservé les mesures anglaises, en pieds (0^m3048) et once (0^k028338).

Lois de la résistance de l'air sur les projectiles, page 53.

Vitesses corrigées à diverses distances du boulet de 1 livre, tiré à diverses charges de poudre.

POIDS de la charge de poudre.	VITESSES (EN PIEDS ANGLAIS) AUX DISTANCES DE							
	30P	60P	120P	180P	240P	300P	360P	
Onces.	P:5	P:S	P:S	P:S	P:S	P:s	P:8	
16	2079,4	1973,9	1895,8	1780,8	1726,3	1647,6	1581,5	
8	1587,0	1549,9	1509,8	1455,7	1367,6	1316,5	1275,4	
4	1346,0	1323,8	1247,7	1181,6	1228,4	1076,3	1033,2	
3	1184,9	1109,8	1071,7	1052,6	1007,4	955,3	934,1	
2	876,9	849,8	843,6	803,4	783,2	764,0	733,7	
1	644,9	634,7	612,5	611,2		» ´	»´	
3/4	545,9	543,7	522,5	517,1	»	D	»	
1/2	488,8	422,6	418,3	405,9	מ	»	»	
	1							

Nous avons appliqué à ces résultats la troisième méthode (art. 46, 3°) en les rapportant à la densité adoptée pour l'air et en prenant pour $\frac{1}{r}$ la valeur déjà trouvée d'après les expériences de Metz, et égale à 0,0023, ou r=434m78 ou 1421P4.

Nous avons trouvé ', sur l'ensemble des résultats, A=0.02786 et pour les valeurs de ρ' correspondantes aux charges différentes employées, les résultats ci-après exprimés en mètres :

```
Vitesses (m:s).. 542, 433, 315, 244, 189, 162, 129. Valeurs de '.... 0,0614, 0,0569, 0,0524, 0,0417, 0,0400, 0,0408, 0,0357.
```

En prenant les vitesses pour abscisses et les valeurs de p' pour ordonnées, on obtient un ensemble de points (Fig. 13) qui présente toute la régularité à laquelle on pouvait pré-

[·] Lois de la résistance de l'air, page 55.

tendre. Il ne donne pas lieu à admettre l'existence d'un maximum comme Hutton l'avait conclu d'une fausse interprétation des résultats; on voit, au contraire, que la ligne droite, dont l'expression est $\rho' = 0.02786(1 + 0.0023v)$, les représente suffisamment bien; on voit aussi qu'ils le seraient un peu mieux encore par l'expression $\rho' = 0.027(1 + 0.00257v)$.

54. Nouveau calcul des expériences de Metz; formule adoptée. Les résultats des expériences faites à Metz en 1839 et 1840, sur les calibres de 24, de 12 et de 8, des diamètres 0^m15, 0^m12 et 0^m10, calculées par la même méthode que les expériences de Hutton (art. 46, 3°) avec $\frac{1}{r} = 0,0023$, et en ne considérant que les vitesses au-dessous de 500^m, ont donné A = 0,02705; ce résultat confirme entièrement la valeur trouvée en premier lieu.

En comprenant dans les résultats d'expériences ceux qui correspondent aux vitesses supérieures à $500^{\rm m}$, on ne trouve que des différences tout à fait négligeables. On peut donc adopter pour ρ' l'expression $\rho' = 0.027 (1 + 0.0023 v)$.

En recherchant pour chacune des vitesses différentes observées quelles sont ces valeurs de ρ' avec les calibres de 12 et de 24 seulement, celles auxquelles se rapportent les expériences les plus nombreuses; puis, en partageant les quinze résultats en trois groupes et en prenant les moyennes dans chacun d'eux, on arrive à trois systèmes de valeurs qui se résument ainsi qu'il suit':

Vitesses moyennes (m:s). 336,9, 428,8, 535,2. Valeurs de
$$\rho'$$
...... 0,04712, 0,05500, 0,05719.

l'ensemble est assez bien représenté par la formule (7)

$$e' = 0.027(1 + 0.0023v).$$

Lois de la résistance de l'air, page 76.

55. La formule est indépendante du calibre des projectiles. Les expériences de Hutton sur les boulets de 3^{liv}, en prenant pour A la valeur 0,027, indiqueraient 0,00274 pour ½; et, celles faites sur le boulet de 6^{liv}, indiqueraient 0,00272; tandis que pour le boulet de 1^{liv} on n'a trouvé que 0,00257. Ces résultats sembleraient indiquer un accroissement avec les calibres; mais, cet accroissement n'est pas réel et il s'explique par le peu de rigidité du pendule balistique de Hutton, comparé à celui qui a été employé dans les expériences de Metz.

Par l'effet du manque de rigidité du pendule, il a dû arriver que quand le canon en était plus éloigné, et que par suite le projectile frappait naturellement en des points plus éloignés du centre de ce pendule, celui-ci éprouvait une torsion un peu plus grande. Or, par suite de cette torsion, une partie de la force vive du projectile était perdue et le pendule n'éprouvait pas un recul aussi fort que si le pendule eût été plus rigide; il indiquait donc une vitesse relativement plus faible aux grandes distances qu'aux petites et par conséquent une perte de vitesse et une résistance trop grande.

La torsion était sans doute insensible aux faibles vitesses et les résistances ont pu être ainsi exactement déterminées; mais elle a été sensible aux grandes charges et la résistance a été estimée trop grande aux grandes vitesses, ce qui fait que le coefficient A est exact ou à très-peu près et que \frac{1}{r} est trop fort; la torsion ou l'ébranlement était aussi plus fort avec les boulets plus pesants et le coefficient a dû être plus fort avec les boulets de 3^{liv} et de 6^{liv} qu'avec celui de 1^{liv}. On doit reconnaître également que si le boulet de 6^{liv} n'a pas donné de plus grandes valeurs que ceux de poids moindre, c'est que

Hutton ayant remarqué des ébranlements trop forts avec ce fort projectile s'est abstenu, comme il l'indique, de tirer à grandes vitesses.

Ces résultats sont encore confirmés par les expériences de Robins' dont le pendule était beaucoup moins rigide. D'après les expériences avec la balle de plomb de $0^{m}019$, en prenant $r=435^{m:s}$, on a A=0.027 aux petites charges et A=0.0403 aux grandes vitesses.

De l'ensemble des expériences on est conduit à conclure que pour les projectiles sphériques, depuis les balles de fusil jusqu'aux boulets des plus forts calibres, la résistance de l'air, lorsque la densité est $\rho=1,2083$ peut être représentée par la formule

$$\rho' = 0.027(1 + 0.0023v)$$
 ou $\rho' = 0.027(1 + \frac{v}{435})$,

et la résistance absolue peut l'être par ces quantités multipliées par $\pi R^2 v^2$.

Au moyen de ces formules, on a calculé dans le tableau ci-après les valeurs de p' et les résistances qu'éprouvent les boulets, les balles et les bombes de quelques-uns des calibres en usage, dans les limites ordinaires des vitesses:

Lois de la résistance de l'air, 1857.

VITESSE		RÉSISTANCE $\rho = \sigma R^2 v^2 \rho'$ EN KILOGRAMMES.					
des	$ \rho' = 0,027 \times (1 + 0,0023 v). $	Boulet de 24, diam. 0=1485.	Boulet de 12, diam. 0º1185.	Balle de fusil, diam. 0=0167.	Bombe de 27cm, diam. 0m2711.		
500m:s	0,058050	251,3	160,2	3,175	»		
450	0,054945	195,0	122,7	2,465	` »		
400	0,518400	143,5	91,4	1,816	»		
350	0,048735	103,4	68,5	1,306	»		
300	0,045630	71,1	45,3	0,899	237,0		
250	0,042525	46, 0	29,3	0,582	153,3		
200	0,039420	27,3	17,4	0,345	91,0		

L'examen de ces résultats numériques montre que la résistance décroît très-rapidement avec les vitesses.

En effet, à la vitesse de 250^{m:8} la résistance est moindre que le cinquième de celle qui correspond à la vitesse double, ou de 500^{m:8}. Comparativement à celle du boulet de 24, la résistance du boulet de 12, d'un poids moitié moindre, en est d'environ les deux tiers; celle de la balle de fusil, dont le poids est ½ de celui du même boulet, présente une résistance qui n'en est que la 79° partie. Celle de la bombe de 27°cm, d'un poids plus que quatre fois aussi fort, présente une résistance qui n'est que le triple de celle du boulet de 24, malgré l'infériorité de densité.

A la vitesse de 450^{m:s}, la résistance qu'éprouve le boulet de 24 est de 195^k ou de seize fois son poids, et celle de la balle de fusil est de quatre-vingt-onze fois son poids; à la vitesse beaucoup plus faible de 200^{m:s}, la résistance qu'éprouvent les projectiles est encore, par rapport à leur

poids: de plus du double pour le boulet de 24; du triple pour le boulet de 12, de treize fois aussi grand pour la balle de fusil, et d'un peu moins du double pour la bombe de 27cm. On voit par la qu'aucun de ces projectiles ne pourrait, par l'effet de la pesanteur, conserver dans l'air une pareille vitesse en tombant suivant la direction verticale de haut en bas.

56. Limite des vitesses que les projectiles peuvent acquérir par l'effet de leur chute dans l'air. Lorsqu'un projectile est abandonné dans l'air à l'effet de la pesanteur, son poids étant d'abord supérieur à la résistance qu'il éprouve de la part de l'air, d'après sa vitesse, celle-ci va en augmentant de plus en plus, mais non pas indéfiniment; elle a nécessairement une limite qui est déterminée par la condition que la résistance de l'air soit égale au poids du corps.

Or, si P est le poids du mobile, mesuré dans le vide, le poids dans l'air sera diminué du poids d'un volume d'air égal à celui du corps, lequel sera $P_{\overline{D}}^{\delta}$, si \mathcal{F} et D sont les densités respectives de l'air et du mobile; et, par conséquent, le poids du mobile dans l'air sera $P\left(1-\frac{\delta}{D}\right)$. Mais, pour les projectiles de l'artillerie, le rapport $\frac{\delta}{D}$ est assez petit pour qu'on puisse le négliger devant l'unité, et c'est ce que nous ferons; d'un autre côté, si v est la vitesse cherchée, 2R le diamètre du projectile, en conservant les notations connues, et supposant à l'air la densité moyenne 1,2083, la résistance de l'air sera $A_{\overline{v}}R^2v^2\left(1+\frac{v}{r}\right)$; et l'on aura l'équation

$$P = A \pi R^2 v^2 \left(1 + \frac{v}{r}\right).$$

En faisant comme précédemment (art. 46, éq. 5) $\frac{1}{2c} = \frac{g}{P} A_{\sigma} R^{\bullet} \text{ ou } c = \frac{1}{2g} \frac{P}{A_{\sigma} R^{\bullet}}, \text{ on devra avoir}$

$$2gc = v^2 \left(1 + \frac{v}{r}\right). \tag{8}$$

On voit que la vitesse maximum v dépend de la valeur de c, laquelle dépend du poids et du diamètre du projectile et représente la nature du mobile : elle s'obtient par la résolution d'une équation du troisième degré.

On peut donner à c, en remplaçant P par $\frac{4}{5}\pi R^3$, cette autre forme $c=\frac{2}{3}\frac{RD}{gA}$; elle montre que la valeur de c est proportionnelle au produit du calibre par la densité; elle croît aussi en raison inverse de la densité de l'air, à laquelle le facteur A est proportionnel.

Si l'on ne considérait dans la résistance de l'air que le terme proportionnel au carré de la vitesse, l'équation ci-dessus se réduirait à $v^2 = 2gc$, c'est-à-dire-que v serait ce qu'on appelle la vitesse due à la hauteur c, exprimée en mètres.

Le tableau qui suit donne la vitesse limite pour les divers projectiles en usage; et comme les valeurs de c et de $\frac{1}{c}$ se présenteront fréquemment, on les a rapportées dans le tableau suivant, pour les diamètres et les poids moyens des boulets et pour ceux des obus ou bombes en usage renfermant la charge ordinaire de poudre; on suppose aussi que l'air est à la densité moyenne. Ce sont des données que nous adopterons d'ailleurs toutes les fois que le contraire ne sera pas spécifié. On prend ainsi $\Lambda=0,027$ et $r=435^{\rm m}$, 2g=9,809.

Tableau des valeurs de c et de $\frac{1m}{c}$ pour les divers projectiles sphériques en usage, et vitesses maximum qu'ils peuvent acquérir par leur chute dans l'air.

DÉSIGNATION des PROJECTILES.		DIAMÈTRES	POIDS.	valburs de c.	VALEURS de $\frac{1}{c}$.	vitysse maximum de chute dans l'air.
Boulets (de 30 de 24 de 16 de 12 de 8	Mètres. 0,1596 0,1485 0,1295 0,1183 0,1031	Kilog. 15,070 12,010 8,020 6,070 4,020	Mètres. 1422,2 1309,1 1149,8 1042,6 909,1	0,0007032 0,0007638 0,0008697 0,0009591 0,0011000	m:s 144,7 139,2 131,7 126,0 118,5
Balles d'infanteric		1 ' 1	0,027	224,4	0,0044564	62,0
Bombes et obus	de 32¢ de 27 de 22	0,3206 0,2711 0,2202	75,000 50,600 23,000	1754,0 1655,0 1140,2	0,0005701 0,0006042 0,000877(160,5 154,8 131,2
Obus et grenades	de 16 de 15 de 12 de 8	0,1629 0,1487 0,1184 0,0812	10,700 7,700 4,280 1,150	969,3 837,1 733,9 419,3	0,0010317 0,0011946 0,0013626 0,0023852	121,8 114,2 107,6 85,7

On voit, par ce tableau, que les petits projectiles comme les balles de fusil ou les grenades de petit calibre, qui en même temps ont peu de masse, ne peuvent pas avoir un grand effet destructeur par leur chute dans l'air.

57. Expériences avec le pendule électro-balistique. Depuis peu d'années, on a employé à la mesure des vitesses des projectiles des appareils électro-balistiques qui permettent de mesurer la durée du trajet d'un projectile entre deux cibles distantes l'une de l'autre d'une certaine quantité (30m à 50m par exemple), et, par suite, la vitesse

moyenne au point milieu'. En faisant du même coup la même opération pour le même projectile, à une autre distance, on a la vitesse du projectile en deux points de son trajet et l'on peut déterminer ainsi les lois de la résistance de l'air, comme on le fait à l'aide du pendule balistique.

Des expériences ont été faites à Metz dans les années 1856, 1857 et 1858 pour compléter les recherches sur lès lois de la résistance de l'air, en y appliquant le pendule électro-balistique. Les premières expériences ont eu lieu avec des boulets sphériques des calibres de 8, de 12, de 24 et des obus de 22cm. On tirait sur deux premiers cadres distants entr'eux de 30m et sur deux autres situés respectivement à 100m des premiers. On obtenait ainsi la vitesse de chaque projectile en deux points, laissant entr'eux un intervalle de 100m de trajet. Pour chacun d'eux, on obtenait le coefficient p' de la résistance de l'air.

Les résultats n'ont pas été formulés, ils font voir qu'aux vitesses moyennes la valeur de p' est égale à celle qui a déjà été donnée, mais que pour des vitesses plus petites la résistance diminuerait beaucoup plus rapidement que par la formule déjà obtenue (art. 52, éq. 7), et qu'elle décroîtrait même trop rapidement pour être dès maintenant admise.

Ces recherches ont été continuées avec les mêmes appareils et avec de nouvelles précautions, en 1857 et en 1858, sur les balles des armes à seu portatives. Elles ont présenté, comme les précédentes, une diminution trop rapide dans les valeurs de p', et les résultats n'ont pas donné une formule qu'on puisse appliquer au tir avec une entière confiance.

^{&#}x27; Voir, section VII, la description des appareils et des procédés.

D'après les expériences de 1858, la balle sphérique de 0m0175, tirée dans la carabine à tige, donnerait la valeur de p' indiquée par la formule (art. 52, éq. 7) pour la vitesse d'environ 320m:s; mais, elle diminuerait beaucoup plus rapidement avec les vitesses que ne l'indiquent les autres expériences et notamment celles de Hutton.

La balle oblongue sur laquelle ont été faites les expériences est cylindro-ogivale et pleine; elle a la forme ogivale à la partie antérieure, avec des cannelures sur la partie cylindrique, et sa partie postérieure se termine par un plan perpendiculaire à l'axe; elle pèse 48°; elle a, dans la partie cylindrique, 0m0172 de diamètre, après le forcement, et 0m029 de hauteur, avant la déformation que produit le chargement. Cette balle, à la vitesse de 300m: que donne la charge en usage, éprouve dans son trajet dans l'air une résistance qui n'est que les 6 de celle de la balle sphérique de même diamètre; de plus, le rapport va en diminuant avec les vitesses plus rapidement que pour la balle sphérique, de telle sorte qu'elle n'en est que les 4 à la vitesse de 240m.

La balle creuse, modèle 1857, ayant un diamètre de 0m0172 après le forcement, et une longueur de 0m0215 avant toute déformation dans le chargement, et un poids de 32°, présente, à la vitesse de 305m qui correspond à la charge en usage, une résistance des trois quarts de celle de la balle sphérique de même diamètre. Comme avec la précédente, le rapport de ces résistances diminue avec les vitesses. Cette balle a la forme ogivale, à la partie antérieure; elle a une cannelure sur la partie cylindrique. Le creux, à la partie postérieure, ne laisse sur le rebord qu'une partie annulaire de très-faible largeur.

Ces expériences, d'ailleurs, doivent être reprises et continuées avec de nouvelles précautions. On les exécutera notamment sur des obus en fonte des canons rayés de campagne et de siège dont les dimensions sont celles indiquées ci-après :

1º Obus en fonte de campagne: diamètre de la partie cylindrique 0^m085, partie antérieure ogivale, sans cannelure, douze ailettes ayant une très-faible saillie; terminée par une partie plane à la partie postérieure; sa longueur totale est de 0^m172.

2º L'obus en fonte du canon de 12 rayé a, comme le précédent, une partie cylindrique sans cannelure, les ailettes ne présentant qu'une faible saillie; son diamètre est de 0^m119; la partie antérieure est ogivale, la partie postérieure est plane; la longueur totale est de 0^m240.

Des expériences sur le tir des projectiles oblongs du calibre de $0^{m}15$ et dans lesquelles on avait observé les portées et la durée des trajets m'ont indiqué que le coefficient qui les représentait le mieux était les $\frac{2}{3}$ du coefficient A=0,027 déterminé pour le boulet sphérique, c'est-à-dire A=0,018.

D'après tous ces résultats et en attendant que des travaux plus précis aient éclairé cette question, nous adopterons cette donnée A=0.018 pour tous les projectiles oblongs terminés par un plan à la partie postérieure, et nous prendrons $A=\frac{3}{4}0.027$ ou A=0.020 pour les balles oblongues creuses à la partie postérieure.

On peut remarquer que cette diminution de résistance, due à la forme de la partie antérieure et à la longueur du projectile, a lieu malgré les rayures pratiquées sur la partie cylindrique perpendiculairement à l'axe de figure et malgré la forme non arrondie de la partie postérieure.

On doit remarquer que ces résistances se rapportent aux balles oblongues lorsqu'elles sont encore à très-petite distance de l'arme, et qu'elles ne se rapportent pas absolument à la même balle alors qu'elle a parcouru un certain trajet. En effet, après ce trajet, l'axe de figure ne se confond plus avec la trajectoire, et en même temps le rapport de la vitesse de rotation à la vitesse de translation est plus grand qu'au sortir de l'arme, parce que cette dernière vitesse diminue plus rapidement que l'autre. Ces deux circonstances sont une cause d'augmentation de la résistance.

On reviendra, section IX, sur les résistances de divers genres que l'air fait éprouver aux balles oblongues; mais en attendant que des expériences plus précises aient fourni des résultats plus certains, nous admettrons pour les balles oblongues pleines et pour les boulets oblongs, un coefficient de résistance égal aux deux tiers de celui de la balle sphérique, c'est-à-dire A = 0.018 et $\rho' = 0.018 (1+0.0023v)$; il en sera les trois quarts pour les balles creuses, comme celle du modèle 1859, c'est-à-dire égal à 0.020. On adoptera, pour les boulets oblongs de campagne et de siège, le même coefficient A = 0.018.

D'après ces données, on a calculé les valeurs de c et $\frac{1}{c}$ pour les quatre projectiles depuis peu de temps en usage dans l'armée française. On a calculé également la limite de la vitesse qu'ils pourraient acquérir par leur chute dans l'air, comme on l'a fait pour les projectiles sphériques (art. 56); les résultats sont renfermés dans le tableau ci-après:

DÉSIGNATION des PROJECTILES.	DIAMÈTRES	POIDS.	valeurs de c.	VALEURS de 1.	vitesse maximum de chute dans l'air.
Balle creuse (M ^{le} 1857) Balle oblongue Obus du canon de	0,0172 0,0172		Mètres. 352 585	0,00285 0,00171	ma:s 76,6 96,7
campagne rayé (Mle 1857) Obus du canon rayé de siége	0,0850	4,200 12,000	2095 3050	0,0004775 0,0003275	

On doit remarquer que la valeur de $\frac{1}{c}$ pour la balle creuse, Mle 1857, n'est que les $\frac{2}{5}$ de cette valeur pour la balle sphérique et que pour la balle oblongue elle n'en est même que les $\frac{2}{5}$. Cette valeur relative à l'obus du canon rayé de campagne, comparée à celle du boulet de 8, de même poids n'en est que les $\frac{5}{7}$. On voit par là que sous le rapport de la diminution de l'effet de la résistance de l'air, les nouveaux projectiles présentent un grand avantage sur les projectiles sphériques.

58. Calcul de la densité de l'air. La résistance de l'air étant proportionnelle à sa densité et celle-ci variant avec la hauteur du baromètre, la température et l'état hygrométrique de l'air, il est utile de la déterminer pour chacun des cas où ces quantités sont connues, lorsqu'on veut calculer le mouvement des projectiles avec beaucoup de précision.

Soit Δ la densité de l'air parfaitement sec à la pression barométrique 0^m760 et à la température 0^o ; cherchons quelle est la densité $\mathcal F$ à la pression H, à la température

t et lorsque l'air contient de la vapeur d'eau à un degré de saturation représenté par s.'

L'air se dilatant de 0,00375 de son volume pour chaque degré du thermomètre centigrade et la densité étant proportionnelle à la pression barométrique on aura pour l'air parfaitement sec

$$\delta = \frac{H}{0^{m}760} \frac{\Delta}{1 + 0,00375 \, t}.$$

Si l'air contient de la vapeur d'eau sa densité sera moindre. Soit F la force élastique de cette vapeur, mesurée de la même manière que H, la force élastique H sera due à la somme de celle des deux fluides ; celle de la vapeur d'eau étant F, celle de l'air sera H — F. Or, la densité de la vapeur n'étant que 0,6235, ou les $\frac{5}{8}$ de celle de l'air, la densité de l'air humide à la pression H sera moindre et représentée par la fraction $\frac{H-F+\frac{5}{8}F}{H}=1-\frac{3F}{8H}$; de sorte que la densité de l'air humide à la température t sera

$$\delta = \Delta \frac{H}{0.760} \frac{1 - \frac{3}{8} \frac{F}{H}}{1 + 0.00375t}.$$

Plusieurs procédés peuvent être employés pour déterminer le degré de saturation de l'air. L'hygromètre à cheveux, de Saussure, est un des plus commodes, sans être le plus précis (voir à la table IV). L'hygromètre à condensateur, de M. Regnault, est à la fois commode et précis. Il consiste en un tube renfermant de l'éther sulfurique, dans lequel est plongé un thermomètre. Par l'insufflation, on détermine l'abaissement de la température de l'éther et l'on observe le point de rosée, ou la limite de température à laquelle commence la condensation de la vapeur d'eau contenue dans l'air. On observe également la température de l'air, puis on cherche, dans les tables connues, la force élastique de la vapeur d'eau à chacune de ces températures. Le rapport de ces deux forces donne le degré s de saturation.

La tension F est toujours très-petite et elle dépend de la température de l'air. A 0° le maximum de F est $0^m005059$, et à la température de 30° il est de $0^m030643$; entre ces deux limites, on aura sensiblement F = 0.005059 + 0.0008528t. En substituant cette valeur de F dans l'expression de \mathcal{I} , on aura la densité de l'air saturé de vapeur; mais si l'air ne contient que la fraction s de la vapeur qui produit la saturation complète, la force élastique ne sera que la fraction s de cette quantité; et, en remplaçant F par s(0.005059 + 0.0008528t), on aura pour la densité de l'air en partie saturé d'humidité

$$\delta = \Delta \frac{H}{0,760} \frac{1 - \frac{3}{8} \frac{s}{H} (0,005059 + 0,0008528t)}{1 + 0,00375t}.$$

D'après le résultat des observations les plus précises, le poids du mêtre cube d'air sec à la température de 0° et à la pression de 0°760 de mercure est de 1^k2991 ou ½770 du pareil volume d'eau distillée; c'est la valeur de Δ .

On peut mettre la valeur de J sous une forme plus simple et qui facilite le calcul, en remarquant que le facteur de $\frac{s}{H}$ qu'on doit retrancher de l'unité est toujours très-petit et qu'en donnant à H une valeur moyenne égale à 0^m750 on aura

$$\delta = 1{,}2991\frac{H}{0{,}760}\frac{1 - 0{,}0025295 s - 0{,}0004264 s t}{1 + 0{,}00375 \, t},$$

ou à très-peu près

$$\delta = 1,2991 \frac{H}{0,760} \frac{1 - 0,0025295s}{1 + (0,00375 + 0,0004264s)t}$$

• En faisant $s = \frac{1}{2}$ dans cette formule, le facteur de H au numé-

59. Table de la densité de l'air. Pour établir la densité moyenne de l'air, dans les circonstances les plus habituelles de l'emploi des bouches à feu, nous prendrons une température moyenne entre le printemps, l'été et l'automne, en France, laquelle est $t=15^{\circ}$; nous prendrons la pression barométrique qui correspond à la hauteur la plus habituelle au-dessus du niveau de la mer, c'est $H=0^{12}750$, et ensin nous supposerons l'air à moitié saturé de vapeur d'eau, c'est s=0,5. On tire de la formule; pour le poids en kilogramme d'un mêtre cube d'air, s=1,20832, qui répond à $\frac{1}{828}$ du poids d'un pareil volume d'eau.

Pour faciliter la détermination de la densité de l'air, nous avons calculé une table (table IV) relative aux diverses pressions barométriques de 0m005 en 0m005 depuis 0m700 jusqu'à 0m800 et aux divers degrés de température de 4º en 4º, depuis — 8º jusqu'à 36º, pour l'air supposé à moitié saturé de vapeur d'eau.

Pour tenir compte de la diminution de densité aux degrés de saturation plus élevés, on remarquera que de la valeur des densités du tableau calculées pour $s=\frac{1}{2}$, il faut retrancher $J(0.0025295 + 0.0004264t)(s-\frac{1}{2})$.

Cette correction restant sensiblement la même quand la pression varié de plusieurs centimètres, en inscrivant la valeur de $\frac{1}{2}(0,0025295+0,0004265t)$ s pour les divers degrés de température et pour des pressions qui varient dans une étendue de $0^{m}020$ on a rendu l'opération trèssimple; en effet il suffit pour chaque cas de faire le produit de cette quantité par 2s-1, et de le retrancher du nombre qui, dans les tables, correspond aux valeurs pro-

rateur devient 0.998735 et le dénominateur 1 + 0.003963t ou à très-peu près 1 + 0.004t, c'est la formule donnée par Laplace pour l'état hygrométrique moyen et pour le calcul des hauteurs par le baromètre.

posées de t et de H. Ce produit doit être ajouté lorsque s est plus petit que $\frac{1}{2}$. En retranchant cette quantité tout entière, on aura la densité qui correspond à l'humidité extrême, ou à s=1; en l'ajoutant on aura celle qui correspond à la sécheresse absolue, ou à s=0; en négligeant la correction, on aura la densité qui correspond à l'humidité moyenne.

EXEMPLE. Trouver la densité de l'air à la pression barométrique de 0^m7625, à la température de 13°4; le degré de saturation étant 0,655 de la saturation complète (ce qui a lieu pour 83° de l'hygromètre de Saussure). Partant de la hauteur barométrique 0^m760 et de la température 16°, pour lesquels la densité contenue dans la table est 1,2201; remarquant que d'après la table pour 4° en moins on a une différence de 0,0185 en plus, et que pour une augmentation de 0^m005 sur le baromètre on a une augmentation de 0,0080 sur la densité, on aura

$$\delta = 1,2201 + \frac{2,6}{4,0}0,0185 + \frac{0,0025}{0,0050}0,0080 = 1,2361.$$

Puisque s = 0.655 on aura 2s - 1 = 0.31.

La quantité à retrancher pour tenir compte du degré d'humidité sera 0,0058.0,31 = 0,0018, et la densité cherchée sera

$$\delta = 1,2343.$$

SECTION III.

MOUVEMENT DES PROJECTILES DANS L'AIR.

60. Considérations générales. La solution générale de la guestion du mouvement d'un projectile dans l'air, a été regardée comme un des plus difficiles problèmes d'analyse. Ce problème a été, à plusieurs reprises, proposé au concours par les sociétés savantes, et, les géomètres les plus distingués ont essayé de vaincre les difficultés qu'il présente; Euler, Lambert, Besout, Borda, Tempelhof, Legendre, Français, l'ont attaqué par des méthodes savantes et profondes, dans l'hypothèse que la résistance du milieu était proportionnelle au carré de la vitesse du mobile; cependant aucune méthode rigoureuse n'a pu jusqu'ici exprimer une relation finie entre les angles de projection, la vitesse initiale et l'amplitude du jet; peutêtre même ne pourra-t-on jamais résoudre cette question dans toute sa rigueur; aussi l'on a dû recourir à des méthodes d'approximation. Dans les unes, on a rejeté des quantités qui embarrassent le calcul et qui ne semblent pas influer d'une manière sensible sur les résultats; dans les autres, les résultats ont été exprimés au moyen de séries qu'on est dans l'impuissance de remplacer par des expressions finies.

Si les difficultés du problème du mouvement des projectiles, dans un milieu résistant, ont été aussi grandes lorsqu'on a supposé la résistance simplement proportionnelle au carré de la vitesse, qu'elles ne devront pas être celles que présenterait ce même problème, dans l'hypothèse d'une résistance exprimée par deux termes. On ne peut donc espérer de le résoudre que par approximation.

Une nouvelle difficulté se trouve introduite par l'emploi des projectiles oblongs tirés dans les armes rayées d'où résulte pour eux un mouvement de rotation; car, outre la résistance tangentielle, la seule dont on tient compte lorsque l'on considère les projectiles sphériques, il faut ajouter ici l'effet qui résulte de la forme oblongue du projectile, de l'inclinaison de l'axe de figure sur la trajectoire et du mouvement de rotation; trois circonstances d'où résulte une dérivation assez grande pour qu'on soit obligé de la corriger dans le pointage.

Dans l'espèce et le degré d'approximation que nous rechercherons, nous aurons toujours en vue les applications utiles et nous éviterons de compliquer outre mesure les formules, dans le seul but d'embrasser tous les cas, même ceux qui ne se rencontrent pas dans l'application. C'est peut-être pour n'avoir pas été assez pénétrés de cette idée, que les géomètres distingués qui se sont occupés de la balistique, et en particulier Legendre, n'ont pas amené cette science au degré d'utilité qu'elle aurait pu atteindre.

Nous considérerons le cas le plus général du tir, sous de très-grands angles de projection et avec de très-grandes vitesses, dont l'usage restreint jusqu'à présent par suite de l'incertitude qu'il présente, s'étendra de plus en plus comme conséquence du perfectionnement qui s'introduit dans l'emploi des bouches à feu. Nous nous attacherons plus particulièrement au cas des vitesses modérées, les plus habituellement usitées dans le tir sous les grands angles de projection, et à celui des grandes vitesses sous les petits angles de projection.

Dans les deux cas que l'on vient de citer, il n'est pas possible de représenter la résistance par un seul terme proportionnel au carré de la vitesse, même en déterminant le coefficient de la résistance pour chaque cas particulier. La vitesse est alors trop variable depuis le point de départ jusqu'au point d'arrivée. Dans le tir sous 45°. par exemple, même à de petites distances, cette vitesse varie dans un rapport plus grand que celui de 1 à $\sqrt{\frac{1}{2}}$, ou d'environ 10 à 7; par suite, les formules auxquelles sont arrivés les savants géomètres que nous avons cités, reposant sur une loi inexacte de la résistance de l'air, ne peuvent pas représenter exactement le mouvement des projectiles, même lorsqu'ils sont sphériques et sans mouvement de rotation. La question analytique, sous ce rapport, présente donc des difficultés nouvelles plus grandes que celles que l'on a déjà surmontées.

61. Equation différentielle de la trajectoire. Soit 0 le point de départ du projectile (Fig. 14), V sa vitesse initiale suivant OA, ϕ l'angle de projection au-dessus du plan horizontal, h la hauteur due à cette vitesse, P le poids du projectile, R son rayon, D sa densité, x et y l'abscisse horizontale et l'ordonnée verticale d'un point quelconque M de la trajectoire comptés dans le plan vertical de projection et v la vitesse du projectile en ce point; soit de plus, s la longueur de l'arc OM, t le temps employé à le parcourir, θ l'angle d'inclinaison de l'élément de la trajectoire ou de la direction du mouvement du projectile lorsqu'il est arrivé en ce point; soit p la valeur de $\frac{dy}{dx}$ qui représente la tangente de l'inclinaison de la trajectoire, on aura

$$\frac{dy}{dx} = p = \tan \theta$$
, $\cos \theta = \frac{dx}{ds}$, $\sin \theta = \frac{dy}{ds}$ et $v = \frac{ds}{dt}$;

soit g la pesanteur, ou la vitesse acquise par un corps

après la première seconde de sa chute dans le vide, et ρ la résistance de l'air, que nous savons être (55) $\rho = A\pi R^2 v^2 \left(1 + \frac{v}{r}\right)$, et qui est supposée agir, à chaque instant, suivant la tangente à la trajectoire.

 $\frac{P}{g}$ étant la masse du projectile, la force accélératrice due à la résistance de l'air sera

$$\rho_{\vec{\mathbf{p}}}^{g},$$

les composantes horizontales et verticales de cette résistance seront

$$\rho \frac{g}{P} \frac{dx}{ds}$$
 et $\rho \frac{g}{P} \frac{dy}{ds}$.

La pesanteur agissant dans le plan vertical des coordonnées qui passe par la ligne de projection, la résistance de l'air agissant tangentiellement à la trajectoire, et aucune autre force que cette résistance n'ayant action sur le projectile, celui-ci ne sortira pas de ce plan vertical; on aura donc pour les deux équations du mouvement, conformément aux principes de la mécanique, savoir:

Suivant l'axe des abscisses,

$$d\frac{dx}{dt} + \rho \frac{g}{\bar{p}} \frac{dx}{ds} dt = 0, \qquad (a)$$

et, suivant l'axe des ordonnées,

$$d\frac{dy}{dt} + \varrho \frac{g}{P} \frac{dy}{ds} dt + g dt = 0.$$
 (b)

Observons que si le poids P est celui du mobile mesuré dans le vide, le poids dans l'air sera diminué du poids

d'un volume d'air égal à celui du corps représenté par $P\frac{\delta}{D}$, et que par conséquent le poids sera $P\left(1-\frac{\delta}{D}\right)$; la force accélératrice due à la pesanteur réduite dans le même rapport sera $g\left(1-\frac{\delta}{D}\right)$. Mais pour les projectiles de l'artillerie le rapport $\frac{\delta}{D}$ est assez petit pour qu'on puisse le négliger devant l'unité, et c'est ce que nous ferons.

Effectuant la différentiation en regardant dx comme constant, on tire de l'équation (a)

$$\frac{d^2t}{dt^2} - \rho \frac{g}{P} \frac{dt}{ds} = 0.$$
 (c)

Observant que dy = pdx et que par suite $d^2y = dpdx$, la différentiation de l'équation (b) donnera

$$\frac{dpdx}{dt} - \frac{dyd^3t}{dt^2} + \rho \frac{g}{P} \frac{dy}{ds} dt + gdt = 0;$$

ajoutant membre à membre à cette équation la précédente multipliée par dy, on aura

(1)
$$\frac{dpdx}{dt} + gdt = 0 \quad \text{ou} \quad dpdx + gdt^2 = 0.$$

Cette équation, comme on voit, est indépendante de pet subsiste quelle que soit la relation de la résistance de l'air à la vitesse.

Différenciant cette équation, puis tirant la valeur de d't, divisant celle-ci par la valeur de dt tirée de l'équation (1) elle-même, on aura

$$\frac{d^3t}{dt^2} = \frac{d^3p}{2dpdt}.$$

Soustrayant cette équation de l'équation (c), on aura

$$\rho \frac{g}{P} \frac{dt}{ds} = \frac{d^3p}{2dpdt}.$$
 (d)

Or, en faisant comme précédemment $(46, \text{ éq. } 5)\frac{1}{2c} = A_{\pi}R^{3}\frac{g}{P}$, on aura

$$\rho \frac{g}{P} = \frac{v^2}{2c} \left(1 + \frac{v}{r} \right),$$

et, en remplaçant v par $\frac{ds}{dt}$, on aura

$$\rho \frac{g}{P} = \frac{1}{2c} \frac{ds^2}{dt^2} \left(1 + \frac{1}{r} \frac{ds}{dt} \right),$$

d'après quoi l'équation (d) devient

$$\frac{1}{2c}\frac{ds}{dt}\left(1+\frac{1}{r}\frac{ds}{dt}\right)=\frac{d^2p}{2dpdt};$$

tirant de cette équation la valeur de $\frac{ds}{dt}$ et élevant au carré, on aura

$$\frac{ds^2}{dt^2} = r^2 \left(\frac{cd^2p}{dsdp} - 1 \right)^2;$$

en substituant à dt^2 sa valeur tirée de l'équation générale $dpdx + gdt^2 = 0$, on aura

$$\left(\frac{cd^3p}{dsdp}-1\right)^2 = -\frac{g}{r^2}\frac{ds^2}{dpdx}.$$

Enfin remplaçant ds par sa valeur $dx\sqrt{1+p^2}$, puis p par $\frac{dy}{dx}$, $\frac{dp}{dx}$ par $\frac{d^3y}{dx^2}$ et $\frac{d^3p}{dx^3}$ par $\frac{dy^3}{dx^3}$, on aura pour l'équation de la trajectoire

$$\left(\frac{cd^3p}{dp\sqrt{1+p^3}dx}-1\right)^3=-\frac{g}{r^3}\frac{(1+p^3)dx}{dp}$$

ou

$$\left(c\frac{d^3y}{dx^3} - \frac{d^3y}{dx^2}\sqrt{1 + \frac{dy^3}{dx^2}}\right)^3 + \frac{g}{r^2}\left(1 + \frac{dy^3}{dx^2}\right)^3\frac{d^3y}{dx^2} = 0. \quad (e)$$

Cette équation est trop compliquée pour que les moyens connus d'intégration permettent d'arriver à une expression finie entre x et y.

Si l'on fait $\frac{1}{r} = 0$, ce qui est le cas de la résistance proportionnelle au carré de la vitesse, l'équation précédente devient simplement.

$$(2) cd^2p - dpdx\sqrt{1+p^2} = 0.$$

C'est sur le système des deux équations (1) et (2) qu'ont été fondées jusqu'ici les recherches entreprises pour la solution du problème balistique. Elles n'ont pu conduire, même dans ce cas simple, les grands géomètres Bernouilly, Euler, Lambert, Tempelhof, Français, qu'à des valeurs approximatives ou exprimées par des suites infinies, dont ils ont calculé un certain nombre de termes, et qui forceraient dans les applications numériques à des calculs très-pénibles. Ces difficultés n'ont pu être évitées par Borda, Besout, Legendre et Français, qu'au moyen de formules dont le degré d'approximation a dépendu des complications auxquelles ces géomètres ont consenti à s'astreindre. Nous essaierons de suivre une marche différente qui nous conduira plus promptement aux résultats que nous cherchons.

62. Équation différentielle d'un arc de trajectoire. Reprenons les équations (a) et (b) du mouvement

$$d\frac{dx}{dt} + \rho \frac{g}{P} \frac{dx}{ds} dt = 0 \quad \text{ et } \quad d\frac{dy}{dt} + \rho \frac{g}{P} \frac{dy}{ds} dt + g dt = 0.$$

Effectuant la différentiation en regardant dt comme constant, remplaçant $\rho \frac{g}{P}$ par sa valeur $\frac{v^2}{2c}(1+\frac{v}{r})$, on aura

(3)
$$\frac{d^3x}{dt^2} = -\frac{1}{2c}v^2\left(1 + \frac{v}{r}\right)\frac{dx}{ds}$$

et

(4)
$$\frac{d^2y}{dt^2} = -\frac{1}{2c}v^2\left(1+\frac{v}{r}\right)\frac{dy}{ds} - g.$$

L'équation (4) par la substitution de la valeur du facteur de $\frac{dx}{ds}$ de l'équation (3) devient

$$\frac{d^3y}{dt^2} = -g + \frac{d^3x}{dt^2}\frac{ds}{dx}\frac{dy}{ds} = -g + \frac{d^3x}{dt^2}\frac{dy}{dx}.$$

Or, on a dy = pdx ou $\frac{dy}{dt} = p\frac{dx}{dt}$, d'où, en différenciant, $\frac{d^2y}{dt^2} = p\frac{d^2x}{dt^2} + \frac{dp}{dt}\frac{dx}{dt}$ et par conséquent, en substituant $\frac{d^2y}{dt^2}$ on aura

(5)
$$\frac{dp}{dt}\frac{dx}{dt} = -g.$$

Pour faire disparaître la valeur du temps et avoir une équation de la trajectoire, reprenons l'équation (3)

$$\frac{d^2x}{dt^2} = -\frac{1}{2c}v^2\left(1 + \frac{v}{r}\right)\frac{dx}{ds}.$$

Remarquons d'abord que le second membre exprime

la composante horizontale de la force retardatrice de l'air et que dans le vide $\frac{1}{2a}$ serait nul. Remarquons aussi que le rapport $\frac{ds}{dt}$ d'un élément de l'arc de la trajectoire à sa projection horizontale, ou la cotangente de l'inclinaison est variable d'un point à l'autre de la courbe. Si donc dans le second membre on modifie légèrement le facteur $\frac{ds}{dx}$, on ne fera que modifier, dans le même rapport, la grandeur qu'on attribue à la résistance de l'air, et si on remplace cette valeur variable le long d'un arc de trajectoire d'une certaine étendue, par une valeur moyenne le long de cet arc, on altérera légèrement cette résistance en chaque point sans altérer sa moyenne; l'on ne commettra ainsi qu'une très-légère erreur dont on appréciera plus loin l'importance. Il sera donc permis, pour un arc de grandeur limitée, de remplacer la valeur variable de $\frac{\omega}{ds}$ par sa valeur moyenne dans l'étendue de cet arc, c'est-àdire par le rapport de l'arc entier s à sa projection x; soit a ce rapport.

Puisque la vitesse v est égale à $\frac{ds}{dt}$ ou à $\frac{ds}{dx}\frac{dx}{dt}$, on aura aussi $v = a\frac{dx}{dt}$; d'après cela, l'équation d'un arc limité de longueur sera

$$\frac{d^2x}{dt^2} = -\frac{\alpha}{2c} \left(\frac{dx}{dt}\right)^2 \left(1 + \frac{\alpha}{r} \frac{dx}{dt}\right);$$

en représentant par v, la composante horizontale de la vitesse en chaque point qui est $\frac{dx}{dt}$, on aura

$$\frac{dv_1}{dt} = -\frac{\alpha}{2c}v_1^2\left(1+\frac{\alpha}{r}v_1\right),$$

et puisque $\frac{dx}{dt} = v_1$, on aura aussi en divisant membre à membre

$$\frac{dv_1}{dx} = -\frac{\alpha}{2c}v_1\left(1 + \frac{\alpha}{r}v_1\right).$$

Ces équations donnent la valeur de dx et de dt en fonction de v, et on peut les intégrer; en effet, on aura par les procédés connus '

$$dx = -\frac{2c}{\alpha} \frac{dv_i}{v_i \left(1 + \frac{\alpha}{r}v_i\right)} = -\frac{2c}{\alpha} \left(\frac{dv_i}{v_i} - \frac{\alpha}{r} \frac{dv_i}{1 + \frac{\alpha}{r}v_i}\right),$$

et, en intégrant,

$$x = -\frac{2r}{\alpha} \left[\log v_1 - \log \left(1 + \frac{\alpha}{r} v_4 \right) \right] + \text{const}$$
$$= \frac{2c}{\alpha} \log \frac{1 + \frac{\alpha}{r} v_4}{v_4} + \text{const.}$$

Déterminant la constante par la condition que la vitesse initiale soit V, c'est-à-dire qu'à la fois la valeur de v, soit la composante horizontale de cette vitesse ou $V\cos\varphi$, que nous représenterons par V_1 et que x soit 0, on aura

$$x = \frac{2c}{\alpha} \log \frac{V_i \left(1 + \frac{\alpha}{r} v_i\right)}{v_i \left(1 + \frac{\alpha}{r} V_i\right)} \quad \text{ou} \quad x = \frac{2c}{\alpha} \log \frac{1 + \frac{r}{\alpha} \frac{1}{v_i}}{1 + \frac{r}{\alpha} \frac{1}{V_i}},$$

'Si l'expression de la résistance de l'air contenait d'autres puissances de la vitesse que la deuxième et la troisième, on obtiendrait également la valeur de dx en fonction rationnelle de v, et son intégrale. d'où l'on tire la valeur de v, qui n'est autre que $\frac{dx}{dt}$, et, en représentant par e la base des logarithmes népériens, on aura

$$v_{i} = \frac{dx}{dt} = \frac{V_{i}}{e^{\frac{\alpha x}{2c}} \left(1 + \frac{\alpha V_{i}}{r}\right) - \frac{\alpha V_{i}}{r}},$$

élevant cette quantité au carré et divisant membre à membre avec l'équation (5), on aura pour l'équation différentielle d'un arc de la trajectoire

(6)
$$\frac{dp}{dx} = -\frac{g}{V_1^2} \left[e^{\frac{\alpha x}{2c}} \left(1 + \frac{\alpha V_1}{r} \right) - \frac{\alpha V_1}{r} \right]^2.$$

63. Équation finie d'un arc de la trajectoire. Faisant passer dx dans le deuxième membre, développant le carré et remplaçant $\frac{g}{V_1^2}$ ou $\frac{g}{V^2\cos^2\phi}$ par $\frac{1}{2h\cos^2\phi}$, en rappelant que $V^2 = 2gh$, on aura

$$dp = -\frac{1}{2h\cos^{2}q} \left[\left(1 + \frac{aV_{1}}{r}\right)^{2} e^{\frac{\alpha x}{c}} - 2e^{\frac{\alpha x}{2c}} \left(1 + \frac{aV_{1}}{r}\right)^{\frac{\alpha V_{1}}{r}} + \frac{\alpha^{2}}{r^{2}} V_{1}^{2} \right] dx.$$

Intégrant et déterminant la constante par la condition qu'on ait à la fois x = 0 et $p = tang \varphi$, on aura, puisque $p = \frac{dy}{dx}$,

$$\frac{dy}{dx} = \tan \varphi - \frac{1}{2h\cos^2\varphi} \left\{ \frac{c}{\alpha} \left(1 + \frac{\alpha V_1}{r} \right)^3 \left(e^{\frac{\alpha x}{c}} - 1 \right) - \frac{4c}{\alpha} \left(1 + \frac{\alpha V_1}{r} \right) \frac{\alpha V_1}{r} \left(e^{\frac{\alpha x}{2c}} - 1 \right) + \frac{\alpha^2 V_1^2}{r^2} x \right\}.$$

Faisant passer dx dans le deuxième membre, intégrant et déterminant les constantes par la condition qu'on ait à la fois x = 0 et y = 0, on aura

$$y = x \tan \varphi - \frac{1}{2h \cos^2 \varphi} \left\{ \frac{c^2}{\alpha^2} \left(1 + \frac{\alpha V_1}{r} \right)^2 \left(e^{\frac{\alpha x}{c}} - \frac{\alpha x}{c} - 1 \right) - \frac{8c^2}{\alpha^2} \left(1 + \frac{\alpha V_1}{r} \right) \frac{\alpha V_1}{r} \left(e^{\frac{\alpha x}{2c}} - \frac{\alpha x}{2c} - 1 \right) + \frac{1}{2} \frac{\alpha^2 V_1^2}{r^2} x^2 \right\}.$$

Cette expression peut se mettre sous la forme

$$y = x \tan \varphi - \frac{x^{2}}{4h \cos^{2} \varphi} \left\{ \left(1 + \frac{\alpha V_{1}}{r}\right)^{2} \frac{e^{\frac{\alpha x}{c}} - \frac{\alpha x}{c} - 1}{\frac{1}{2} \left(\frac{\alpha x}{c}\right)^{2}} - 2\left(1 + \frac{\alpha V_{1}}{r}\right) \frac{\alpha V_{1}}{r} \frac{e^{\frac{\alpha x}{2c}} - \frac{\alpha x}{2c} - 1}{\frac{1}{2} \left(\frac{\alpha x}{2c}\right)^{2}} + \frac{\alpha^{2} V_{1}^{2}}{r^{2}} \right\}.$$

Nous représenterons par une même caractéristique F la forme des fonctions de x qui multiplient $\left(1 + \frac{\alpha V_1}{r}\right)^2$ et $\left(1 + \frac{\alpha V_1}{r}\right)^{\frac{\alpha V_1}{r}}$ et qui ne diffèrent entre elles qu'en ce que $\frac{ax}{c}$ est remplacé par $\frac{ax}{2c}$; c'est-à-dire que nous écrirons

$$\mathbf{F}\left(\frac{\alpha x}{c}\right) = \frac{e^{\frac{\alpha x}{c}} - \frac{\alpha x}{c} - 1}{\frac{1}{2}\left(\frac{\alpha x}{c}\right)^{2}} \quad \text{et} \quad \mathbf{F}\left(\frac{\alpha x}{2c}\right) = \frac{e^{\frac{\alpha x}{2c}} - \frac{\alpha x}{2c} - 1}{\frac{1}{2}\left(\frac{\alpha x}{2c}\right)^{2}}.$$

L'équation de la trajectoire deviendra alors

$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} \left\{ \left(1 + \frac{\alpha V_1}{r} \right)^2 F\left(\frac{\alpha x}{c} \right) - 2\left(1 + \frac{\alpha V_1}{r} \right) \frac{\alpha V_1}{r} F\left(\frac{\alpha x}{2c} \right) + \frac{\alpha^2 V_1^2}{r^2} \right\}.$$

Telle est l'équation d'un arc de la trajectoire dans l'air, lorsque la résistance de ce fluide est exprimée par deux termes proportionnels, l'un au carré, l'autre au cube de la vitesse, que cet arc est d'une étendue limitée, et que dans le facteur de la résistance de l'air on remplace les cotangentes des inclinaisons en chaque point par leur moyenne ou par le rapport de l'arc à sa projection.

Si l'on compare cette équation à celle de la trajectoire dans le vide qui est, comme on sait, $y=x\tan q\phi-\frac{x^2}{4h\cos^2\varphi}$ on verra qu'elle en diffère en ce que le second terme est multiplié par une certaine fonction de x et de V divisés respectivement par les quantités constantes $\frac{c}{\alpha}$ et $\frac{r}{\alpha}$. On remarquera en outre que le second terme représente l'abaissement dû à l'effet de la pesanteur; le premier étant au contraire l'élévation qui serait due à la vitesse du projectile s'il s'avançait en ligne droite suivant la direction de la ligne de projection.

En représentant cette fonction par w(x, V), c'est-à-dire en écrivant

$$\left(1+\frac{\alpha \mathbf{V}}{r}\right)^{2}\mathbf{F}\left(\frac{\alpha x}{c}\right)-2\frac{\alpha \mathbf{V}_{1}}{r}\left(1+\frac{\alpha \mathbf{V}_{1}}{r}\right)\mathbf{F}\left(\frac{\alpha x}{2c}\right)+\frac{\alpha^{2}\mathbf{V}_{1}^{2}}{r^{2}}=\psi_{b}(x,\mathbf{V}),$$

l'équation de l'arc de la trajectoire deviendra simplement

(7)
$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} \mathcal{V}_b(x, V).$$

L'expression de la hauteur du projectile à une distance donnée x, ne diffère donc de ce qui aurait lieu dans le vide qu'en ce que l'abaissement $\frac{x^2}{4h\cos^2\varphi}$ est augmenté dans le rapport de $\mathfrak{W}(x, V)$ à 1.

64. Inclinaison, durée, vitesse. La valeur de l'inclinaison de la trajectoire en un point quelconque s'exprime aussi très-facilement au moyen de la valeur précédente de p qui n'est autre que tang 0; on aura donc

$$\begin{split} \tan \theta &= \tan \theta - \frac{1}{2h\cos^2 \theta} \left\{ \frac{c}{\alpha} \left(1 + \frac{\alpha V_1}{r} \right)^2 \left(e^{\frac{\alpha x}{C}} - 1 \right) \right. \\ &\left. - \frac{4c}{\alpha} \left(1 + \frac{\alpha V_1}{r} \right) \frac{\alpha V_1}{r} \left(e^{\frac{\alpha x}{2C}} - 1 \right) + \frac{\alpha^2 V_1^2}{r^2} \right\}, \end{split}$$

expression qu'on peut mettre sous la forme

$$\tan \theta = \tan \theta - \frac{x}{2h\cos^2 \theta} \left\{ \left(1 + \frac{\alpha V_1}{r}\right)^2 \frac{e^{\frac{\alpha x}{c}} - 1}{\frac{\alpha x}{c}} - \frac{1}{\frac{\alpha x}{c}} - \frac{1}{r^2} + \frac{\alpha^2 V_1^2}{r^2} \right\}.$$

En représentant par la caractéristique F'les fonctions de x qui entrent dans les termes sous la parenthèse, c'est-à-

dire en écrivant
$$\frac{\frac{\alpha x}{c}-1}{\frac{\alpha x}{c}} = F'(\frac{\alpha x}{c})$$
 et $\frac{e^{\frac{\alpha x}{c}}-1}{\frac{\alpha x}{2c}} = F'(\frac{\alpha x}{2c})$,

on aura

$$\begin{split} \tan \theta &= \tan \theta - \frac{x}{2h\cos^2 \varphi} \Big\{ \Big(1 + \frac{\alpha V_i}{r} \Big)^2 F' \Big(\frac{\alpha x}{c} \Big) \\ &- 2 \Big(1 + \frac{\alpha V_i}{r} \Big) \frac{\alpha V_i}{r} F' \Big(\frac{\alpha x}{2c} \Big) + \frac{\alpha^2 V_i^2}{r^2} \Big\}. \end{split}$$

Enfin, on remarquera que la quantité comprise entre parenthèses est composée avec $F'\left(\frac{\alpha x}{c}\right)$ comme la fonction $\mathfrak A$ qui se trouve dans l'équation de la trajectoire l'est avec $F\left(\frac{\alpha x}{c}\right)$, nous pourrions la désigner par $\mathfrak A'(x,V)$; mais pour indiquer qu'elle se rapporte à l'inclinaison, nous préférons la représenter par une caractéristique distincte $\mathfrak Z$ et nous écrirons

$$\left(1+\frac{\alpha V_1}{r}\right)^2 F'\left(\frac{\alpha x}{c}\right)-2\left(1+\frac{\alpha V_1}{r}\right)\frac{\alpha V_1}{r} F'\left(\frac{\alpha x}{2c}\right)+\frac{\alpha^2 V_1^2}{r^2}=5(x,V).$$

L'expression de la tangente en un point quelconque de l'arc de la trajectoire sera donc simplement

(8)
$$\tan \theta = \tan \theta - \frac{x}{2h\cos^2 \theta} \delta(x, V).$$

Dans le vide, on aurait comme on sait

$$\tan \theta = \tan \theta - \frac{x}{2h\cos^2 \theta}.$$

L'expression de l'inclinaison dans l'air (8) ne diffère donc de cette dernière qu'en ce que l'abaissement angulaire $\frac{x}{2h\cos^2\phi}$ doit être multiplié par le facteur s(x,V).

Durée du trajet. La durée du trajet en fonction de la vitesse du projectile se déduit (62) de l'équation

$$\frac{dv_{i}}{dt} = -\frac{\alpha}{2c}v_{i}^{2}\left(1 + \frac{\alpha}{r}v_{i}\right),$$

d'où l'on tire par les procédés connus

$$dt = -\frac{2c}{\alpha} \frac{dv_1}{v_1^2 \left(1 + \frac{\alpha}{r} v_1\right)} = -\frac{2c}{\alpha} \left(\frac{dv_1}{v_1^2} - \frac{\alpha}{r} \frac{dv_1}{v_1} + \frac{\alpha^2}{r^2} \frac{dv_1}{1 + \frac{\alpha}{r} v_1}\right),$$

et, en intégrant,

$$t = \frac{2c}{\alpha} \left[\frac{1}{v_1} + \frac{\alpha}{r} \log v_1 - \frac{\alpha}{r} \log \left(1 + \frac{\alpha}{r} v_1 \right) \right] + \text{const}$$
$$= \frac{2c}{\alpha} \left(\frac{1}{v_1} - \frac{\alpha}{r} \log \frac{1 + \frac{\alpha}{r} v_1}{v_1} \right) + \text{const.}$$

Déterminant la constante par la condition qu'au commencement du mouvement t soit égal à zéro et que v, soit la composante horizontale de la vitesse initiale ou $V\cos\varphi = V_1$, on aura

(9)
$$t = \frac{2c}{\alpha} \left(\frac{1}{v_i} - \frac{1}{V_i} - \frac{\alpha}{r} \log \frac{V_i \left(1 + \frac{\alpha}{r} v_i \right)}{v_i \left(1 + \frac{\alpha}{r} V_i \right)} \right)$$
$$= \frac{2c}{\alpha} \left(\frac{1}{v_i} - \frac{1}{V_i} - \frac{\alpha}{r} \log \frac{1 + \frac{r}{\alpha} \frac{1}{v_i}}{1 + \frac{r}{\alpha} \frac{1}{V_i}} \right).$$

Expression de la durée du trajet en fonction de la vitesse à l'extrémité de ce trajet. En vertu de la valeur déjà trouvée (62) de x, celle de t se simplifie et devient

(10)
$$t = \frac{2c}{\alpha} \left(\frac{1}{v_1} - \frac{1}{V_1} \right) - \frac{\alpha}{r} x.$$

Si de plus on substitue à v, sa valeur en fonction de x

et de V_i (62), on aura pour la valeur de t en fonction de l'étendue du trajet parcouru

$$t = \frac{2c}{\alpha V_i} \left(1 + \frac{\alpha}{r} V_i \right) \left(e^{\frac{\alpha x}{2c}} - 1 \right) - \frac{\alpha}{r} x.$$

On arrive plus directement à cette relation en partant de la valeur de v, ou de $\frac{dx}{dt}$ (62). En effet, en la renversant on obtient

$$\frac{dt}{dx} = \frac{1}{V_i} e^{\frac{\alpha x}{2c}} \left(1 + \frac{\alpha V_i}{r} \right) - \frac{\alpha}{r}.$$

En intégrant et déterminant la constante de façon qu'on ait à la fois x = 0 et t = 0, il vient comme ci-dessus

$$t = \frac{2c}{\alpha V_i} \left(1 + \frac{\alpha V_i}{r} \right) \left(e^{\frac{\alpha x}{2c}} - 1 \right) - \frac{\alpha x}{r}.$$

En mettant cette expression sous la forme

$$t = \frac{x}{V_{i}} \left(\left(1 + \frac{\alpha V_{i}}{r} \right) \frac{e^{\frac{\alpha x}{2c}} - 1}{\frac{\alpha x}{2c}} - \frac{\alpha V_{i}}{r} \right),$$

on reconnaîtra que le facteur de $1 + \frac{\alpha V_1}{r}$ est ce que nous avons représenté par la fonction $F'(\frac{\alpha x}{2c})$, de sorte qu'on aura, en rappelant que $V_1 = V \cos \phi$

$$t = \frac{x}{V\cos\phi} \left[\left(1 + \frac{\alpha V_i}{r} \right) F'\left(\frac{\alpha x}{2c} \right) - \frac{\alpha V_i}{r} \right].$$

Si l'on compare cette expression de la durée dans l'air

à celle qui aurait lieu dans le vide, qui est comme on sait $t = \frac{x}{V\cos\varphi}$, on verra qu'elle n'en diffère qu'en ce que celle-ci doit être multipliée par le facteur entre parenthèses qui est une fonction particulière de $F'\left(\frac{\alpha x}{2c}\right)$ et de $\frac{\alpha V_1}{r}$, que, vu qu'il se rapporte à la durée, nous représenterons par Φ ; c'est-à-dire que nous écrirons

$$\left(1 + \frac{\alpha V_i}{r}\right) F'\left(\frac{\alpha x}{2c}\right) - \frac{\alpha V_i}{r} = \mathfrak{Q}(x, V),$$

d'après cela l'expression de la durée sera

$$t = \frac{x}{V\cos\phi} \mathfrak{Q}(x, V), \tag{11}$$

et l'on voit que le rapport de la durée dans l'air à la durée dans le vide pour la même distance horizontale est égal à celui de $\mathfrak{D}(x, V)$ à l'unité.

65. Vitesse. Nous avons déjà trouvé pour l'expression de la vitesse (art. 62)

$$v_{i} = \frac{V_{i}}{\left(1 + \frac{\alpha}{r}V_{i}\right)e^{\frac{\alpha x}{2c}} - \frac{\alpha V_{i}}{r}}.$$
 (12)

En remarquant que le dénominateur de V, est formé avec $e^{\frac{\alpha x}{2c}}$, comme le facteur de $\frac{x}{V\cos\phi}$ dans l'expression de la durée (art. 64, éq. 11) l'est avec $F'\left(\frac{\alpha x}{2c}\right)$, on verra que l'on pourrait le représenter par une caractéristique analogue \mathfrak{G}' ; mais comme elle se rapporte à la vitesse, on la représentera par la caractéristique particulière \mathfrak{D} ,

en faisant $\left(1+\frac{\alpha}{r}V_{i}\right)e^{\frac{\alpha x}{2c}}-\frac{\alpha V_{i}}{r}=v(x, V)$ de sorte qu'on aura

$$v_i = \frac{V_i}{\mathfrak{O}(x, V)}$$

En remarquant de plus, que $V_1 = V\cos\varphi$ et que $v_1 = v\cos\theta$, on aura pour la valeur absolue de la vitesse en un point quelconque

(13)
$$v = \frac{V}{\mathfrak{V}(x, V)} \frac{\cos \Phi}{\cos \theta}.$$

Dans le vide on aurait simplement, comme on sait, $v = V \frac{\cos \varphi}{\cos \theta}$, de sorte que l'expression de la vitesse du projectile dans l'air à une distance horizontale x du point de départ ne diffère de celle de la vitesse dans le vide qu'en ce que la première est divisée par $\mathfrak{O}(x,V)$; et, le rapport de la vitesse dans l'air à la vitesse dans le vide est celui de 1 à $\mathfrak{O}(x,V)$.

66. Relations entre les facteurs par lesquels les équations du mouvement dans l'air diffèrent de celles du mouvement dans le vide. Il y a entre les facteurs par lesquels les équations du mouvement dans l'air diffèrent de celles du mouvement dans le vide, des relations qu'il est utile de connaître.

Trois de ces quantités' sont, en appelant z la variable $\frac{\alpha x}{c}$, représentées par les trois fonctions

$$e^{z}$$
, $\frac{e^{z}-1}{z} = F'(z)$ et $\frac{e^{z}-z-1}{\frac{1}{2}z^{2}} = F(z)$.

' Voir aux tables VII, VIII et IX les valeurs numériques de ces quantités qui sont toutes fonctions de $\frac{\alpha x}{c}$ et de $\frac{\alpha V_1}{r}$. Ces tables sont ainsi indépendantes de la nature des projectiles et de la grandeur des coefficients de l'expression de la résistance de l'air.

La première est l'exponentielle dans laquelle e est la base des logarithmes hyperboliques, égale à 2,718281828; sa valeur est exprimée par la série convergente connue

$$e^z = 1 + \frac{z}{1} + \frac{z^3}{1.2} + \frac{z^3}{1.2.3} + \frac{z^4}{1.2.3.4} + \text{etc.}$$

La seconde se forme de cette première en en retranchant le premier terme du développement et en divisant le reste par le second terme; elle a pour valeur

$$F'(z) = 1 + \frac{z}{2} + \frac{z^3}{2 \cdot 3} + \frac{z^3}{2 \cdot 3 \cdot 4} + \text{etc.}$$

La troisième se forme également de la première, en en retranchant les deux premiers termes du développement, et en divisant le reste par le troisième terme; l'on a alors

$$F(z) = 1 + \frac{z}{3} + \frac{z^2}{3.4} + \frac{z^3}{3.4.5} + \text{etc.}$$

Il est facile de voir qu'entre F(z) et F'(z) il y a cette relation $F(z) = \frac{F'(z)-1}{\frac{1}{2}z}$, analogue à celle-ci $F'(z) = \frac{e^z-1}{z}$, laquelle consiste pour l'une et pour l'autre à retrancher le premier terme du développement, et à diviser le reste par le terme suivant.

Chacune des trois fonctions e^z , F'(z), F(z) a l'unité pour premier terme de son développement; les autres termes sont tous positifs. Ces fonctions sont donc toujours plus grandes que l'unité, et elles s'en rapprochent d'autant plus que z est plus petit; elles ne se réduisent à l'unité que quand z est égal à zéro.

Les seconds termes des séries qui expriment la valeur de ces trois fonctions, sont respectivement z, $\frac{1}{2}z$, $\frac{1}{3}z$; on déduit les troisièmes termes des seconds en augmen-

tant l'exposant de z d'une unité et en donnant au dénominateur un second facteur égal au précédent augmenté d'une unité; les quatrièmes termes et les suivants se déduisent des précédents de la même manière. On voit par là, que quelle que soit la valeur de z, hors le cas où cette quantité est nulle, la valeur de F'(z) est plus petite que celle de F'(z). Enfin, puisque le développement de e^z est toujours une série convergente, le développement de F'(z) et celui de F(z) seront plus rapidement convergents encore.

Dans un certain nombre de cas les séries sont assez convergentes pour qu'on puisse se contenter d'un trèspetit nombre de termes. Ainsi pour F(z), si $z=\frac{1}{3}$, le second terme de la série est $\frac{1}{9}$, le troisième est égal à $\frac{1}{100}$, le quatrième à $\frac{1}{2020}$, le cinquième à $\frac{1}{57,160}$; un terme aussi petit que ce dernier est presque toujours négligeable; le quatrième le serait dans beaucoup de cas.

 e^z est exactement le carré de $e^{\frac{1}{2}z}$; mais si F(z) et F'(z) ne sont pas respectivement les carrés de $F(\frac{1}{2}z)$ et de $F'(\frac{1}{2}z)$, ils n'en diffèrent que très-peu. En effet, en prenant les carrès de ces fonctions, et en les retranchant de ceux de F(z) et de F'(z), on trouve

$$F(z) - [F(\frac{1}{2}z)]^{2} = \frac{1}{72}z^{2} + \frac{1}{180}z^{3} + \frac{1}{788}z^{4} + \frac{1}{496384}z^{5} + \dots + \frac{(n+5)(n+4)2^{n-2} + n+5-2^{n+3}}{3.4...(n+4)2^{n-2}}z^{2} \dots,$$

$$F'(z) - [F'(\frac{1}{2}z)]^{2} = \frac{1}{48}z^{2} + \frac{1}{96}z^{3} + \frac{17}{5760}z^{4} + \frac{7}{11520}z^{5} + \dots$$

$$+ \frac{(n-2)2^{n-1} + 1}{2 \cdot 3 \cdot 4 \cdot \dots \cdot (n+2)2^{n-1}}z^{n} \cdot \dots$$

de sorte que quand z est une petite fraction, ces différences sont très-petites.

67. Les fonctions représentées par les caractéristiques

48, 5, ∞ et ∞ , et qui sont composées, comme on l'a dit, des fonctions F'(z) et du rapport $\frac{\alpha V_1}{r}$ que, pour simplifier les expressions, nous représenterons par V_0 , ont des propriétés analogues à celles des fonctions F et F'.

En effet, si l'on élève au carré $\mathfrak{O}(x, V)$, qui a pour valeur $(1 + V_0)e^{\frac{1}{2}x} - V_0$, on aura

$$[\mathfrak{O}(x, V)]^2 = (1 + V_0)^2 e^z - 2V_0(1 + V_0)e^{\frac{1}{2}z} + V_0^2;$$

cette quantité est composée en e^z comme celle qui est représentée par la caractéristique $\mathfrak B$ l'est avec F(z) et comme la fonction $\mathfrak B$ l'est avec F'(z). Cette propriété nous aurait permis (art. 64) de représenter celle-ci par $\mathfrak B'$; de sorte que vu l'analogie avec les précédentes, on pourrait représenter la première par la caractéristique $\mathfrak B''$ et écrire

$$[\mathfrak{V}(x, V)]^2 = \mathfrak{V}_{\mathfrak{I}}''(x, V).$$

Remarquant en second lieu que les valeurs de $[F'(\frac{1}{2}z)]^2$ et de $[F(\frac{1}{2}z)]^2$ ne sont pas tout à fait égales à celles de F'(z) et de F(z), mais qu'elles n'en diffèrent que très-peu quand z est petit, l'on aura, en représentant par $\bigoplus_i (x, V)$ la fonction $\bigoplus_i (x, V)$ quand on y remplace F'(z) par F(z),

$$5(x, V) - [\mathfrak{O}(x, V)]^{2} = (1 + V_{0})^{2} \left(\frac{1}{48}z^{2} + \frac{1}{96}z^{3} + \frac{17}{5760}z^{4} + \dots \right) + \frac{(n-2)2^{n-1} + 1}{2 \cdot 3 \cdot 4 \cdot \dots \cdot (n+2)2^{n-1}}z^{n} \dots \right).$$

$$\mathfrak{G}(x, V) - [\mathfrak{G}_{\bullet}(x, V)]^{2} = (1 + V_{0})^{2} \left(\frac{1}{72} z^{2} + \frac{1}{180} z^{3} + \frac{1}{768} z^{4} + \dots \right) + \frac{(n+3)(n+4)2^{n-2} + n + 5 - 2^{n+3}}{3 \cdot 4 \cdot \dots \cdot (n+4) 2^{n-2}} z^{n} \cdot \dots \right).$$

Dans la première édition de ce Traité, en 1848, les caractéristiques adoptées étaient ψ et ψ au lieu de ψ 8 et ψ 8 et ψ 9 et ψ 9 un lieu

Ces quantités sont très-petites quand 2 est une petite fraction, V₀ n'ayant jamais une grande valeur.

Remarquons aussi que les valeurs de $\mathfrak{O}(x, V)$ et de $\mathfrak{O}(x, V)$ ne différent entre elles qu'en ce que e^z est remplacé par F'(z); de sorte que pour la valeur de z' qui représenterait $\frac{\alpha x'}{c}$ et qui serait telle que $e^z = F'(z')$, on aura

$$\mathfrak{V}(x, V) = \mathfrak{Q}(x', V).$$

De même, pour les valeurs de x_i telles qu'en représentant $\frac{\alpha x_i}{c}$ par z_i on ait $F(z_i) = e^z$, on aura

$$\mathfrak{O}(x, V) = \mathfrak{O}_{\mathfrak{s}}(x_{\mathfrak{s}}, V).$$

Il existe une relation semblable aux précédentes entre les valeurs des fonctions représentées par les caractéristiques x et z. En effet, si les valeurs de $z = \frac{\alpha x}{c}$ et $z' = \frac{\alpha x'}{c}$ sont telles qu'on ait F(z) = F'(z'), la différence entre

$$\mathfrak{V}_{0}(x, V) = (1 + V_{0})^{2} F(z) - 2V^{0}(1 + V_{0}) F(\frac{1}{2}z) + V_{0}^{2}$$

et

$$3(x', V) = (1 + V_o)^2 F'(z') - 2V_o(1 + V_o) F'(\frac{1}{2}z') + V_o^2$$

sera simplement

$$\mathfrak{V}_{0}(z, V) - \mathfrak{I}(z', V) = 2(1 + V_{0})V_{0}[F'(\frac{1}{2}z') - F(\frac{1}{2}z)].$$

c'est-à-dire que $\mathfrak{Z}(x', V)$ ne sera inférieur à $\mathfrak{L}(x, V)$ que de la quantité $(1 + V_0) V_0 \times 2[F(\frac{1}{2}z') - F(\frac{1}{2}z)]$.

Or tant que z n'est pas considérable, $F'(\frac{1}{2}z')$ n'est qu'un

de O et O. Si elles laissaient entrevoir plus facilement les relations qui existaient entre elles, elles présentaient la difficulté de l'expression et laissaient craindre des confusions.

peu supérieur à $F(\frac{1}{2}z)$ et comme V_0 ne dépasse presque pas en général une unité, $(1 + V_0)V_0$ ne dépassera que de très-peu deux unités; le produit

$$(1 + V_0)V_0 \times 2[F'(\frac{1}{2}z') - F(\frac{1}{2}z)]$$

sera donc presque toujours une très-petite quantité.

On a utilisé cette propriété dans l'établissement des tables numériques des diverses fonctions, de manière qu'une seule table a pu donner les valeurs de $\mathfrak{D}(x, V)$ et de $\mathfrak{D}(x, V)$, et une autre donner les valeurs de $\mathfrak{D}(x, V)$ et de $\mathfrak{D}(x, V)$, comme on va l'indiquer.

Après avoir calculé pour un certain nombre de valeurs de V_0 les valeurs de $\mathfrak{D}(x, V)$ relatives à une série de valeurs de z, ce qui donne une table à double entrée, on a calculé la série des valeurs de z' qui donnaient $F'(z') = e^z$, et on les a inscrites en regard des valeurs de z; de cette façon, et pour chacune des valeurs de V_0 , en entrant dans la table par la ligne des z on trouve les valeurs de $\mathfrak{D}(x, V)$, et en entrant par la ligne des z' on trouve les valeurs de $\mathfrak{D}(x, V)$.

Il en a été de même quant aux valeurs de w et de s. Après avoir calculé pour un certain nombre de valeurs de V_0 les valeurs de w correspondant à une série de valeurs de z, ce qui donne une table à double entrée, on a calculé la série des valeurs de z' qui donnaient F'(z') = F(z), et on les a inscrites en regard des valeurs de z; de cette façon, et pour chacune des valeurs de V_0 , en entrant dans la table par les valeurs de z, on a les valeurs exactes de w(z), on obtient une valeur qui n'est supérieure à s(x), que de la quantité

$$(1 + V_o) V_o \times 2 [F'(\frac{1}{2}z') - F(\frac{1}{2}z)];$$

de sorte que trouvant calculé pour chaque valeur en

regard de z et z' le double de la différence $F'(\frac{1}{2}z') - F(\frac{1}{2}z)$, et inscrit dans chaque colonne, sous le nom de correction négative, il n'y a plus qu'à multiplier dans chaque cas cette dernière quantité par la valeur de $(1 + V_0) V_0$, et retrancher ce produit de la valeur de (x, V) donnée par les tables. Cela a permis de réduire à moitié l'étendue des tables numériques.

$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} F\left(\frac{\alpha x}{c}\right),$$

$$\tan \varphi = \tan \varphi - \frac{x}{2h \cos^2 \varphi} F'\left(\frac{\alpha x}{c}\right),$$

$$t = \frac{x}{V \cos \varphi} F\left(\frac{\alpha x}{2c}\right) \quad \text{et} \quad v = \frac{V}{\frac{\alpha x}{2c}} \cdot \frac{\cos \varphi}{\cos \theta}.$$

A mesure que x devient plus petit, c'est-à-dire à mesure que l'on considère des arcs de moindre étendue, ou que c, qui croît avec le diamètre et la densité du projectile, est plus grand, les valeurs de $F\left(\frac{\alpha x}{c}\right)$, $F'\left(\frac{\alpha x}{c}\right)$, $F\left(\frac{\alpha x}{2c}\right)$ et $e^{\frac{\alpha x}{2c}}$

Voir les tables numériques X et XI, XII et XIII de ces fonctions.

rapprochent de l'unité; il en résulte que l'influence de la résistance de l'air, dont ces fonctions tiennent compte, va en diminuant de plus en plus, et que le mouvement se rapproche de ce qui aurait lieu dans le vide. Pour ce dernier cas il faudrait supposer $\rho = 0$, et par conséquent

$$\frac{1}{2c} = 0$$
, alors les fonctions $F\left(\frac{\alpha x}{c}\right)$, $F'\left(\frac{\alpha x}{c}\right)$, $F\left(\frac{\alpha x}{2c}\right)$ et $e^{\frac{\alpha x}{2c}}$ seraient toutes quatre égales à l'unité, et on retomberait sur les formules du mouvement dans le vide.

Ainsi, à mesure que l'on considère des arcs de moindre étendue ou des projectiles de plus fort calibre, ou de plus grande densité, l'arc de trajectoire dans l'air se rapproche de plus en plus de l'arc de la trajectoire dans le vide, c'est-à-dire d'un arc de parabole.

69. Tables des valeurs représentées par les caractéristiques F' et F. Les valeurs qui caractérisent l'effet de la résistance de l'air entrant dans toutes les applications numériques des lois du mouvement des projectiles, des tables de ces valeurs étaient indispensables; elles ont été calculées avec le degré de précision suffisant et nécessaire. (Voir à la fin de ce Traité.)

La table VII est celle des valeurs de e^z , z étant ici la valeur de $\frac{\alpha x}{c}$ que l'on aura à calculer à l'avance. Cette table donne les nombres dont les logarithmes hyperboliques sont 0,01, 0,02...., et croissant ainsi par 0,01 jusqu'à 3,00; quoi qu'on n'ait habituellement dans les applications à n'employer que quatre décimales, on a donné les trois décimales suivantes pour le cas où il serait nécessaire d'arriver à un degré d'approximation plus grand; mais on les a séparées par un intervalle blanc pour la facilité des calculs ordinaires.

La table VIII donne les valeurs de
$$F'(z) = \frac{e^z - 1}{z}$$
 pour

des valeurs de z, de 0,01 en 0,01 jusqu'à 2,40, avec sept décimales; on les déduit facilement des valeurs de e^z pourvu que celles-ci soient calculées avec assez de décimales!. On a séparé les trois dernières décimales par un intervalle blanc; les quatre premières suffisent pour les applications ordinaires à la balistique. On peut alors calculer les valeurs intermédiaires entre celles des tables par les parties proportionnelles aux différences.

La table IX donne les valeurs $F(z) = 2\frac{e^z-z-1}{z^2}$ ou $2\frac{F'(z)-1}{z}$ avec sept décimales, de 0,01 en 0,01 jusqu'à 0,30, et avec six décimales jusqu'à 2,40; les quatre premières suffisant dans les applications ordinaires à la balistique, on les a séparé par un intervalle blanc. Les valeurs intermédiaires à celles des tables s'obtiennent avec quatre décimales par les parties proportionnelles.

EXEMPLE. Calculer F(0,2117) avec quatre décimales. En remarquant que F(0,21) est 1,0738 et que la différence entre F(0,21) et F(0,22) est 0,0037, on aura

$$\mathbf{F}(0,2117) = 1,0738 + \frac{0,0017}{0,0100} \cdot 0,0037 = 1,0742.$$

On aurait pu de la même manière calculer F(z) avec cinq décimales. Pour avoir six décimales exactes, on devrait recourir aux différences secondes.

On sait qu'en général tant que les différences secondes ne surpassent pas huit unités du dernier ordre, on peut se contenter des parties proportionnelles sur les différences premières.

70. Table des valeurs représentées par les caractéris-

^{&#}x27;Cette table et la précédente m'ont été communiquées en 1853 par M. le capitaine d'artillerie Franchini; j'ai calculé la table suivante des valeurs de F(z).

tiques & et s, table X. Cette table à double entrée a été calculée avec quatre décimales pour toutes les valeurs de $\frac{\alpha x}{c}$ ou z inscrites dans le haut de la table de centième en centième, depuis 0,00 jusqu'à 1,50, et, de cinq en cinq centièmes de 1,50 jusqu'à 2,00; elle est calculée pour les valeurs de $\frac{\alpha V_1}{r}$ ou V_0 , de cinq centièmes en cinq centièmes, depuis 0,00 jusqu'à 1,30. Ces tables contiennent aussi les différences relatives à z et les différences relatives à V_0 , excepté pour les valeurs de z supérieures à 1,00.

Chacune des colonnes verticales de la table X contient les valeurs de $\mathfrak{G}(x, V)$ pour la valeur de z inscrite en tête et pour toutes celles de Vo qui sont dans la première colonne de chaque page. Ainsi, pour z=0.66 et $V_0=0.90$, c'est-à-dire pour $v_{\delta}(0.66; 0.90)$, on trouve dans la colonne verticale qui porte à l'entête, z = 0.66, et en descendant jusqu'à la ligne horizontale correspondant à $V_0 = 0.90$, on trouve, disons-nous, 1,5354. Lorsque la valeur de z est comprise entre deux de celles qui sont inscrites dans l'entête du tableau, ou que celle de Vo se trouve comprise entre celles de la première colonne verticale, ou que cela a lieu pour l'une et pour l'autre, on opérera par les parties proportionnelles. A cet effet, dans chaque colonne relative à une valeur de z et à la droite des valeurs de $\mathfrak{V}_0(x, V)$, sous l'entête D. V_0 , on a inscrit les différences entre les deux valeurs consécutives de $\mathfrak{V}_{\mathbf{S}}(x, V)$ correspondant à deux valeurs respectives de $V_{\mathbf{O}}$. Ces différences, pour une augmentation de 0,05 dans la valeur de Vo, sont à mi-hauteur entre les deux valeurs de $\mathfrak{B}(x,V)$.

Dans une seconde colonne à droite, sous l'indication D.z, on a inscrit les différences entre les valeurs A(x, V) voisines, relatives à la même valeur de V_0 et correspon-

dant à un accroissement de 0,01 dans la valeur de z. On prend sur chacune de ces différences une partie proportionnelle à l'excès de la valeur de z et à l'excès de la valeur de V_0 sur les valeurs inscrites dans la table, et on les ajoute à la valeur principale de $\mathfrak{G}(x,V)$ du tableau.

Exemple. Trouver la valeur de $\mathfrak{V}_{b}(x, V)$ pour z = 0.6627 et $V_{a} = 0.9379$.

En partant de z = 0.66 et $V_0 = 0.90$ auxquelles correspond 1,5354, et des différences D. $V_0 = 162$ et D. z = 102, on aura

$$\mathfrak{H}(0,6627; 0,9379) = 1,5354 + \frac{0,0027}{0,0100}0,0102 + \frac{0,0379}{0,0500}0,0162 = 1,5505.$$

Pour plus de commodité on peut disposer les calculs numériques de la manière suivante:

$$\mathfrak{S}(0.66; 0.90) = 1.5354$$

$$\frac{27}{100} 102 = 28$$

$$\frac{370}{300} 162 = 123$$

$$\mathfrak{S}(0.6627; 0.9379) = 1.5505$$

L'emploi d'une règle à calcul pour calculer les parties proportionnelles abrége beaucoup les opérations.

Lorsque z sera plus grand que 1,00, on aura à prendre les différences D. z et D. Vo que l'on n'a pas inscrites dans les tables dans la crainte de leur donner trop d'étendue.

Pour déterminer les valeurs de s(x, V) dans laquelle on représente $\frac{ax}{c}$ par z', on entre dans la table par les valeurs de z' qui sont au pied des colonnes; les différences relatives à z' sont à la droite des valeurs de z' et indiquées par l'abréviation Dif.

Ces différences ne sont pas, comme pour les valeurs de $\mathfrak{A}(x, V)$, égales à une quantité constante, choisie arbi-

trairement et qu'on a prise égale à 0.01; elles résultent au contraire de celles-ci et vont en augmentant avec z. Les valeurs de V_0 et les différences restent les mêmes. Au-dessous est le coefficient indiqué par le nom correction; il doit être multiplié par le produit V_0 ($1 + V_0$) pour la valeur que l'on considère, et le produit doit être retranché du résultat des autres opérations.

EXEMPLE. Soit à trouver la valeur de $\mathfrak{z}(x,V)$ pour $\frac{\alpha x}{c}$ ou z'=0.6627 et $V_o=0.9579$. Pour z'=0.6574 qui est dans les tables et qui est inférieur à la valeur proposée de 0.0043 et pour $V_o=0.90$. on aura (dans la même colonne que z=0.96) $\mathfrak{z}(x,V)=1.8758$ et la différence avec la valeur immédiatement supérieure à z' est 125. La quantité à ajouter au nombre de la table sera donc $\frac{0.0043}{0.0070}0.0125$; la différence relative à V_o sera calculée comme ci-dessus, et en observant que le coefficient de correction est 0.0055, on aura

$$\mathbf{3}(0,6627; 0,9379) = 1,8758 + \frac{0,0043}{0,0070}.0,0125 + \frac{0,0379}{0.0500}0,0281 - 0,0055.0,9379.1,9379 = 1,8966.$$

Pour la facilité des opérations numériques, on disposera le calcul comme il l'est ci-après, en considérant comme unités les décimales du quatrième ordre :

Cette manière d'opérer par parties proportionnelles sur plusieurs différences peut donner une erreur de deux unités du dernier ordre, ce qui est sans inconvénient notable pour les applications ordinaires de la balistique.

Chacune des colonnes verticales correspond à une valeur de z inscrite en tête. En face de chaque valeur de V_0 se trouve la valeur de $v_0(x, V)$ correspondante. On opère d'ailleurs comme on l'a indiqué (70) pour la valeur de $v_0(x, V)$, en remarquant toutefois que l'intervalle relativement à z est double, et que la différence relative à v_0 est constante et écrite une fois pour la colonne et au bas, ce qui simplifie les tables; elle est désignée par Dif.

Soit pour exemple à trouver la valeur de $\mathfrak{O}(x, V)$ pour z = 0.3254 et $V_0 = 0.9570$, on aura

$$\mathfrak{O}(0,3254; 0,9370) = 1,3297 + \frac{0,0054}{0,0200} \cdot 0,0224 + \frac{0,0370}{0,0500} \cdot 0,0087 = 1,3422.$$

Pour plus de commodité, l'opération peut être disposée comme ci-après :

$$\begin{array}{ccc} \circ (0.5200, 0.9000) & = 1.3297 \\ & \frac{54}{200} 224 & = 61 \\ & \frac{570}{500} 87 = 64 \\ \hline \circ (0.3254, 0.9370) & = 1.3422 \end{array}$$

Pour trouver les valeurs de $\mathfrak{D}(x, V)$, on entre dans la même table XI par les valeurs de $z' = \frac{\alpha x}{c}$ inscrites au pied des colonnes verticales; les différencès entre les valeurs consécutives sont inscrites à droite, sur la même ligne, et désignées par la caractéristique d. Il n'y a pas de correction à apporter au résultat comme pour les valeurs de $\mathfrak{s}(x, V)$.

EXEMPLE. Soit à trouver la valeur de $\mathfrak{Q}(x, V)$ pour $\frac{\alpha x}{c}$ ou z' = 0.5254 et $V_o = 0.9570$. On remarquera que la valeur de z', des tables, inférieure à la quantité donnée, est 0.3158; la différence avec la suivante est 388; la différence relative à V_o étant 42, on aura

$$\mathfrak{O}(0,3254; 0.9370) = 0.1582 + \frac{9.6}{3.88}207 + \frac{3.70}{5.00}42 = 0.1664.$$

Pour plus de facilité, on disposera l'opération comme ci-dessous :

72. Tables à trois décimales pour les valeurs de \mathfrak{A} , \mathfrak{S} , \mathfrak{O} et \mathfrak{D} . Outre ces deux tables à quatre décimales (art. 70 et 71), on en a établi deux autres à trois décimales seulement, et variant, pour la valeur de z, par intervalle cinq fois plus grands, c'est-à-dire de 0,05 en 0,05 pour les valeurs de $\mathfrak{A}(x, V)$, table XII, et de 0,10 en 0,10 pour les valeurs de $\mathfrak{D}(x, V)$, table XIII. Elles ne contiennent pas les différences relatives à z ni à V_0 , ce qui force à les déterminer pour chaque opération, mais elles offrent l'ensemble des valeurs sur une seule page. A cela près, on opère comme pour les tables X et XI.

Il en est de même pour le calcul des valeurs de $\mathfrak{D}(x, V)$ et celles de $\mathfrak{D}(x, V)$ pour lequel on entre dans la table par le pied des colonnes verticales. La correction pour les premières s'opère de la même manière que pour la table X.

73. Propriétés générales du mouvement des projectiles dans l'air. Nous allons exposer plusieurs propriétés du mouvement des projectiles que l'on peut démontrer sans être arrivé à l'équation finie de la trajectoire dans l'air.

Vitesse. A mesure que le projectile s'élève dans la branche ascendante, la vitesse diminue tant par l'effet de la pesanteur que par celui de la résistance de l'air. Durant les premiers instants après le passage au sommet de la trajectoire, la vitesse va encore en décroissant par l'effet de la résistance de l'air; mais peu après la pesanteur commence à agir sensiblement pour contrebalancer cette cause de diminution. Son effet augmente avec l'inclinaison de la direction du mouvement, de sorte qu'à une certaine distance du sommet, il compense celui de la résistance de l'air; la vitesse est alors au minimum. Au delà, la vitesse augmente par la prépondérance de l'effet de la pesanteur qui agit suivant une direction de plus en plus rapprochée de celle du mouvement du mobile; mais la vitesse n'augmente pas indéfiniment, parce que l'effet de la composante de la pesanteur suivant la direction du mouvement, a pour limite le poids du mobile. La vitesse de celui-ci ne pourra par conséquent pas dépasser celle pour laquelle la résistance serait égale au poids du corps dans l'air. Cette vitesse sera donc donnée (56) par l'équation

$$P\left(1-\frac{\delta}{D}\right) = A \pi R^2 v^2 \left(1+\frac{v}{r}\right) \quad \text{ou} \quad 2gc\left(1-\frac{\delta}{D}\right) = v^2 \left(1+\frac{v}{r}\right),$$

ou plus simplement, en négligeant la densité de l'air devant celle du projectile, par l'équation

$$2gc = v^2 \left(1 + \frac{v}{r}\right).$$

On voit par là que la limite de la vitesse sera d'autant plus grande que c qui est égal à $\frac{P}{2gA\varpi R^3}$ ou à $\frac{2}{3}\frac{RD}{Ag}$, vu que $P=\frac{4}{3}\pi R^3D$, sera lui-même plus grand, ou que le projectile sera d'un plus grand diamètre et d'une plus grande densité, comme on l'a déjà vu (art. 56).

Ce que l'on vient de dire relativement au minimum de la vitesse se déduit aussi de l'équation du mouvement. En partant de l'équation d'un arc de trajectoire pour lequel on connaît la vitesse initiale V et l'angle de projection φ , la vitesse en un point quelconque aura pour expression (65, éq. 12 et 13)

$$v = \frac{V}{\left(1 + \frac{\alpha V_1}{r}\right)e^{\frac{\alpha x}{2c}} - \frac{\alpha V_1}{r}} \cdot \frac{\cos \vartheta}{\cos \vartheta}.$$

On voit qu'à mesure que le projectile s'élève dans la branche ascendante, x augmente ainsi que $\cos\theta$ et par conséquent que le dénominateur de la valeur de v augmente et que la vitesse diminue. Mais, au delà du sommet, $\cos\theta$ va en diminuant quand x augmente, et il y a par conséquent un point où l'effet de l'accroissement de x compense l'effet de diminution de $\cos\theta$ et que la vitesse est au minimum. Pour déterminer l'abscisse de ce point, on substituerait dans $\frac{1}{\cos\theta}$, ou dans son égale $\sqrt{1+p^2}$, la valeur de p déduite de l'inclinaison de la trajectoire (64, éq. 8). On différencierait par rapport à x et on égalerait le résultat à zéro; mais l'expression qui en résulterait serait trop compliquée pour qu'il soit utile de la rechercher ici.

74. Asymptote. Dans la branche ascendante la vitesse allant en diminuant, par les deux effets réunis de la résistance de l'air et de la pesanteur, à mesure que le projectile s'approche du sommet, il s'ensuit que si l'on considère la trajectoire en deçà du point de départ, la vitesse doit au contraire aller en augmentant indéfiniment à mesure qu'on s'éloigne du sommet; mais l'inclinaison n'augmentera pas de la même manière.

On fait voir en effet (sect. V) que lorsque l'on suppose la résistance de l'air proportionnelle au carré de la vitesse, la branche ascendante a une asymptote dont on peut déterminer facilement l'inclinaison; de plus, cette asymptote s'écarte d'autant plus de la verticale que le coefficient de la résistance de l'air est plus grand. On comprend donc, que lorsque la résistance contiendra un second terme proportionnel au cube de la vitesse, il y aura aussi une asymptote et que celle-ci s'éloignera de la verticale plus que dans le cas précédent.

On fait voir aussi que dans cette même hypothèse la branche descendante a une asymptote verticale qui se trouve à une distance horizontale finie du sommet. Il est facile de voir aussi que quand la résistance de l'air sera augmentée par un terme proportionnel au cube de la vitesse, la direction du mouvement se rapprochera plus rapidement de la verticale, et qu'il y aura aussi une asymptote à une distance finie du sommet; et que de plus cette distance sera moindre que dans le premier cas.

75. Rayon de courbure. L'expression du rayon de courbure est, en regardant dx comme constant,

$$\gamma = -\frac{(1+p^2)^{\frac{3}{2}}}{\frac{dp}{dx}}.$$

Or, la valeur de p ou de tangé en un point quelconque

d'un arc de trajectoire et celle de $\frac{dp}{dx}$ qui ont été données (art. 62, éq. 6 et 64, éq. 8), étant substituées dans la valeur de y on aura en un point dont l'abscisse est x

$$\gamma = \frac{\left[1 + \left(\tan g + \frac{x 5(x, V)}{2h \cos^2 \phi}\right)^2\right]^{\frac{3}{2}}}{\frac{g}{V_i^2} [\mathfrak{O}(x, V)]^2}.$$

Ce rayon de courbure appartient à un arc qui diffère un peu de la véritable trajectoire en ce que, dans l'expression de la résistance de l'air, on a remplacé le rapport variable $\frac{ds}{dx}$ par le rapport moyen $\frac{s}{x}$ ou α . Mais, si on suppose l'arc extrêmement petit, auquel cas α devra être remplacé par $\frac{1}{\cos \varphi}$, les deux arcs se confondront, et, au point de départ, pour lequel on a x=0, $\varpi(x, V)=1$, s(x, V)=1, on aura simplement

$$\gamma = (1 + \tan^2 \phi)^{\frac{5}{2}} \cdot \frac{V_1^2}{g} = 2h(1 + \tan^2 \phi)^{\frac{1}{2}} = \frac{2h}{\cos \phi}$$

Ce rayon est donc indépendant de la résistance de l'air; il ne dépend que de la vitesse et de l'inclinaison au point donné et appartient aussi à la parabole qui est ainsi osculatrice à la véritable trajectoire.

Du côté de la branche descendante où la vitesse va en croissant jusqu'à devenir infinie, le rayon de courbure, proportionnel à h, serait infini, ce qui est la propriété de l'asymptote; du côté de la branche descendante, où φ va en augmentant jusqu'à devenir un angle droit, tang φ devient infini, φ est donc infini aussi. Entre ces deux limites il doit y avoir un point où le rayon de courbure est un minimum. Pour connaître ce point, il faudrait considérer

l'arc qui comprend la portion voisine du sommet et pour le quel φ et V devraient être déterminées, prendre la différentielle par rapport à x et l'égaler à zéro, on aurait ainsi une relation qui servirait à déterminer x. Mais cette expression serait très-compliquée; d'ailleurs la valeur de φ étant petite, l'arc de trajectoire approché s'écarterait très-peu de la trajectoire exacte; il en serait de même du point cherché'.

Après ces considérations sur les propriétés générales des trajectoires, nous allons nous occuper de leur détermination, des relations entre les portées, les angles et les vitesses de projection, et des propriétés de ces trajectoires directement applicables au tir des bouches à feu ou des armes à feu.

76. Rapport d'un arc à sa projection. Dans l'équation que nous avons obtenue pour représenter un arc de la trajectoire, est entré le rapport α de l'arc à sa projection, pour remplacer dans l'expression de la résistance de l'air, le rapport moyen de ds à dx; cherchons ce rapport.

Considérons un arc AM commençant sous l'inclinaison φ et se terminant sous l'angle φ' (Fig. 15). Comparons-le à un arc Am de parabole ou de trajectoire dans le vide, commençant sous le même angle φ et finissant sous des angles égaux à φ' . Choisissons sur l'un et sur l'autre des points rapprochés B, C, D... b, c, d... où les inclinaisons soient respectivement égales entre elles, nous aurons ainsi décomposé les deux arcs en éléments AB, BC, CD... ab, bc, cd... commençant et finissant respectivement sous les mêmes inclinaisons et ayant respectivement la même inclinaison moyenne. Le rapport entre deux petits arcs cor-

Nous indiquerons plus loin (sect. VI) un tracé de la trajectoire qui donnera le minimum de la vitesse et le minimum du rayon de courbure.

respondants tels que DE, de et leurs projections DE', de' sera sensiblement le même. A l'origine, les arcs élémentaires de la parabole et de la trajectoire auront des longueurs égales; à l'autre extrémité, les arcs de parabole auront un peu plus d'étendue; mais la différence sera très-faible et d'autant plus faible que la résistance de l'air se fera moins sentir. Les rapports entre les arcs élémentaires et leurs projections, étant respectivement les mêmes, il y aura aussi à très-peu près égalité entre les sommes de ces éléments ou entre les arcs AM, Am et leurs projections AM', Am'. Cherchons ce rapport dans la parabole.

L'équation de la parabole et celle de l'inclinaison en un point quelconque étant

$$y = x \tan \varphi - \frac{x^3}{4h \cos^2 \varphi}$$
 et $p = \frac{dy}{dx} = \tan \varphi - \frac{x}{2h \cos^3 \varphi}$

la longueur d'un arc s sera

$$s = \int ds = \int dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2},$$

d'où, en observant que $dp = -\frac{dx}{2h\cos^2\varphi}$, on aura

$$s = 2h\cos^2\varphi \int \sqrt{1+p^2} \times dp.$$

En intégrant cette quantité, on trouvera par les procédés connus

$$\int dp \sqrt{1+p^2} = \frac{1}{2} \left[p \sqrt{1+p^2} + \log(p + \sqrt{1+p^2}) \right] + \text{const.}^{-1}$$

· En remarquant que

$$\log(\sqrt{1+p^2}-p) = \log\frac{(\sqrt{1+p^2}-p)(\sqrt{1+p^2}+p)}{\sqrt{1+p^2}+p}$$

$$= \log\frac{1}{\sqrt{1+p^2}+p} = -\log(\sqrt{1+p^2}+p),$$

Cette expression peut prendre une autre forme, en remarquant que $p=\tan\theta$, que $\sqrt{1+p^2}=\sec\theta=\frac{1}{\cos\theta}$, enfin que $p+\sqrt{1+p^2}=\tan\theta+\sec\theta=\frac{\sin\theta+1}{\cos\theta}$ = $\tan(45^0+\frac{1}{2}\theta)$. On aura ainsi en prenant l'intégrale de façon qu'elle soit nulle pour p=0, c'est-à-dire en comptant l'arc à partir du sommet,

$$\int dp \sqrt{1+p^2} = \frac{1}{2} \left(\frac{\sin \theta}{\cos^2 \theta} + \log \frac{\sin \theta + 1}{\cos \theta} \right)$$
$$= \frac{1}{2} \left[\tan \theta \sec \theta + \log \left(\tan \frac{45\theta}{2} + \frac{1}{2} \theta \right) \right].$$

Désignant par la caractéristique ξ cette fonction de θ , c'est-à-dire écrivant $\frac{1}{2} \left(\frac{\sin \theta}{\cos^2 \theta} + \log \frac{\sin \theta + 1}{\cos \theta} \right) = \xi(\theta)$; il en résultera que la longueur d'un arc compris entre les points où les inclinaisons sont respectivement ϕ et θ sera

$$s = 2h\cos^2 \mathfrak{q}[\xi(\mathfrak{q}) - \xi(\theta)],$$

et pour le rapport cherché de s à x, observant que d'après

on reconnaîtra que quand p change de signe la valeur de $\int dx \sqrt{1+p^2}$ reste la même, au signe près.

' En général
$$\frac{\sin b + \sin a}{\sin b - \sin a} = \frac{\tan \frac{1}{2}(b+a)}{\tan \frac{1}{2}(b-a)}$$
, et si $b = 90^{\circ}$ on aura $\frac{1 + \sin a}{1 - \sin a} = \frac{\tan \frac{45^{\circ} + \frac{1}{2}a}{\tan \frac{45^{\circ} + \frac{1}{2}a}{2}}}{\tan \frac{45^{\circ} + \frac{1}{2}a}{\tan \frac{45^{\circ} + \frac{1}{2}a}{2}}} = \tan \frac{45^{\circ} + \frac{1}{2}a}{\tan \frac{45^{\circ} + \frac{1}{2}a}{2}} = \frac{1 + \sin a}{\sqrt{1 - \sin^2 a}} = \frac{\sqrt{1 + \sin a}}{\sqrt{1 - \sin a}};$ donc $\frac{1 + \sin a}{\cos a} = \tan \frac{45^{\circ} + \frac{1}{2}a}{2}$.

l'équation de la parabole $x = (\tan \varphi - \tan \theta) 2h \cos^2 \varphi$, on aura

$$\alpha = \frac{s}{x} = \frac{\xi(q) - \xi(\theta)}{\tan q \varphi - \tan q \theta}.$$

On trouvera de la même manière

$$\frac{s}{y} = \frac{\xi(\tau) - \xi(\theta)}{\frac{1}{2}(\tan \theta^2 \phi - \tan \theta^2 \theta)} = \frac{\frac{s}{x}}{\frac{1}{2}(\tan \theta + \tan \theta)}.$$

Lorsque l'on considère un arc compris entre le point de départ et le sommet, il faut faire $\theta = 0$, ce qui donne $\xi(\theta) = 0$ et l'on a simplement

$$\frac{s}{x} = \frac{\xi(\varphi)}{\tan \varphi}$$

qui se réduit à

$$\alpha_0 = \frac{1}{2} \operatorname{s\acute{e}c} \varphi + \frac{1}{2} \cot \varphi \log (45^\circ + \frac{1}{2} \varphi)^{\mathsf{T}}.$$

77. Choix des points de division d'une trajectoire en plusieurs parties. Si l'on examine les valeurs de α , on verra que quand les angles sont très-petits comme de 0° à 5° , le rapport de l'arc à sa projection ne dépasse l'unité que de $\frac{1}{770}$ environ, que pour un arc de 10° à 0° , l'arc ne surpasse sa projection que de $\frac{1}{200}$ environ, et qu'ensin pour des angles de 15° , limite des angles de tir des canons et des obusiers, l'arc ne surpasse sa projection que de $\frac{1}{15}$ environ.

On a déjà fait remarquer que le rapport variable $\frac{ds}{dx}$ n'est remplacé par sa valeur moyenne $\frac{s}{x}$ que dans les

^{&#}x27; Voir aux tables les valeurs numériques de $\xi(\varphi)$, de α_0 et de α .

termes qui tiennent compte de la résistance de l'air, puisqu'il n'y entre que comme diviseur de c et comme diviseur de r. L'erreur que l'on commet par cette substitution ne peut donc affecter que l'influence attribuée au milieu résistant; elle est du même genre que toutes les causes qui font varier la résistance de l'air, telle que sa densité: sous ce rapport, on peut voir que même en négligeant entièrement la valeur de α dans le tir sous l'angle de 15° , c'est comme si c était augmenté de $\frac{1}{85}$ de sa valeur ou si la pression barométrique de l'air était réduite dans une semblable proportion, c'est-à-dire de 8 à 9 millimètres de hauteur de mercure; c'est une quantité qu'on néglige habituellement dans les applications.

On ne pourrait plus négliger la valeur de l'inclinaison de la trajectoire dans les arcs plus grands; mais il est permis comme nous l'avons fait, de remplacer la valeur variable de $\frac{ds}{dx}$ par sa valeur moyenne $\frac{s}{x}$ prise sur l'arc entier.

Pour faire apprécier l'étendue des erreurs que l'on peut commettre, comparons cette moyenne aux valeurs extrêmes sur des arcs de différentes grandeurs et de différentes inclinaisons, en remarquant qu'aux extrémités de ces arcs le rapport $\frac{ds}{dx}$ n'est autre que la sécante trigonométrique de l'angle sous lequel il se termine.

Cette comparaison est établie dans le tableau suivant pour des arcs de 5° en 5°; pour des arcs de 10° en 10°; pour des arcs de 15° en 15°; pour des arcs entiers à partir du sommet et dont l'étendue varie par 5°.

Tableau du rapport des arcs s de parabole à leurs projections x, comparé aux valeurs $\frac{ds}{dx}$ ou sécantes des inclinaisons aux extrémités de ces arcs.

ETENDUE DES ARCS.	ARCS.	sécantes trigono-	RAPPORT des arcs à leurs	moyen aux val ^{rs} extrê ^{rs} ds/dx		ÉTENDUE des arcs	RAPPORT des arcs à leurs	moyen aux val ^{r2} extrê ^{c2}		
ÉTENDU		métriques	projec- tions.	en moins	en plus,	depuis 0°	projec- tions.	en moins	en plus	
	deg / 60	2,0000	3.5			deg				
	55	1,7454	1,8699 1,6485	1 1 5 1 8	1 4 1 7	60	1,3802	3 10	2 5	
1	50 45	1,5557	1,4837	1 2 2	1 20	55	1,2758	1.	1	
'n	40 35	1,3054 1,2208	1,3589 1,2623	1 25 1 31	1 2 4 4 2 9	50	1,2019	1 4	1/5	
5 degrés.	50 25	0 1,1547	1,1547	1,1870 1,1283	1 56 44	35 1 42	45	1,1478	2	17
5	20	1,1034 1,0641	1,0831 1,0491	1 54 1 70	1 53 1 76	40	1,1073	1/7	1 9	
	15 10	1,0355 1,0154	1,0247	# 8	1 109	35	1,0760	1 9	1 5	
	5	1,0038	1,0090 1,0013	1 159	193 788	30	1,0531	1/2	1 9	
1	60	2,0000	1,7730	1.9	17	25	1,0351	1 6	1 28	
és.	50 40	1,5557 1,5054	1,4270 1,2269 1,1066	1 2	11	20	1,0217	1 25	1 4 8	
10 degrés.	30 20	1,1547 1,0641		1 24	1 1 6 1 2 5	15	1,0118	1.4	85	
-	10	1,0154	1,0372 1,0051	1 1 100	1 1 196	10	1,0052	100	1 9 6	
	60	2,0000	1,6973		1	5	1,0013	1 4 0 2	788	
15 degrés.	45 30	1,4142	1,0973 1,2772 1,0887	1 7 1 1 1 1 8	1 5 1 10 19	0	1,0008	D	3	
15	15	1,0553	1.0118	1	t 85					

D'après l'inspection des nombres contenus dans le tableau qui précède, on reconnaît que pour des arcs d'un même nombre de degrés, la valeur moyenne de $\frac{ds}{dx}$ diffère d'autant moins des valeurs extrêmes, que l'inclinaison audessus de l'horizontale est plus petite; et, par conséquent, pour que les différences soient égales, les arcs doivent avoir d'autant moins d'étendue qu'ils s'écartent davantage de l'horizontale; ainsi, cette différence est de 4 pour les arcs de 0º à 20º, de 20º à 30º ou de 40º à 45º; elle est de $\frac{1}{17}$ environ pour les arcs de 0° à 25°, pour ceux de 15° à 30°, de 30° à 40° ou de 50° à 55°; elle est de $\frac{1}{10}$ au plus pour les angles de 0° à 30°, de 30° à 45° ou de 55° à 60°; elle n'est encore que de \frac{1}{6} environ pour l'arc de 0° à 45°. Ces quantités sont les différences les plus grandes et elles se rapportent aux extrémités des arcs; mais, comme vers le milieu de chaque arc la différence est nulle, il s'ensuit que la différence entre $\frac{s}{x}$ et $\frac{ds}{dx}$ n'est moyennement que la moitié des fractions que nous avons indiquées. Si l'on remarque de plus, que la différence entre $\frac{ds}{dx}$ et sa valeur moyenne est d'abord en moins et ensuite en plus, on verra qu'on prend au commencement une résistance trop faible et à la fin une résistance trop forte, et qu'on altère l'arc d'abord dans un sens puis dans l'autre; mais, comme la moyenne des valeurs de $\frac{ds}{dx}$ est égale à $\frac{s}{x}$, il en résulte que les erreurs partielles se compensent à peu de chose près sur l'arc tout entier tant qu'on reste dans de certaines limites. Cependant, comme à la partie inférieure des arcs dans la branche ascendante la vitesse est plus grande qu'à la partie supérieure, c'est comme si l'on prenait la résistance trop faible; la même chose se présentant dans la branche descendante, il s'ensuit qu'en réalité les portées calculées seront un peu trop grandes; on diminue la différence en multipliant les divisions.

On remarquera aussi que le rapport de s à x dans la portion qui comprend l'angle 0° est commune à la branche ascendante et à la branche descendante, de sorte qu'il s'étend à un nombre de degrés double de celui qui est indiqué par les inclinaisons aux extrémités.

Lorsque les vitesses initiales ne seront pas considérables, et que les projectiles seront de fort calibre et de grande densité, comme dans le tir ordinaire des bombes, où l'angle de projection ne dépasse pas habituellement 45°. ni les portées 1000 à 1200 mètres, l'influence de la résistance de l'air sera assez faible pour qu'on puisse embrasser toute la trajectoire dans une seule formule, en prenant (table V, 2º partie) la valeur de a qui convient; dans ce cas, la plus grande différence entre la valeur variable de $\frac{ds}{dx}$ et leur valeur moyenne est $\frac{2}{11}$ en moins au commencement ou à la fin du trajet, 1/2 vers le sommet de la trajectoire et moyennement 1/17, d'abord dans un sens et ensuite dans l'autre. La simplification ayant pour effet de rendre la résistance trop faible au point de départ et vers le point de chute, et trop forte au sommet, il en résultera une trajectoire qui passera au-dessus de la véritable à partir du point de départ; elle s'en rapprochera dans la branche descendante, de façon que vers le point de chute il n'y aura qu'une faible différence.

78. Valeur de la projection d'un arc en fonction des inclinaisons extrêmes. Pour déterminer une trajectoire lorsqu'on connaît la vitesse V et l'inclinaison φ au point de départ, on la divisera en plusieurs arcs limités aux points où l'inclinaison est donnée (77); on en déduira immédiatement la valeur du rapport α (table V). La pro-

jection x de cet arc sera déterminée par la relation

$$\frac{x}{2h\cos^2 \varphi}\mathfrak{J}(x,\mathbf{V}) = \tan \varphi - \tan \theta.$$

Mais x se trouvant en exponentielle en même temps qu'à la première puissance dans la valeur s(x, V), on ne peut l'exprimer en quantités finies; on l'aura par approximation, en mettant l'équation sous cette forme

(1)
$$\frac{\alpha x}{c} \mathfrak{Z}(x, \mathbf{V}) = (\tan \varphi - \tan \theta) \frac{\alpha}{c} 2h \cos^2 \varphi = p.$$

Connaissant α d'après les angles φ et θ , et h d'après V, on déterminera la valeur numérique du second membre, qui, à l'exception du facteur $\frac{\alpha}{c}$, n'est autre que la valeur qu'on aurait pour x dans le vide. Ayant déterminé $\frac{\alpha V_1}{r}$, on pourra prendre plusieurs valeurs successives de $\frac{\alpha x}{c}$, et l'on déduira pour chacune d'elles, au moyen de la table X, la valeur correspondante de s(x,V); on fera leur produit, et, lorsqu'on aura deux produits rapprochés qui comprendront les valeurs du second membre, la valeur de $\frac{\alpha x}{c}$ s'obtiendra, avec le degré d'approximation nécessaire, par les parties proportionnelles entre les différences.

La table XIV donne les produits de $\frac{\alpha x}{c}s(x, V)$ tout formés pour des valeurs de $\frac{\alpha x}{c}=z$, croissant par 0,01 jusqu'à 0,40, et pour celles de $\frac{\alpha V_1}{r}=V_0$ croissant par 0,05 jusqu'à 0,50.

Connaissant V₀, on cherchera dans la ligue horizontale qui s'y rapporte, le nombre correspondant à la valeur de

p, et on trouvera en tête la valeur de z cherchée. Ainsi, pour $V_0 = 0.20$ et p = 0.2386, on trouvera que p étant dans la colonne z = 0.21, la valeur cherchée est z = 0.21.

La valeur de V₀, ni celle de p, n'étant en général exactement dans la table, on calculera la valeur de z par les parties proportionnelles. Pour cela, on partira du nombre des tables correspondant aux valeurs de z et de V₀ les plus voisines, mais plus petites, et des différences avec les nombres voisins sur la ligne horizontale et dans la colonne verticale (différences qu'on n'a pas inscrites afin d'évite. la trop grande étendue des tables et qu'il faudra calculer chaque fois). Un exemple rendra l'application facile.

APPLICATION. On se propose de déterminer l'arc compris entre 45° et 30° de la trajectoire d'une bombe de $27^{\rm cm}$ ayant à l'origine une vitesse initiale de $120^{\rm m:s}$. On aura V = $120^{\rm m:s}$ et de là $h=734^{\rm m}0$, $\varphi=45^{\circ}$. $\theta=30^{\circ}$; tang $\varphi={\rm tang}\theta=1.0000$ — 0.5774=0.4226; d'après la table V, entre 45° et 30° , on a $\alpha=1.2772$; on a aussi $\cos\varphi=0.7071$. $\cos^2\varphi=0.5$; et si, comme à l'article 56, l'on prend $2R=0^{\rm m}2711$, $P=50^{\rm k}60$, on aura e=1655.0; en aura aussi $\frac{1}{r}=0.0023$ ou $V=434^{\rm m}77$.

D'après cela, on aura

$$p = 0,4226.\frac{1,2772}{1655,0}.2.734.0,5 = 0,2393;$$

on aura d'ailleurs

$$V_0 = \frac{1,2772.120.0,7071}{434,77} = 0,2482.$$

Or, dans la table XIV, on voit que dans la ligne horizontale $V_o = 0.20$, la valeur la plus voisine de p, mais plus petite, est 0.2386 et qu'elle est dans la colonne z = 0.21; appelons Δ la partie proportionnelle cherchée qu'il faut ajouter à 0.21 pour avoir, avec $V_o = 0.2482$, la valeur de p donnée; on aura, en ajoutant à 0.2386 les parties proportionnelles aux différences

relatives à z et à V_o , et qui sont respectivement 0,0129 et 0,0013; on aura, disons-nous,

$$0,2392 = 0,2386 + \Delta \frac{0,0129}{100} + 482 \frac{0,0013}{500}$$

d'où l'on tire

$$\Delta = \frac{0,2392 - 0,2386 - 0,0013}{1,29} = -0,0005;$$

ce qui donnera, pour la valeur cherchée,

$$z = 0.2100 - 0.0005 = 0.2095.$$

La valeur négative de Δ montre que la valeur de z, qui, à première vue, paraît devoir être comprise entre 0,21 et 0,22, est effectivement comprise entre 0,20 et 0,21.

Pour plus de commodité, on dispose l'opération comme ciaprès, où le nombre marqué d'un astérisque est calculé, comme si l'on vérifiait l'addition.

d'où
$$\Delta = -\frac{7}{1,29} = -5$$
 et de là $z = 0.2095$.

Si l'on eût opéré entre les valeurs z = 0.20 et z = 0.21. l'opération eût été comme ci-après :

Nombre proposé. 0,2392

$$0.20.5(0.20; 0.20) = 0.2258$$

 $\Delta_{\frac{12.8}{100}} = + 123^*$
 $482_{\frac{11}{500}} = + 11$
Somme égale. . . . 0,2292

et de là

$$\Delta = \frac{100}{1.28} \cdot 0.0123 = 0.0096$$
 et $z = 0.2096$;

ce résultat et le précédent ne diffèrent que par suite de décimales négligées ou forcées.

De la valeur z ou $\frac{\alpha x}{c} = 0,2095$, on tire

$$x = \frac{0,2095}{1,2772}1655 = 271 \text{ m}2;$$

c'est la projection horizontale de l'arc compris entre les deux points où l'inclinaison de la trajectoire est respectivement 45° et 30°.

Dans le vide, un arc de parabole entre les mêmes limites serait 310m.

79. Calcul des arcs. Maintenant, on va montrer comment on devra se servir des diverses formules pour résoudre le problème de la trajectoire dans une application donnée. Nous le prenons d'abord dans toute sa généralité, cas où il présente le plus de difficultés.

Supposons qu'on connaisse l'angle de projection φ (Fig. 16) et la vitesse initiale V, dont est animé un projectile de diamètre et de poids connus, pour lequel on connaît ainsi la valeur de c (table VI). Si la valeur de φ est de 45°, par exemple, et que l'on veuille obtenir une grande précision, on divisera la trajectoire en trois arcs; on les choisira ainsi : le premier de 45° à 30°, de la branche ascendante; le second de 30° de la branche ascendante, jusqu'à 30° de la branche descendante; le troisième de 30° à 45°, et au point de chute. On opérera ensuite de la manière suivante:

1º On déterminera les valeurs de a (tab. V, 3º partie) qui seront pour le premier et pour le troisième arc

$$\alpha' = \frac{\xi(45^{\circ}) - \xi(30^{\circ})}{\tan 45^{\circ} - \tan 30^{\circ}} = 1,2772,$$

et pour le deuxième

$$\alpha'' = \frac{\xi(30^{\circ})}{\tan 30^{\circ}} = 1,0531;$$

2º Dans l'équation (art. 78, éq. 1)

$$\frac{\alpha x}{c} \mathfrak{Z}(x, \mathbf{V}) = (\tan \varphi - \tan \varphi) \frac{\alpha}{c} 2h \cos^2 \varphi = p,$$

on fera $\phi = 45^{\circ}$, $\theta = 30^{\circ}$, $V_{\cdot} = V\cos\phi$, $2h\cos^{\circ}\phi = \frac{V_{\cdot}^{2}}{g}$ et on déterminera la valeur de x qui satisfait à l'équation; ce sera l'abscisse x' du point extrême du premier arc;

3º Connaissant x' on déterminera la valeur y' de l'ordonnée du point m' au moyen de la formule

$$y' = x' \tan \varphi - \frac{x'^2}{4h \cos^2 \varphi} \Re(x, V);$$

 4° On aura la composante horizontale V', de la vitesse du projectile à l'extrémité m' de l'arc, au moyen de la formule

$$V_{i'} = \frac{V_{i}}{v(x',V)};$$

5º On aura la durée du trajet par la formule

$$t' = \frac{x'}{V_1} \otimes (x', V).$$

Le premier arc Am' est ainsi complétement déterminé. Pour déterminer le deuxième arc m'm'', on opérera absolument de la même manière, en faisant $\varphi=30^\circ$, $\theta=-30^\circ$ et en remplaçant V_1 par la valeur de V_1' qu'on vient de déterminer : on obtiendra ainsi, rapportées au point m', les coordonnées x'', y'' du point de la branche descendante de la trajectoire où l'inclinaison est $\varphi''=-30^\circ$. On en déduira ensuite la composante horizontale V_1'' de la vitesse, et la durée t''.

Pour déterminer le troisième arc m''m''', on fera $\phi = -30^{\circ}$ et $\theta = -45^{\circ}$ et au moyen de la valeur V'' on aura, de la même manière que précédemment, les coordonnées x''' et y''' du point de la branche descendante de la trajectoire où l'inclinaison est -45° (y''' sera négative). On déterminera aussi la valeur de V''' et la durée t'''.

Ce dernier point m''' sera toujours plus élevé que le point de départ, et si l'on veut obtenir le point de chute sur un plan KL (Fig. 16), situé à une certaine hauteur b au-dessus du point de départ, on devra encore faire une dernière opération.

80. L'élévation du dernier point au-dessus du plan de chute est égale à y' + y'' + y''' - b; cette quantité pourra être positive ou négative: si elle est négative, c'est que le point de chute est plus élevé que le dernier point m'''; il fait donc partie du dernier arc et il faudra faire y = y' + y'' - b dans l'équation $y = x \tan \varphi - \frac{x^2}{4h\cos^2\varphi} \Re(x, V)$ qui s'y rapporte et déterminer la valeur de x qui y satisfait. On déterminer x à l'aide de la table X des valeurs de $\Re(x, V)$ et au moyen des parties proportionnelles; pour plus de facilité on mettra l'expression de y sous la forme

(2)
$$\frac{c}{\alpha} \tan \varphi \cdot \frac{\alpha x}{c} - \frac{c^2}{4h\alpha^2 \cos^2 \varphi} \cdot \left(\frac{\alpha x}{c}\right)^2 \psi_b(x, V) = y,$$

et on essayera successivement plusieurs valeurs de $\frac{\alpha x}{c}$ prises dans les tables.

On peut, après avoir déterminé $v_0(x, V)$ pour la valeur connue de V et une valeur approchée de x ou de $\frac{\alpha x}{c}$, déterminer presque exactement la valeur de $\frac{\alpha x}{c}$ en résolvant

l'équation du deuxième degré relativement à cette variable. On trouvera par les formules précédentes les valeurs de v, θ et t qui y correspondent.

Si y' + y'' + y''' - b est positif, le point de chute sera situé en dehors du troisième arc; s'il doit être peu éloigné de m''', on le regardera comme sur le prolongement de ce troisième arc et on le calculera comme on vient de le dire; mais s'il devait en être très-éloigné, on estimerait approximativement l'angle de chute sur le plan d'après la différence entre les deux hauteurs. Soit φ'' cette valeur approchée, on déterminera la valeur de α''' , qui est $\alpha''' = \frac{\xi(\varphi'') - \xi(45\circ)}{\tan \varphi'' - \tan \varphi 45\circ}$ (tab. I et tab. V, 2° partie) et l'équation de ce nouvel arc sera

$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} \Re(x, V).$$

Dans cette Équation on fera $\varphi = \varphi'''$, $V_1 = V_1'''$, $2h\cos^2\varphi = \frac{V_1'''^2}{g}$. On déterminera la valeur de x en mettant l'équation sous la forme de la précédente (2).

On obtiendra aussi la valeur de x en série, ou au moins une première approximation, par le retour des suites, en faisant $\frac{4ah}{c} \sin \varphi \cos \varphi$ ou $\frac{2ah}{c} \sin 2\varphi = m$; on trouvera alors

(3)
$$x = \frac{y}{\tan \varphi} \left\{ 1 + \frac{y}{4h \sin^2 \varphi} + \left[2 + \frac{1}{3} \left(1 + \frac{\alpha V_{\perp}}{r} \right) \right] \frac{y^2}{(4h \sin^2 \varphi)^2} \right.$$

$$+ \left[5 + \frac{5}{3} m \left(1 + \frac{\alpha V_{\perp}}{r} \right) + \frac{m^2}{12} \left(1 + \frac{\alpha V_{\perp}}{r} \right) \left(1 + \frac{1}{2} \frac{\alpha V_{\perp}}{r} \right) \right] \frac{y^3}{(4h \sin^2 \varphi)^3}$$

$$+ \left[14 - 7m \left(1 + \frac{\alpha V_{\perp}}{r} \right) + \frac{m^2}{18} \left(1 + \frac{\alpha V_{\perp}}{r} \right)^2 \left(5 + \frac{3}{2} \frac{\alpha V_{\perp}}{r} \right) \right.$$

$$+ \frac{m^3}{60} \left(1 + \frac{\alpha V_{\perp}}{r} \right) \left(1 + \frac{3}{4} \frac{\alpha V_{\perp}}{r} \right) \right] \frac{y^4}{(4h \sin^2 \varphi)^4} + \text{etc.} \right\}.$$

Tant que y sera petit et h assez grand, les termes calculés

de cette série seront suffisants pour une approximation. On devra faire attention que dans le cas dont il s'agit y est négatif, de sorte que les termes où il entre à la première et à la troisième puissance sont négatifs; il en est de même quant à m lorsque, comme ici, φ est négatif.

Connaissant ainsi cette dernière valeur de x que nous désignerons par x^{v} , on aura comme précédemment la valeur de l'angle final de l'arc, lequel sera ici l'angle de chute; on aura aussi la vitesse finale et la durée t^{v} du parcours de l'arc; on aura enfin pour la portée totale

$$X = x' + x'' + x''' + x'''$$

et, pour la durée totale,

$$T = t' + t'' + t''' + t^{iv}$$
.

Tel est le problème de la trajectoire dans sa généralité; il se simplifie beaucoup dans les cas les plus ordinaires, comme on le verra plus loin.

APPLICATION. Nous donnons ici comme application numérique le résultat du calcul de la trajectoire de la bombe de 32^{cm} de la marine, tirée dans le mortier à plaque à grande charge, c'est-à-dire à 14^k de poudre. Les circonstances du tir sont les suivantes:

Angle de projection. $\varphi = 42^{\circ} 30'$; poids de la bombe. $P = 92^{k}$; diamètre. $2R = 0^{m} 5206$; vitesse initiale. $V = 420^{m}$:s; résistance de l'air. e' = 0.027 (1 + 0.0023 V); pesanteur. $g = 9^{m} 8088$; on en conclut $c = 2151^{m}$; $\frac{1}{c} = 0.0004648$. C'est une des trajectoires les plus étendues qu'on puisse avoir à considérer.

Un premier calcul a été fait en divisant la trajectoire en arcs de 5°, à partir de 40° jusqu'à — 65° au-dessous de l'horizontale, le premier arc étant seulement de 2° 30′.

^{&#}x27; Le calcul numérique a été fait par M. le capitaine d'artillerie Welter, adjoint au professeur du cours d'artillerie à l'École d'application de l'artillerie et du génie à Metz.

On a calculé, pour l'extrémité de chacun des arcs, le trajet horizontal x, l'élévation y, la vitesse v, la durée t, de ce trajet, et l'on a déterminé les mêmes quantités rapportées au point de départ; on a recherché ensuite ce qui se rapportait au point où le projecțile couperait le plan horizontal qui passerait par le point de départ; le point où l'inclinaison est zéro n'est autre que le sommet de la trajectoire et fournit la hauteur du jet.

On a repris le même calcul en considérant les arcs de 10° en 10°, à partir de 40°, et en les continuant de la même manière dans la branche descendante. On a ensuite calculé la trajectoire en considérant les arcs de 15° en 15°, puis de 25° en 25°.

Les résultats de ces calculs sont compris dans le tableau ci-après:

Trajectoire d'une bombe de 0^m32 de la marine, pour laquelle c = 2151^m, projetée sous l'angle de 42° 30′, avec une vitesse initiale de 420^m:s.

Calcul des aros de 5º en 5º.

Inclination de la trajectioire α . α . Projection de l'arc du trajec toire α . Projection de l'arc du trajet de trajet de projectile α . α .	Durée du trajet t.
-50 > 1,64850 136,10 -177,55 1,8073 121,21 3477,30 883, -53 > 1,86990 150,77 -237,59 2,1609 123,73 3613,40 706, -60 > 2,18119 168,22 -324,51 2,6631 141,60 3952,39 144, -65 > 2,46236 75,32 -164,84 1,2600 141,60 3952,39 144,	24 2,0495 42 4,8389 28 6,9480 8,5623 74 9,9799 95 11,2398 98 12,3456 76 14,4708 14 16,4253 06 17,3801 23 18,3533 40 19,3637 72 20,4346 48 21,5750 01 22,8092 24 23,4740 95 24,1803 81 23,7353 26 27,8426 67 29,7035

^{*} La valeur $64^{\rm m}21$ de x_i est déterminée par une quatrième proportionnelle de façon que l'ordonnée y soit 0. Les valeurs de θ , t, u, en sont la conséquence.

Calcul des ares de 10° en 10°.

Incli- naiso de la	n	Projection de l'arc		Durée du trajet	Vitesse du	Coordonnées du projectile		Durée du
trajec toire 0.		hori- zontale x,	verti- cale y,	de l'arc, t,	projec- tile v.	x.	y.	trajet t.
42030	4,33406	m 545,59	m 479,24	2,0495	#:* 420,00	m 0	m 0	° 0
40 a	1,22694	C 100 A 100	656,18	4,8885	997,58 478,56	545,59 1449,65	479,24 1155,42	6,9580
20 3	1,40663		83,11	5,1139 2,4164		1895,53	20000114	10,051
0 3	1,00514		21,77	2.0855	1 572 YOUR	2197,68 2438,94	1000000	12,468
-10	1,00514	100000	- 18,20	1,9512		2650,40	0.00	16,503
20 >	1,10665	2 50 300	- 55,70 - 92,78	1,9699		2850, 2	1 20 20 20	18,472
-30 s	1,22694	100000	-149,67	2,5816	1000000	3048,69 3261,04	1287,13 1137,46	20,546
30 >	1,42698		-242,26 -411,55	2,9595 3,9604		3500,79	895,20	25,867
60 3	2,27717	1000	-481,41	3,8635		5785,39 4022,39	485,87 5,46	29,828
-67 5		1,49*	- 5,46	0,0259	m-1	4023,88		33,717

* Cette valeur de $x_1 = 1,49$ est déduite des données au point où l'inclinaison est 67° et de façon que l'ordonnée soit nulle.

Calcul des arcs de 15° en 15°.

42030		m	in		420.00	0	m	0
	1,23438	1473,33	1156.14	6,9925	1003454			0
50 »	1.08877	604.54	261.91	4.3574	177,81	1473,35	1436,44	6,9953
15 3	10.00	200100	1012.20	0.000	129,85	2077,89	1418,03	11.3497
0 >	1,01184	382,88	55,25	3,2345	111.85	2460,77	1471.98	14.8849
	1,01184	511,59	- 40,44	2,9178		- V V V - V - V - V - V - V - V	100000000000000000000000000000000000000	100
	1,08877	500,02	-123,28	5.0835		2772,56		V. San Dr.
20 >	1,27696	526.76	-254.89	5.7423	107,25	3072,38	1303,56	20,5855
15 >	1.69734	405.02		100	116,27	3393,14	1050.67	24,5276
50 p	A	2002002		5,4750	133.84	5804.16	510.76	29,8026
67 >	2,27717	239,69	-183,38	5,8995	17-17	1043.85	F 0.3 V.	35,7024
-0.7	2,27747	10.77	- 25,38	0,4914	1000	Aller CANON	100000	A Section and
67 17				6.5	145,44	4054,62	0,00	33,8932

Calcul des arcs de 25° en 25°.

Incli- naison de la	a.	Projection de l'arc		Durée du trajet	Vitesse du projec-	Coordonnées du projectile		Durée du
trajec- toire 0.		hori- zontale x_1	verti- cale y ₁	l'are	tile v.	tile		trajet
42°30′ 25 > 0 > -25 > -50 > -67 >	1,22100 1,05514 1,05514 1,50909 2,04518	744,89 508,85 549,14 540,90	m 4502,04 488,63 -142,53 -444,57 -875,58 - 65,19	8,7082 5,9515 4,9147 6,3724 7,7458 1,2230	441,84 405,94 421,02 444,82	m 0 1744,51 2486,40 2995,25 5544,59 4055,29	1578,14 936,57 63,19	19,5744

L'examen des résultats numériques d'une trajectoire aussi étendue est très-propre à faire ressortir l'influence de la résistance de l'air sur le mouvement des projectiles. L'on reconnaît immédiatement, qu'à même élévation au-dessus du plan horizontal, l'inclinaison est plus grande dans la branche descendante que dans la branche ascendante et que les vitesses sont plus petites; on reconnaît aussi que le minimum de vitesse du mobile est au delà du sommet de la trajectoire et que ce sommet est plus près du point de chute que du point de départ.

Pour juger du degré d'approximation auquel on arrive par le calcul, on doit comparer entre eux les résultats obtenus par une division en arcs de moins en moins grands, comme le montre le tableau suivant:

Tableau comparatif des résultats obtenus dans le calcul de la trajectoire d'une bombe de 0^m32 de la marine, divisée en arcs de moins en moins étendus, et dont les données sont: φ = 42° 30′, V = 420^m:s, c = 2151^m.

			ÉTENDUE DES DIVISIONS DE LA TRAJECTOIRE:						
			250	150	100	50			
Vitesse (du projectil ^e (mett de chute.	m:s 111,8 147,2	m:8 111,8 145,4	m:s 111,8 144,6	m:s 111,6 144,8			
Durée (j du trajet. (•	u sommet int dé chute	s 14,66 34,92	14,58 33,89	14,55 33,72	14,47 33,47			
Coordonnes en des	300	(abscisses .	m D	1473 1156	m 1450 1135	1441 1430			
points déterminés	Oo (sommet)	(abscisses . (ordonnées	2486 1491	2461 1471	2438 1451	2418 144i			
par l'inclinaison	300	(ordonnées	» »	3072 1306 4044	3049 1287	3025 1276			
de la trajectoire Portée hori	67º zontale	(abscisses . (ordonnées	+ 63 + 63 4082	+ 26 4055	4022 + 3 4024	4006 21 3997			
Angle de ch			- 67043′	- 67º17'	- 6703′	- 66045′			

L'examen des résultats de ces calculs permet de conclure ce qui suit :

1º En comparant les coordonnées des points où l'inclinaison de la trajectoire est la même (soit 30°, 0°, — 30°, — 67°), on reconnaît que quand les divisions de la trajectoire sont de moins en moins étendues, les abscisses et les ordonnées sont moins grandes et que les trajectoires obtenues sont renfermées dans les précédentes. Il en est de même en ce qui regarde les portées horizontales. En

remarquant d'abord que si les divisions étaient de plus en plus multipliées on arriverait à la trajectoire exacte, et ensuite qu'en passant successivement des arcs de 15° à ceux de 10° et de ceux de 10° à ceux de 5°, on n'obtient que des diminutions de moins en moins grandes, du moins en général, on peut conclure qu'en réduisant de plus en plus l'étendue des arcs on n'obtiendrait qu'une diminution un peu moindre que celle que présentent entre eux les résultats correspondants aux arcs de 10° et de 5°.

Ainsi, pour la portée en particulier, la diminution qu'on obtient en passant des arcs de 10° aux arcs de 5° étant de 27m, on doit admettre qu'il n'y aurait pas une diminution plus grande entre la dernière et la portée exacte, et que celle-ci serait ainsi de 3970m. Les résultats obtenus par la division en arcs de 5° ne présentent ainsi tout au plus qu'une erreur de 1.50.

2º Sous les mêmes inclinaisons les points correspondants de la trajectoire sont plus élevés, et l'on peut conclure que les distances horizontales et verticales du sommet sont respectivement 2400^m et 1430^m.

3º De la diminution des distances et de l'élévation des points correspondants aux mêmes inclinaisons, il résulte qu'aux mêmes hauteurs les portées et les inclinaisons sont plus petites à mesure qu'on multiplie les divisions. Ainsi la diminution des angles de chute sur un plan horizontal ne dépassant pas 18' lorsqu'on passe de 10º à 5º, l'on peut en conclure que l'angle de chute exact est à trèspeu près 66° 30'.

4º La vitesse du projectile au sommet de la trajectoire reste à très-peu près la même, ou ne diminue que fort peu, quand on multiplie les divisions; il en est de même de la durée totale de la portée horizontale; la légère diminution correspond à la diminution de la portée. La vitesse véritable au sommet est donc à très-peu près de

111^{m:8}6; et la vitesse au point de chute sur le plan horizontal est 144^{m:8}5.

5º La durée du trajet jusqu'au sommet, comme la durée totale, diminue avec l'étendue des divisions, en suivant ainsi la diminution des trajets; on peut en conclure que la durée du trajet jusqu'au sommet est de 14.4 et la durée totale est de 33.5.

- 6º La vitesse du projectile a un minimum qui est au delà du sommet de la trajectoire, ce point compris entre ceux où l'inclinaison est 15º et 20º correspond à l'inclinaison de 19º, la vitesse en ce point est 105m3.
- 81. Trajectoire des bombes considérée comme un arc unique. Dans les circonstances ordinaires du tir des projectiles, la solution sera plus facile que celle que l'on vient de donner, et l'on obtiendra une précision suffisante en considérant la trajectoire comme un arc unique. Tel est le cas du tir des bombes aux distances habituelles; il permet d'arriver très-facilement à des relations en termes finis entre les différentes quantités que l'on doit calculer.

Lorsque l'on considère la trajectoire comme un arc unique, celui-ci se termine en général sous un angle différent de l'angle de départ; la différence sera presque toujours assez faible, particulièrement si le point de chute est un peu élevé au-dessus du point de départ. La valeur de « dépendra donc de la distance et de la hauteur du point de chute. Cependant on pourra, de l'angle de départ seul, déduire « au moyen de la table des valeurs de

 $\alpha_0 = \frac{\xi \phi}{\tan g \phi}$ (tabl. V, 2e partie); mais il sera mieux de prendre pour ϕ une valeur moyenne entre l'angle de projection connu et l'angle de chute présumé ou déterminé par une première approximation.

APPLICATION. Déterminer la trajectoire d'une bombe de 0^m27 projetée sous l'angle de 45° avec une vitesse initiale de 138^m:•77.

En prenant les données déjà adoptées (art. 56) A = 0.027; $\frac{1}{r}$ = 0.0023; g = 9 m 8088, et c = 1655 m ; considérant d'abord les arcs de 45° à 30°, de 30° à — 30° et de — 30° à — 55°, ce dernier étant l'angle de chute présumé, et considérant ensuite un arc unique, on a les résultats contenus dans le tableau ci-après:

	Incli- naison de la trajec- toire 0.	Rap- port α.	verticale	Durée du trajet partiel t	Vitesse du projectile	, d	onnées u ectile	Durée du trajet t.
Division en 8 arcs.	+450 > +50 > -50 > -55 > -54 52/	4,2748 4,0537 4,4270	 284,30 28,87 -3 22, 59	3,89 4 7 8,7435 5,336 2	m:s 138,77 96,83 77,40 99,48 98,73	m 0 552,69 1005,26 1334,21 1325,86		0 3,8947 12,6382 17,9744 17,9641

En considérant la trajectoire sans divisions partielles, prenant $\alpha = 1.14777$, correspondant à l'arc de $+45^{\circ}$ à -45° , on trouve $1333^{\circ}50$ pour portée horizontale, 178322 pour durée du trajet, $54^{\circ}29'$ pour angle de chute et $100^{\circ}874$ pour vitesse finale.

D'après cette application à un tir dans lequel la portée de la bombe dépasse celles que l'on considère ordinairement dans la pratique, on voit que la portée obtenue, en ne considérant la trajectoire que comme un seul arc, est très-peu différente de celle qu'on obtient en la considérant comme divisée en trois arcs; la différence, qui n'est que de 1/185, est négligeable dans la plupart des applications; la différence dans les durées, qui est de 1/140, ne serait pas appréciable dans des expériences; la vitesse est un peu plus forte. Les angles de chute, calculés dans les deux cas, sont très-peu différents. Il en serait de même par conséquent des divers résultats que l'on voudrait obtenir. On pourra donc, dans les cas ordinaires du tir des

mortiers, calculer les résultats sans diviser la trajectoire en plusieurs arcs partiels.

82. Solution de divers problèmes sur le jet des bombes. — Portées. Si l'on connaît la vitesse et l'angle de projection d'un projectile dans l'air, on peut déterminer sa portée sur un plan horizontal élevé d'une quantité quelconque b au-dessus de la bouche à feu.

V étant la vitesse initiale et φ l'angle de projection, on déterminera α comme on l'a dit (76). D'après la formule de la résistance de l'air (55), connaissant le poids et le diamètre du projectile, on aura r et c qui s'y rapportent (voir la table VI pour les projectiles en usage). On aura aussi $V_0 = \frac{\alpha V \cos \varphi}{r}$. La portée du projectile sera déterminée par l'équation de la trajectoire $y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} V_0(x, V)$ dans laquelle on devra faire y = b; on la résoudra au moyen de la table X des valeurs de $A_0(x, V)$, en la mettant sous la forme (art. 80, éq. 2)

$$\frac{c}{a} \tan g \, \phi \, \frac{\alpha x}{c} - \frac{c^2}{4hx^2 \cos^2 \varphi} \cdot \left(\frac{\alpha x}{c}\right)^2 \, \text{Nb}(x, V) = b$$

et essayant successivement plusieurs valeurs de $\frac{\alpha x}{c}$ prises dans la table X, comme on l'a déjà indiqué (art. 70 et 72), et cherchant ensuite la valeur plus exacte par les parties proportionnelles.

83. Si le point de chute doit être sur le plan horizontal passant par la bouche à seu, le problème se simplisse; on sera alors y=0; on aura deux valeurs de x dont l'une qui est x=0 peut être négligée parce qu'elle n'apprend rien; quant à l'autre, en divisant par x, en remarquant que 4h tang $\varphi\cos^2\varphi$ est égal à $2h\sin 2\varphi$ et en appelant X la portée cherchée, on aura

$$2h\sin 2\varphi = X_{Vb}(X, V).$$

Pour résoudre cette équation on la met sous la forme

$$\frac{\alpha x}{c} \operatorname{H}(x, V) = 2h \frac{\alpha}{c} \sin 2\phi = p. \tag{4}$$

La table XV donne les produits de $\frac{\alpha x}{c}$ % (x, V) pour des valeurs de $\frac{\alpha x}{c}$ ou z, croissant de 0,05 en 0,05 depuis 0,00 jusqu'à 2,00, et pour des valeurs de V_0 , croissant par 0,05 depuis 0 jusqu'à 1,30.

On descend dans la première colonne jusqu'à la valeur de V_0 , puis on cherche dans la ligne horizontale correspondante le nombre égal à p et on trouve à l'entête la valeur de z ou $\frac{\alpha x}{c}$. Lorsque la valeur de V_0 est comprise entre deux valeurs des tables, ce qui est le cas général, ou détermine la valeur de z comme on l'a indiqué (art. 78) pour l'emploi de la table XIV.

Ayant
$$\frac{\alpha X}{c}$$
, on le divisera par $\frac{\alpha}{c}$ et on aura X.

APPLICATION. Une bombe de $27^{\rm cm}$ ayant un diamètre de $0^{\rm m}2711$ et un poids de $50^{\rm k}50$, pour laquelle $c=1655^{\rm m}$, étant projetée sous l'angle $\varphi=45^{\rm o}$ avec une vitesse initiale $V=83^{\rm m:s}343$, quelle est sa portée sur un plan horizontal?

On a $\sin 2\phi = 1,0000$; $\cos \phi = 0,7071$; de 45° à 0°, comme de 0 à 45°, on a $\alpha = 1,1478$ (table V, I^{re} partie);

$$\frac{\alpha V_1}{r} = \frac{1,1478.83^{m}343.0,7071}{435} = 0,1555;$$

de là.

$$p = \frac{1,1478(83,343)^2}{9,809.1655} \cdot 1,0 = 0,49112;$$

et ensuite (table XV)

$$\frac{\alpha X}{c} = 0.4160$$
 et $X = \frac{1655}{1.1478}0.4160 = 599$ m61,

ou, en nombre rond, $X = 600^{m}$.

Dans le tir du même projectile sous 30° on aurait

$$\alpha = 1.0531$$
; $\frac{\alpha V_i}{r} = 0.1747$, $p = 0.3902$,

de là.

$$\frac{\alpha X}{c} = 0.3410$$
 et $X = 535$ m9.

Sous l'angle de projection de 60° on aurait

$$\alpha = 1,3802$$
 et $X = 518,25$;

cette portée est plus petite que sous 30°.

Sans la résistance de l'air et sous l'angle de 45°, la portée de 600^m s'obtiendrait avec la vitesse initiale de 76^m: \$72; avec cette vitesse, sous les angles de 30° et de 60°, les portées seraient l'une et l'autre 519^m60.

Ayant la portée X, on aura l'inclinaison et la vitesse au point de chute, ainsi que la durée du trajet, par les formules données plus haut (64). La valeur absolue de θ ou de l'angle de chute, nécessairement négatif, qu'on trouvera par ces formules, sera toujours plus grande que φ.

84. Vitesse initiale d'un projectile qui doit avoir une portée déterminée. Si l'on veut déterminer la vitesse initiale que doit posséder un projectile pour être projeté à une distance donnée X, sur un plan horizontal, sous un angle 2, il faudra tirer la valeur de V de l'équation

$$2h\sin 2\varphi = Xy_{\delta}(X, V)$$
.

Mettant $\frac{V^2}{2g}$ à la place de h et $2\tan \varphi \cos^2 \varphi$ à la place de $\sin 2\varphi$, se rappelant que $V_i = V\cos \varphi$, multipliant les deux membres de l'équation par $\frac{\alpha^2}{r^2}$, on aura

$$\frac{\alpha^{2}V_{1}^{2}}{r^{2}} = \frac{\alpha^{2}gX}{2r^{2}\tan g\varphi} \left[\left(1 + \frac{\alpha V_{1}}{r}\right)^{2} F\left(\frac{\alpha X}{c}\right) - 2\left(1 + \frac{\alpha V_{1}}{r}\right) \frac{\alpha V_{1}}{r} F\left(\frac{\alpha X}{2c}\right) + \left(\frac{\alpha V_{1}}{r}\right)^{2} \right].$$

D'où, en faisant pour simplifier,

$$\frac{2r^{3}\tan q \Phi}{\alpha^{2}gX} = Q, \qquad F\left(\frac{\alpha X}{c}\right) - F\left(\frac{\alpha X}{2c}\right) = N,$$

$$N - \left[F\left(\frac{\alpha X}{2c}\right) - 1\right] = M.$$

on aura, en remarquant que la vitesse doit être positive et en ne prenant que le signe plus devant le radical,

(5)
$$V = \frac{r}{\alpha \cos \varphi} \left(\frac{N}{Q - M} + \sqrt{\frac{F\left(\frac{\alpha X}{c}\right)}{Q - M} + \left(\frac{N}{Q - M}\right)^2} \right)$$

$$V = \frac{r}{\alpha \cos \varphi} \cdot \frac{N}{Q - M} \left(1 + \sqrt{1 + \frac{Q - M}{N^2} F\left(\frac{\alpha X}{c}\right)} \right).$$

On peut déterminer V beaucoup plus facilement au moyen de la table XVI. En effet, en faisant y=0 dans l'équation de la trajectoire, divisant par X, remplaçant $2gh\cos^2\varphi$ par V_1^2 et $\frac{\alpha V_1}{n}$ par V_0 , on aura

$$\frac{\mathfrak{V}_{\bullet}(X, V)}{V_{\bullet^2}} = \frac{2r^2 \tan g \, \varphi}{\alpha^2 g X}$$

ou

(6)
$$\frac{V_0}{\sqrt{\eta_0(X,V)}} = \frac{\alpha}{r} \sqrt{\frac{gX}{2\tan g\varphi}} = q.$$

* Dans la première édition de ce traité, j'ai donné des tables des valeurs de N et de M qui ne sont que des fonctions de $\frac{\alpha x}{c}$ seul. Je ne les ai pas reproduites dans cette édition parce que le calcul de Vo au moyen de la table XVI est beaucoup plus simple. Par la même raison je n'ai pas publié une table des valeurs de $1+\sqrt{1+\gamma}$ qui simplifierait la résolution de la seconde formule de V en y représentant $\frac{Q-M}{N^2}F\left(\frac{\alpha x}{c}\right)$ par γ .

La table XVI donne les quotients de V_0 par $\sqrt{4k}(X, V)$ pour des valeurs de z ou $\frac{\alpha x}{c}$ croissant par différences de 0,05, depuis 0 jusqu'à 1,00, et, pour les valeurs de V_0 , par différence de 0,05, depuis 0,00 jusqu'à 1,30. On cherche dans la colonne verticale correspondant à la valeur donnée $z = \frac{\alpha x}{c}$ le nombre q et l'on trouve sur la ligne horizontale correspondante la valeur V_0 cherchée.

Lorsque la valeur de $\frac{ax}{c}$ est comprise entre deux valeurs des tables, ce qui est le cas général, on cherche, dans la table, la valeur de $z=\frac{ax}{c}$ la plus voisine de la valeur donnée, mais supérieure, et l'on descend jusqu'au nombre le plus voisin du nombre p, mais inférieur, et l'on note la valeur de V_0 correspondante. On prend les différences avec les nombres voisins, à droite et au-dessous, et l'on continue l'opération comme on l'a indiqué pour l'emploi de la table XIV (art. 72). On remarquera cependant que pour une même valeur de V_0 les nombres diminuant quand $\frac{ax}{c}$ augmente, la différence doit être prise négativement.

EXEMPLE. Soit $\frac{\alpha x}{c} = 0.4161$, et q = 0.14314; partant de z = 0.40 et descendant jusqu'à 0.13860, sur la ligne $V_0 = 0.15$, appelant Δ l'excès de la valeur cherchée de V_0 sur 0.15, on écrira l'équation

$$0,14314 = 0,13860 - 0,0161 \cdot \frac{0,00141}{0,0500} + \Delta \frac{0,04558}{0,0500},$$

d'où

$$\Delta = \frac{0,00454 + 0,00045}{0,04558}.0,0500 = 0,00547 \quad \text{et} \quad V_0 = 0,1555.$$

Pour plus de facilité, on dispose l'opération comme ci-après :

Nombre proposé. 0,14314
$$q(0.40; 0.15) = 0.13860$$

$$0.0161.\frac{0.00141}{0.05} = -0.00045$$

$$\Delta \frac{0.04558}{0.05} = +0.00499^{\circ}$$
Somme égale. . . . 0,14314

(Le nombre marqué d'un astérisque se calcule comme si l'on vérifiait l'addition des trois nombres.) d'eù

$$\Delta = 0.00499 \cdot \frac{0.050}{0.04558} = 0.0055$$

et

$$V_0 = 0.15 + 0.0055 = 0.1555$$
.

APPLICATION. Quelle est la vitesse initiale d'une bombe de 27cm qui, sous l'angle de 45°, est portée à 600m sur un terrain horizontal?

Pour ce cas $c = 1655^{\text{m}}$; $\varphi = 45^{\circ}$; tang $\varphi = 1$; pour un arc de 45° à 0° et de 0° à 45° , on a $\alpha = 1.1478$; $\frac{\alpha X}{c} = 0.4161$; $q = \frac{1.1478}{435} \sqrt{\frac{4.9045.600}{1.0}} = 0.14314$; à l'aide de la table XVI on trouve V_0 ou $\frac{\alpha V_1}{r} = 0.1555$, et l'on conclut de là $V = \frac{0.1555.435}{1.1478.0.7071} = 83^{\text{m}:8}345$.

85. Cas où les portées sont peu considérables. Dans le cas où les valeurs de X sont peu considérables, avec de gros projectiles, pour lesquels la valeur de c est très-grande, $\frac{\alpha X}{c}$ aura une faible valeur et l'on pourra,

en ne commettant que des erreurs négligeables, remplacer (67) $\mathfrak{B}(X, V)$ par $[\mathfrak{D}_{\iota}(X, V)]^{*}$. Par suite, puisque $V^{*} = 2gh$ et que $\mathfrak{D}_{\iota}(x, V) = \left(1 + \frac{\alpha V_{\iota}}{r}\right) F\left(\frac{\alpha x}{2c}\right) - \frac{\alpha V_{\iota}}{r}$, l'équation de la trajectoire (art. 63, éq. 7) deviendra

$$y = x \tan \varphi - \frac{gx^2}{2V^2 \cos^2 \varphi} \left[\left(1 + \frac{\alpha V_i}{r} \right) F\left(\frac{\alpha x}{2c} \right) - \frac{\alpha V_i}{r} \right]^2.$$

En faisant dans cette équation y=0, divisant par x et appelant X la portée horizontale et V' la vitesse qui donnerait cette portée dans le vide et qui est $V'=\sqrt{\frac{gX}{\sin 2\varphi}}$, on aura simplement

(7)
$$V = V' \frac{F\left(\frac{\alpha X}{2c}\right)}{1 - \left[F\left(\frac{\alpha X}{2c}\right) - 1\right] \frac{\alpha V'}{r} \cos \varphi}.$$

Si l'on supposait la résistance de l'air proportionnelle au carré de la vitesse, on aurait $\frac{1}{r}=0$ et la vitesse cherchée se réduirait à $V=V'F\left(\frac{\alpha X}{2c}\right)$; on voit ainsi que le premier facteur V' donne la solution du problème dans le cas où la résistance de l'air est supposée nulle; que le facteur $F\left(\frac{\alpha X}{2c}\right)$ tient compte de la résistance du terme proportionnel au carré de la vitesse et que le dénominateur tient compte du terme proportionnel au cube de cette même vitesse.

86. Projectile qui doit passer par un point donné. L'angle de projection étant donné, on peut trouver la vitesse que doit avoir un projectile pour passer par un point dont la position est donnée relativement au point

de départ. Soit a la distance horizontale et b la hauteur du but, ce point appartenant à la trajectoire, on devra avoir (art. 63, éq. 7)

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} \Re(a, V),$$

divisant les deux membres par a, représentant par a l'angle sous lequel le point à battre est vu de la bouche à feu, ce qui revient à faire $\frac{b}{a} = \tan g \, \epsilon$, et, remplaçant $h \cos^2 \varphi$ par $\frac{V_1^2}{2g}$, on aura

$$\frac{\alpha^{2}V_{i}^{2}}{r^{2}} = \frac{\alpha^{2}g\alpha}{2r^{2}(\tan \theta - \tan \theta)} \left[\left(1 + \frac{\alpha V_{i}}{r} \right)^{3} F\left(\frac{\alpha \alpha}{c} \right) - 2\left(1 + \frac{\alpha V_{i}}{r} \right)^{\alpha} F\left(\frac{\alpha \alpha}{c} \right) + \left(\frac{\alpha V_{i}}{r} \right)^{2} \right].$$

D'où, en faisant pour simplifier,

$$\frac{2r^{2}}{ga\alpha^{2}}(\tan\varphi - \tan\varphi) = q, \quad F\left(\frac{\alpha\alpha}{c}\right) - F\left(\frac{\alpha\alpha}{2c}\right) = N,$$

$$N - \left[F\left(\frac{\alpha\alpha}{2c}\right) - 1\right] = M,$$

et, en observant que la vitesse est nécessairement positive, ne prenant en conséquence que le signe plus devant le radical, on aura

(8)
$$V = \frac{r}{\alpha \cos \varphi} \left(\frac{N}{q - M} + \sqrt{\frac{F\left(\frac{\alpha \alpha}{c}\right)}{q - M} + \left(\frac{N}{q - M}\right)^2} \right)$$

ou

$$V = \frac{r}{\alpha \cos \varphi} \cdot \frac{N}{q - M} \left(1 + \sqrt{1 + \frac{q - M}{N^{a}} F\left(\frac{\alpha a}{c}\right)} \right).$$

On trouve aussi la valeur de V au moyen de la table XVI en faisant $\frac{\alpha V_i}{r} = V_0$ et en mettant l'équation de la trajectoire sous la forme $\frac{\Psi_0(\alpha, V)}{V_0^2} = \frac{2r^2(\tan \varphi - \tan \varphi)}{ag\alpha^2}$ ou

(9)
$$\frac{V_0}{\sqrt{\psi_0(a, V)}} = \frac{\alpha}{r} \sqrt{\frac{ag}{2(\tan g \, \phi - \tan g \, \epsilon)}} = q,$$

et en opérant pour le reste comme lorsque le but est à hauteur de la bouche à feu (art. 84).

87. Cas où les portées sont peu considérables. Dans le cas où la portée sera peu considérable, la quantité $\frac{\alpha a}{c}$ sera assez faible pour qu'on puisse remplacer $\mathfrak{B}(a, V)$ par $[\mathfrak{D}, (a, V)]^*$ (67). L'équation qui doit donner V ne contiendra cette quantité qu'à la première puissance, et en représentant par V' la vitesse $\sqrt{\frac{ag}{2\cos^2\varphi(\tan g\varphi - \tan g^2)}}$ qu'on obtiendrait dans le vide, on aura simplement

(10)
$$V = V' \frac{F\left(\frac{\alpha a}{2c}\right)}{1 - \left[F\left(\frac{\alpha a}{2c}\right) - 1\right] \frac{\alpha V' \cos \varphi}{r}}.$$

En remarquant que

$$\cos^2 \phi (\tan g \phi - \tan g \epsilon) = (\sin \phi \cos \epsilon - \sin \epsilon \cos \phi) \frac{\cos \phi}{\cos \epsilon} = \sin(\phi - \epsilon) \frac{\cos \phi}{\cos \epsilon}$$

la valeur de V' sera plus simplement

$$V' = \sqrt{\frac{ag}{2\sin(\varphi - \epsilon)} \cdot \frac{\cos \epsilon}{\cos \varphi}};$$

et si l'on suppose b = 0, alors $\epsilon = 0$ et

$$V' = \sqrt{\frac{ag}{\sin 2\phi}};$$

on a alors V' et par conséquent V comme lorsqu'on considère la portée sur un plan horizontal (84).

88. Angle de projection. Si la vitesse est donnée, et qu'on ait à chercher l'angle de projection, la solution offrira plus de difficultés que la recherche de la vitesse; la valeur de α est une fonction de l'angle de projection trop compliquée pour qu'on puisse obtenir des formules directes d'une utilité réelle, et d'ailleurs on n'a pas à résoudre ce problème dans le tir des bombes; si ce cas se présentait, il faudrait déterminer approximativement l'angle de projection φ , déterminer de même α et V, qui entrent dans la valeur de $\Re(x, V)$; cette fonction étant ainsi déterminée d'une manière approchée, l'on aurait, pour le cas où le but est élevé au-dessus du point de départ, en remplaçant $\frac{1}{\cos^2 \varphi}$ par $(1 + \tan 2 \varphi)$, à résoudre l'équation

$$b = a \tan \varphi - \frac{a^2 v \cdot b(a, V)}{4h} (1 + \tan^2 \varphi),$$

d'où l'on tirerait pour la valeur de tang o,

(11)
$$tang \phi = \frac{2}{a} \left(\frac{h}{v s(a, V)} \pm \sqrt{\frac{h}{v s(a, V)} \left(\frac{h}{v s(a, V)} - b \right) - \frac{a^2}{4}} \right).$$

Cette formule ne diffère de celle qui aurait lieu dans le vide qu'en ce que h est remplacé par $\frac{h}{\sqrt[h]{(a,V)}}$ (art. 17, éq. 9).

Les valeurs de a et celle de cosp qui entrent dans la

valeur $\mathfrak{G}(x, V)$ sont différentes, suivant qu'on prend le signe plus ou le signe moins, et elles ne doivent point être confondues; l'une appartient à un angle plus petit que celui qui donnerait le maximum de portée, l'autre à un angle plus grand. La recherche de ces deux angles doit être faite séparément.

Cas où le but est à hauteur du point de projection. Si le point à battre est à la même hauteur que le point de projection, on fera y=0 dans l'équation de la trajectoire (art. 63, éq. 7), et en observant que $4\tan\varphi\cos^2\varphi=2\sin2\varphi$, on aura simplement

(12)
$$\sin 2\phi = \frac{X}{2h} \psi_b(x, V).$$

Au moyen d'une valeur approchée de φ , et par suite d'une valeur approchée de α , on calculera $\mathfrak{L}(x,V)$; puis on en retirera $\sin 2\varphi$ et par suite φ . Au besoin, et pour plus d'exactitude, on se servirait de cette valeur comme seconde approximation pour obtenir une nouvelle valeur plus exacte.

Cette équation donne deux valeurs qui doivent être calculées séparément, et comme dans le cas précédent.

APPLICATION. Soit à calculer l'angle de projection d'une bombe de 27^{cm} , pour laquelle $c = 1655^{m}$, et qui, partant avec une vitesse initiale de $83^{m:8}343$, a donné une portée de $535^{m}9$ dans l'air supposé avoir la densité ordinaire.

Dans le vide on aurait $\sin 2\varphi = \frac{9,809.535,9}{(83,343)^2} = 0,7568$; d'où $\varphi = 24^{\circ} 36'$, angle trop petit. Essayant $\varphi = 25^{\circ}$, on a $\alpha = 1.03514$ et $\cos \varphi = 0.9065$; de la, $\frac{\alpha X}{c} = 0.3352$; $\frac{\alpha V_1}{r} = 0.1797$ et $\Re(x, V) = 1.1446$; par suite,

$$\sin 2$$
 = $\frac{9,809.535,9}{(83,343)^2}.1,1446 = 0,8662;$

d'où

$$2\phi = 60^{\circ} 1'$$
, et $\phi = 30^{\circ}$.

On obtient ainsi la valeur cherchée avec toute l'approximation désirable sans qu'il soit nécessaire de recommencer l'opération, puisque le résultat est confirmé par l'exemple de l'article 83.

89. Angle et vitesse de chute, durée du trajet. Dans chaque cas on peut calculer l'angle de chute, la durée du trajet et la vitesse du projectile au but.

L'angle de chute 6 est donné par la formule (art. 64, éq. 8)

$$tang\theta = tang - g \frac{x}{V^2 \cos^2 \theta} \mathfrak{J}(x, V).$$

Dans le cas de l'application de l'article 83, X = 600^m, $e = 45^{\circ}$, V = 83^m343, et où l'on a $\frac{\alpha X}{c} = 0,4161$, et $\frac{\alpha V_1}{r} = 0,1555$, on trouve, à l'aide de la table XII, à trois décimales

$$3(x, V) = 1,280$$

et

$$tang \theta = 1,000 - \frac{9,809.600}{(83,343.0,7071)^2} 1,280 = -2,1691,$$

d'où

$$\theta = -49^{\circ} 27';$$

l'angle de chute dépasse ainsi l'angle de projection de 40 27'.

La vitesse de chute v est donnée par la formule (art. 65, éq. 13)

$$v = \frac{V\cos\phi}{\mathfrak{V}(x, V) \cdot \cos\theta}.$$

Dans l'exemple précédent on a $V = 83^{m}343$, $\cos \theta = 0.7071$, $\cos \theta = 0.6501$, $\sigma(x, V) = 1.268$, et par conséquent

$$v = \frac{83,343.0,7071}{1,268.0,6501} = 71 \text{m} : 849.$$

La diminution sur la vitesse de départ est d'environ 12^{m:s}. La durée du trajet est donnée par la formule (art. 64, éq. 11)

$$t = \frac{X}{V \cos \varphi} \mathfrak{Q}(x, V).$$

Dans les exemples précédents $X = 600^{m}$, $V = 83^{m} = 343$, $\cos \varphi = 0.7071$ et $\varpi(x, V) = 1.129$, et par conséquent

$$t = \frac{600.1,129}{83,343.0,7071} = 11*49.$$

Deux autres problèmes peuvent être proposés, savoir: déterminer l'angle de projection et la vitesse initiale d'un projectile qui doit passer, soit 1° par un point donné, la tangente à la trajectoire ayant en ce point une inclinaison déterminée; soit 2° par deux points donnés. Cette application n'a pas d'utilité dans le cas du tir des bombes; mais elle en a beaucoup dans le tir à ricochet, nous en parlerons plus loin (section IV).

90. De l'angle de plus grande portée. On sait que dans le vide l'angle de projection de 45° est celui sous lequel des projectiles animés de la même vitesse initiale donnent les plus grandes portées (10). Il n'en est plus ainsi lorsque le projectile se meut dans un milieu résistant comme l'air, et il est facile de voir que dans ce cas l'angle de portée maximun doit être plus petit que 45°.

En effet, la propriété essentielle du maximum d'une fonction quelconque, c'est que pour des différences très-

petites, soit en plus soit en moins dans la variable, la fonction n'éprouve que des variations extrêmement petites et toutes dans le même sens. Dans le cas où le milieu oppose une certaine résistance au mouvement d'un projectile, l'équation $X_{VS}(X, V) = 2h \sin 2\varphi$ fait voir que, quand l'angle de projection devient un peu plus grand que 45°, deux causes contribuent à la diminution de la portée, d'abord la diminution de sin 20, la seule valeur qui diminue la portée dans le vide, et ensuite l'accroissement de a dans 35 (X, V), par conséquent l'accroissement de l'effet de la résistance de l'air par suite de la plus grande étendue de l'arc. Dans le cas où l'angle s'abaisse au-dessous de 45°. la valeur de sino va effectivement en diminuant, mais la diminution de l'étendue de l'arc ou de a produit une diminution dans vs (X, V) ou dans l'action du milieu résistant : cette dernière cause agissant dans un sens contraire à la première, il en résulte qu'il y aura un certain angle, qui sera plus petit que 45°, pour lequel les deux effets contraires se contrebalanceront; cet angle sera celui qui donnera la portée maximum. On voit aussi, très-facilement, que cet angle devra être d'autant plus petit que la résistance du milieu se fera plus fortement sentir. De ces considérations l'on conclut ce qui suit : dans un milieu résistant l'angle de portée maximum est au-dessous de 45°, et il s'en écarte d'autant plus que la résistance du milieu est plus considérable ou que la vitesse initiale est plus grande, ou qu'enfin le diamètre et la densité du projectile sont plus petits.

Pour obtenir la relation qui donnerait la portée maximum, il faudrait prendre la différentielle de la portée relativement à l'angle de projection et l'égaler à zéro; mais l'équation $X \otimes (X, V) = 2h \sin 2\varphi$ qui donnerait la portée, contient l'angle φ d'une manière très-compliquée; et il serait difficile de l'employer à calculer cette valeur. Le

moyen le plus facile est encore de calculer pour un projectile donné et pour une vitesse initiale aussi donnée, quatre ou cinq valeurs de X, correspondantes à autant de valeurs de φ , choisir de celles-ci, les unes au-dessus, les autres au-dessous des valeurs qui doivent donner la portée maximum: la comparaison de ces portées indiquera l'angle cherché avec toute l'approximation dont on aura besoin dans les applications. On devrait faire un semblable calcul pour une série de vitesses différentes et pour chaque espèce de projectile.

APPLICATION. Soit à calculer l'angle de plus grande portée de la bombe de 0^m27 , projetée avec une vitesse initiale de $85^{m:s}343$ (cette vitesse est celle qui, sous l'angle de projection de 45° , donne la portée de 600^{m}); on a $2_{\varpi}=0^{m}2711$, $P=50^{s}60$; on en conclura, pour la densité moyenne de l'air, $c=1655^{m}$; en essayant divers angles entre 30° et 60° plus resserrés aux environs de celui qui donne le maximum cherché, et en calculant pour chacun les portées sur un plan horizontal à hauteur de la bouche à feu, on trouve les résultats ci-après:

Angle de projection. 30° 37° 39° 41° 42° 43° 44° 45° **60°** Portées. 535°9, 583°6, 593°3, 597°3, 598°9, 599°9, 600°3, 599°81, 518°35.

D'après ces résultats on trouve que l'angle du maximum de portée de la bombe de 0^{m27} est un peu plus petit que 44°; sous l'angle de 43°, la portée est plus grande que sous 45°. On voit aussi, ce qu'on pouvait prévoir, que sous 60° la portée est plus petite que sous 30°.

SECTION IV.

MOUVEMENT DES PROJECTILES

SOUS LES PETITS ANGLES DE PROJECTION.

§ I.

91. Simplifications. Les formules qui se rapportent au tir des projectiles sous des angles de projection quelconques au-dessus de l'horizon, se simplifient lorsqu'on les applique au tir des canons et des obusiers; l'on obtient, dans ce cas, une solution facile des divers problèmes que l'on peut avoir à résoudre.

On ne fait pas usage dans le service de l'artillerie du tir des boulets ou des obus de forme sphérique sous de très-grands angles de projection, particulièrement avec de grandes vitesses, parce que, aux grandes distances où porteraient les projectiles, l'irrégularité du tir résultant de diverses causes déviatrices serait très-grande. Les affûts à rouages ne pourraient pas, d'ailleurs, résister aux effets du tir des bouches à feu sous de très-grands angles de projection et avec de fortes charges; aussi ne permettent-ils pas un tir au-dessus de 12°, et ce n'est que par des dispositions particulières des plates-formes qu'on peut tirer jusque sous des angles de 15° à 16° au-dessus de l'horizon. On peut donc regarder cette dernière inclinai-

son comme une limite extrême du tir des canons et des obusiers sur leurs affûts et celle de 12° comme la limite la plus habituelle.

Sous les faibles inclinaisons, le rapport de l'arc de la trajectoire à sa projection diffère très-peu de l'unité, il ne la dépasse (sect. III, art. 77) que de 0,001 27 ou $\frac{1}{788}$ sous l'angle de 5°, de 0,00516 ou $\frac{1}{194}$ sous celui de 10°, de 0,00745 ou 1/1/2 sous celui de 12° et ensin de 0,01184 ou 1/85 sous celui de 15°. Ces quantités sont très-petites, et, comme elles n'influent que sur les termes qui tiennent compte de la résistance de l'air, elles pourront être presque généralement négligées, et plus particulièrement dans le cas des faibles vitesses et des gros projectiles. On se fera une idée exacte de leur degré d'importance si l'on remarque qu'en remplaçant par l'unité le rapport a de l'arc à sa projection, qui n'entre que comme diviseur des coefficients c et r relatifs à la résistance de l'air, c'est comme si la densité de l'air était réduite dans le même rapport ou comme si la pression barométrique était diminuée respectivement de 1, 4, 6 ou 9 millimètres de hauteur de mercure; ces quantités sont de celles qu'on néglige la plupart du temps dans les applications. On pourra donc négliger ces différences dans les formules; on le pourra avec d'autant plus de raison que ce n'est, en général, que sous les plus petits de ces angles qu'on tire avec de grandes vitesses, et, que l'on ne s'approche de la limite supérieure que dans le cas du tir plongeant qui s'exécute toujours avec les plus lourds projectiles et avec de petites vitesses, circonstances dans lesquelles la résistance de l'air a le moins d'influence.

Cela posé; si l'on fait $\alpha = 1$ dans les formules générales du mouvement des projectiles dans l'air (sect. III) et si l'on conserve les mêmes notations que précédemment (art. 63 et 64) pour l'équation de la trajectoire, pour l'ex-

pression de l'inclinaison, pour la durée du trajet et pour la vitesse du projectile, c'est-à-dire si l'on nomme V la vitesse initiale, h la hauteur due à cette vitesse, φ l'angle de projection, x et y l'abscisse et l'ordonnée d'un point de la trajectoire, θ l'inclinaison de cette trajectoire et v la vitesse du mobile en ce même point, enfin t la durée du trajet; si l'on fait $V\cos\varphi=V_1,\ v\cos\theta=v_1$, on aura

(1)
$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} \forall b (x, V),$$

(2)
$$\tan \theta = \tan \varphi - \frac{x}{2h \cos^2 \varphi} \Im(x, V),$$

(3)
$$t = \frac{x}{V\cos x} \mathfrak{D}(x, V),$$

et

(4)
$$v_1 = V_1 \frac{1}{\mathfrak{V}(x, V)}$$
 ou $v = \frac{V}{\mathfrak{V}(x, V)} \cdot \frac{\cos \mathfrak{v}}{\cos \theta}$

D'après ce qui a été exposé dans la section III pour le cas le plus général, la solution des divers problèmes devient très-simple. Nous considérerons d'abord le cas où le but est à une hauteur quelconque au-dessus de la bouche à feu, et ensuite celui où il est à même hauteur.

92. Solution des divers problèmes lorsque le but n'est pas à hauteur de la bouche à feu. — Vitesse initiale. Le but n'étant pas à hauteur de la bouche à feu, soit a sa distance horizontale et b son élévation au-dessus du centre de la bouche. Puisque la trajectoire doit passer par le point dont les coordonnées sont a et b, on devra avoir, d'après l'équation (1),

(5)
$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} \mathcal{H}(a, V),$$

ou, en divisant par a, remarquant que $\frac{b}{a}$ est la tangente trigonométrique de l'angle d'élévation sous lequel on voit

le but et que l'on désignera par ϵ , c'est-à-dire en faisant $\frac{b}{a} = \tan g \epsilon$; remplaçant $2h \cos^2 \varphi$ par $\frac{V^2}{g} \cos^2 \varphi$ ou par $\frac{V^2}{g}$, on aura

(6)
$$\tan \varphi - \tan \varphi = \frac{ga}{2V^2} \cdot \Re(a, V),$$

ou, en mettant pour $\mathfrak{G}(a, V)$, ou pour $\mathfrak{G}\left(\frac{a}{c}, \frac{V_1}{r}\right)$ sa valeur développée (art. 63) et dans laquelle a devient égal à l'unité et disparaît; puis, en divisant les deux membres par r^2 , on aura

$$\frac{\mathbf{V_i^2}}{r^2} = \frac{ga}{2r^2(\tan g \, \varphi - \tan g \, \epsilon)} \times \left[\left(1 + \frac{\mathbf{V_i}}{r} \right)^2 \mathbf{F} \frac{a}{c} - 2 \left(1 + \frac{\mathbf{V_i}}{r} \right) \frac{\mathbf{V_i}}{r} \mathbf{F} \frac{a}{2c} + \frac{\mathbf{V_i}^2}{r^2} \right].$$

De là l'on peut tirer la valeur de $\frac{V_i}{r}$. Cette valeur, en faisant pour simplifier, $\frac{2r^2(\tan g \cdot - \tan g \cdot)}{g \cdot a} = Q$, $F \frac{a}{c} - F \frac{a}{2c} = N$ et $N - \left[F \frac{a}{2c} - 1\right] = M$, en remarquant que la vitesse est nécessairement positive et en ne prenant en conséquence que le signe plus devant le radical, deviendra

(7)
$$V = \frac{r}{\cos p} \left(\frac{N}{Q - M} + \sqrt{\frac{F\left(\frac{a}{c}\right)}{Q - M} + \left(\frac{N}{Q - M}\right)^{2}} \right)$$
$$= \frac{r}{\cos p} \cdot \frac{N}{Q - M} \left(1 + \sqrt{1 + \frac{Q - M}{N^{2}} F\left(\frac{a}{c}\right)} \right).$$

Dans le cas où $\frac{a}{c}$ serait peu considérable, on aurait plus simplement, comme on l'a indiqué à l'article 87, en

faisant
$$V' = \sqrt{\frac{ag}{2\cos^2\phi(\tan g\phi - \tan g\epsilon)}}$$

(8)
$$V = V' \frac{F\left(\frac{a}{2c}\right)}{1 - \left[F\left(\frac{a}{2c}\right) - 1\right] \frac{V'\cos\varphi}{r}}.$$

On peut déterminer V plus facilement au moyen de la table XVI. En effet, en multipliant les deux membres de l'équation (6) par r et représentant $\frac{V_1}{r}$ par V_0 , on pourra mettre la relation sous la forme

(9)
$$\frac{\mathbf{V_o}}{\sqrt{\mathbf{v_b}(a, \mathbf{V})}} = \frac{1}{r} \sqrt{\frac{ga}{2(\tan g \, \varphi - \tan g \, \epsilon)}} = q,$$

et l'on cherchera, comme on l'a déjà exposé (art. 84), quelle est, pour la valeur connue de $\frac{a}{c}$, la valeur de V_0 qui, dans la table XVI, donne la valeur de q. Ayant V_0 ou $\frac{V\cos\phi}{r}$, on la multipliera par $\frac{r}{\cos\phi}$ et on aura V.

APPLICATION. Déterminer la vitesse initiale de l'obus de 22^{cm} en usage, de 0^m2202 de diamètre et du poids de 23^k pour lequel $c=1140^m$, qui, sous l'angle de tir de $\phi=12^o$, doit atteindre un but situé à $a=350^m$ de distance horizontale et à $b=8^m$ de hauteur; on aura tang $\phi=0.21256$; tang $\epsilon=0.02286$; tang $\phi=0.18970$; $\cos\phi=0.9781$; $\frac{a}{c}=\frac{350}{1140}=0.3070$;

$$q = \frac{1}{435} \sqrt{\frac{4,9045 \cdot 350}{0,18970}} = 0,22049$$
; de là $\frac{V_1}{r} = 0.2351$ et $V = 104 = 56$.

Sans la résistance de l'air la vitesse serait 97^m2 (art. 16).

93. Angle de projection. Les coordonnées a et b étant celles d'un point de la trajectoire, elles devront satisfaire à l'équation de cette courbe (art. 91, éq. 1), qui, en y remplaçant $\frac{1}{\cos^2 \varphi}$ par $1 + \tan^2 \varphi$, deviendra

$$b = a \tan \varphi - \frac{a^2 N (a, V)}{4h} (1 + \tan \varphi^2 \varphi)$$

ou, en faisant $\frac{h}{\psi_b(x,V)} = h'$,

$$\tan^2\varphi - \frac{4h'}{a}\tan\varphi + \frac{4h'b}{a^2} + 1 = 0.$$

Cette équation donnera pour φ deux valeurs, mais la plus petite seule devra être admise, puisque le tir n'a lieu que sous de petits angles de projection; on aura donc

(10)
$$\tan \varphi = \frac{2}{a} \left(h' - \sqrt{h'(h'-b) - \frac{a^2}{4}} \right)$$

ou

$$tang \, \varphi = \frac{h'}{\frac{1}{2}a} \left(1 - \sqrt{1 - \frac{b}{h'} - \left(\frac{\frac{b}{2}a}{h'}\right)^2} \right).$$

Cette équation ne diffère de celle qui aurait lieu dans le vide qu'en ce que h est remplacé par $h' = \frac{h}{2h(x, y)}$.

Cette solution suppose qu'on peut déterminer $\mathfrak{B}(x, V)$ quoique V_1 , qui est égal à $V\cos\varphi$ et qui entre dans l'expression $\mathfrak{B}(x, V)$, contienne l'inconnue; mais, comme on l'a déjà fait observer, on a supposé l'angle de projection assez petit pour qu'on ait pu remplacer α par 1, par conséquent on peut dans $V\cos\varphi$ ou mieux dans $\alpha V\cos\varphi$ remplacer $\alpha\cos\varphi$ par l'unité, ou au moins par une valeur approchée, en s'appuyant sur celle qu'on déduirait dans le cas du vide.

APPLICATION. Déterminer l'angle de projection d'un obus de 22^{cm} pour lequel $c = 1140^m$; $a = 350^m$; $b = 8^m$; $V = 104^m$: 56; d'où tang c = 0.02286 et $\frac{a}{c} = 0.3070$.

Dans le vide, on aurait tang $\phi = 0.17988$ (art. 17) et $\phi = 10^{\circ}$ 11'8, angle qu'on sait être trop petit, on aura ainsi

$$\frac{V_1}{r} = \frac{104,56.0,9801}{435} = 0,2366;$$

à l'aide de la table X, on trouve

$$46(0,3070; 0,2366) = 1,1379$$

et comme $h = \frac{V^2}{2\sigma}$, on aura

$$h' = \frac{h}{\sqrt{9}, (a, V)} = \frac{(104, 56)^2}{2.9.809 - 1.1379} = 489,8,$$

de là.

tang
$$\phi = \frac{2}{350} \left(489.8 - \sqrt{489.8(489.8 - 8) - \frac{(350)^2}{4}} \right) = 0.20921$$
 et

$$9 = 110 49'$$
.

En prenant cette valeur pour calculer $\mathfrak{G}(a, V)$, on approcherait davantage de la valeur cherchée.

On obtient une solution beaucoup plus simple, mais un peu moins approchée, en remplaçant dans le dénominateur du second membre de l'équation 6, V, ou V cos par V, et l'on en tire

$$tang \varphi = tang \epsilon + \frac{g}{2} \frac{a}{V^2} \Re(a, V).$$

Dans le cas ci-dessus on tirerait $\phi = 11^{\circ} 27'$.

94. Vitesse et angle de projection d'un projectile qui doit passer par deux points donnés. Deux problèmes qui ont une importance particulière dans le tir plongeant ou tir à ricochet des canons et des obusiers, peuvent aussi

être résolus; le premier est le suivant: Trouver la vitesse initiale et l'angle de projection d'un projectile qui doit passer par deux points donnés.

Soient a et b les distances horizontale et verticale de l'un des points à la bouche à feu, a' et b' celles de l'autre point; V et ϕ étant la vitesse et l'angle cherchés.

Puisque la trajectoire doit passer par le point dont les coordonnées sont a et b, on aura

$$b = a \operatorname{tang} \varphi - \frac{a^2}{4h \cos^2 \varphi} \operatorname{VL}(a, V),$$

ďoù

tang
$$\phi - \frac{b}{a} = \frac{a}{4h\cos^2\phi} \Re(a, V)$$
.

De même, puisque le second point doit aussi se trouver sur la trajectoire, on aura

tang
$$\phi - \frac{b'}{a'} = \frac{a'}{4h\cos^2\phi} \mathfrak{P}(a', V);$$

retranchant ces deux équations membre à membre, on aura

$$\frac{b}{a} - \frac{b'}{a'} = \frac{a' \operatorname{VL}(a', V) - a \operatorname{VL}(a, V)}{4h \cos^2 \varphi},$$

d'où, en observant que $2gh = V^*$ et que $V\cos \varphi = V_*$,

(11)
$$\frac{V_1^2}{r^2} = \frac{g}{2r^2} \frac{a' \Re(a', V) - a \Re(a, V)}{\frac{b}{a} - \frac{b'}{a'}}.$$

Mettant à la place des fonctions $\mathfrak{B}(a, V)$ et $\mathfrak{B}(a', V)$ leurs développements et ordonnant par rapport à $\frac{V_t}{r}$, on aura une équation du second degré en $\frac{V_t}{r}$; en donnant à

M, N, les mêmes significations que précédemment, à M', N', les valeurs analogues par rapport à a' et b', et faisant $Q' = \frac{2r^2}{g} \left(\frac{b}{a} - \frac{b'}{a'}\right)$, l'on aura, en ne conservant que la valeur positive, la seule applicable,

(12)
$$\frac{\mathbf{V}_{i}}{r} = \frac{a'\mathbf{N}' - a\mathbf{N}}{\mathbf{Q} - (a'\mathbf{M}' - a\mathbf{M})} + \sqrt{\frac{a'\mathbf{F}\left(\frac{a'}{c}\right) - a\mathbf{F}\left(\frac{a}{c}\right)}{\mathbf{Q}' - (a'\mathbf{M}' - a\mathbf{M})} + \left(\frac{a'\mathbf{N}' - a\mathbf{N}}{\mathbf{Q}' - (a'\mathbf{M}' - a\mathbf{M})}\right)^{2}}.$$

Cette équation peut être mise sous la forme

(13)
$$\frac{\mathbf{V}_{1}}{r} = \frac{\frac{a'}{c}\mathbf{N}' - \frac{a}{c}\mathbf{N}}{\frac{\mathbf{Q}'}{c} - \left(\frac{a'}{c}\mathbf{M}' - \frac{a}{c}\mathbf{M}\right)}$$

$$\times \left\{1 + \sqrt{1 + \frac{\frac{\mathbf{Q}'}{c} - \left(\frac{a'}{c}\mathbf{M}' - \frac{a}{c}\mathbf{M}\right)}{\left(\frac{a'}{c}\mathbf{N}' - \frac{a}{c}\mathbf{N}\right)^{2}} \left[\frac{a'}{c}\mathbf{F}\left(\frac{a'}{c}\right) - \frac{a}{c}\mathbf{F}\left(\frac{a}{c}\right)\right]}\right\}.$$

Les divers termes de cette expression, à l'exception de Q', sont fonctions de $\frac{a}{c}$ et $\frac{a'}{c}$, et ne contiennent plus les grandeurs absolues a et a'. Une table de ces fonctions servirait donc pour la solution de tous les problèmes de ce genre, comme on l'a indiqué (art. 84, note).

Connaissant $\frac{V_1}{r}$ on déterminera les valeurs de la fonction $\mathfrak{G}(a, V)$ et celle de $\mathfrak{G}(a', V)$; alors, en divisant l'une par l'autre les équations premières, $h\cos^2\varphi$ disparaîtra et l'on

aura pour la valeur de ø

(14)
$$\tan \varphi = \frac{a' \operatorname{VS}(a', V) \frac{b}{a} - a \operatorname{VS}(a, V) \frac{b'}{a'}}{a' \operatorname{VS}(a', V) - a \operatorname{VS}(a, V)},$$

l'on en déduira ensuite la valeur de V qui est égale à $\frac{V_1}{r} \frac{r}{\cos \phi}$.

On calculera l'angle et la vitesse de projection d'une manière beaucoup plus facile et suffisamment approchée, en partant d'une valeur approximative de V et de φ , et en les employant pour calculer $\mathfrak{B}(a, V)$ ainsi que $\mathfrak{B}(a', V)$; les substituant alors dans l'équation (14), on en déduira tang φ ; on aura ainsi $\cos \varphi$ et l'on tirera la valeur de V de l'équation (11), elle sera alors

(15)
$$V = \frac{1}{\cos \varphi} \sqrt{\frac{g}{2}} \frac{a' \operatorname{Nb}(a', V) - a \operatorname{Nb}(a, V)}{\frac{b}{a} - \frac{b'}{a'}}.$$

L'opération est ainsi très-facile à effectuer.

APPLICATION. Un obus de 22^{cm} , pour lequel c=1140, doit raser la crête d'un parapet à 400^m de distance horizontale et 8^m de hauteur verticale au-dessus de la bouche de la pièce, et toucher le terre-plein du rempart à un point situé à 13^m plus loin et à 2^m274 plus bas.

On a $a = 400^{\text{m}}$; $b = 8^{\text{m}}$; $a' = 413^{\text{m}}$; $b' = 8^{\text{m}} - 2^{\text{m}}274$ = $5^{\text{m}}726$.

On trouverait dans le vide (art. 21) V = 103m:s58 et $\phi = 10^{\circ}37'6$. Avec ces valeurs on a $\frac{a}{c} = 0.3509$; $\frac{a'}{c} = 0.3622$; $\frac{b}{a} = 0.02$; $\frac{b'}{a'} = 0.01384$; $\frac{V_1}{r} = \frac{103.58}{435}0.9831 = 0.2341$; puis vb(a, V) = 1.160, vb(a', V) = 1.165 [les valeurs sont

calculées avec les tables à trois décimales (table XII)], et enfin

$$\tan g \varphi = \frac{413.1,165.0,02 - 400.1,160.0,001384}{413.1,165 - 400.1,160} = 0,18667,$$

$$\phi = 10^{\circ} 34' 5; \cos \phi = 0.9830,$$

et de là

$$V = \frac{1}{0.9830} \sqrt{4.9045 \frac{413.1,165 - 400.1,160}{0.02 - 0.01384}} = 118^{\text{m} \cdot \text{s}} 87.$$

Si l'on recommençait le calcul avec ces valeurs on ne trouverait que des différences négligeables, on peut donc s'en contenter.

95. Vitesse et angle de projection d'un projectile qui doit passer par un point donné, sous une inclinaison déterminée. Trouver la vitesse initiale et l'angle de projection d'un projectile qui doit passer par un point donné et sous une inclinaison déterminée.

Soient a et b les distances horizontale et verticale du point donné, et θ l'inclinaison de la trajectoire en ce point.

La trajectoire devant passer par le point dont les coordonnées sont a et b, on devra avoir

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} \Re(a, V),$$

d'où, en faisant $\frac{b}{a} = \tan g \epsilon$,

$$tang \varphi - tang \varepsilon = \frac{a}{4h \cos^2 \varphi} \mathfrak{P}_{\delta}(a, V).$$

La trajectoire devant avoir au point donné l'inclinaison 6, on aura (art. 91, éq. 2)

$$\tan \varphi - \tan \theta = \frac{a}{2h\cos^2\varphi} \mathfrak{I}(a, V).$$

Retranchant ces deux équations l'une de l'autre, on aura

(16)
$$\tan \theta = \frac{a}{4h\cos^2\theta} [2\mathfrak{I}(a, V) - \mathfrak{V}_b(a, V)].$$

Remplaçant $h\cos^2\varphi$ par $\frac{V_1^2}{2g}$, multipliant les deux membres par r^2 , remplaçant les fonctions $\mathfrak{B}(a,V)$ et $\mathfrak{S}(a,V)$ par leurs développements en $F\left(\frac{a}{c}\right)$ et $F'\left(\frac{a}{c}\right)$, ordonnant par rapport à $\frac{V_1}{r}$, on aura une équation du deuxième degré, de laquelle on retirera la valeur de $\frac{V_1}{r}$; faisant, pour simplifier, $F'\left(\frac{a}{c}\right) - F'\left(\frac{a}{2c}\right) = n$, $n - \left[F'\left(\frac{a}{2c}\right) - 1\right] = m$, conservant à M et N les valeurs qu'elles avaient dans le problème précédent, et faisant $Q'' = \frac{2r^2}{ga}(\tan g \cdot - \tan g \cdot \theta)$, on aura en ne conservant que la valeur positive, la seule qui convienne,

(17)
$$\frac{\mathbf{V}_{\mathbf{r}}}{\mathbf{r}} = \frac{2n - \mathbf{N}}{\mathbf{Q} - (2m - \mathbf{M})} + \sqrt{\frac{2\mathbf{F}'\left(\frac{a}{c}\right) - \mathbf{F}\left(\frac{a}{c}\right)}{\mathbf{Q} - (2m - \mathbf{M})} + \left(\frac{2n - \mathbf{N}}{\mathbf{Q} - (2m - \mathbf{M})}\right)^{2}}.$$

Cette équation peut être mise sous la forme

(18)
$$\frac{\mathbf{V}_{\mathbf{I}}}{\mathbf{r}} = \frac{2n - \mathbf{N}}{\mathbf{Q}'' - (2m - \mathbf{M})} \times \left(1 + \sqrt{1 + \frac{\mathbf{Q}'' - (2m - \mathbf{M})}{(2n - \mathbf{N})^2} \left[2\mathbf{F}'\left(\frac{a}{c}\right) - \mathbf{F}\left(\frac{a}{c}\right)\right]}\right)$$

Les divers termes de cette expression, à l'exception de

Q", sont fonctions de $\frac{a}{c}$, et ne contiennent pas la valeur absolue de a.

Connaissant $\frac{V_i}{r}$, on pourra calculer $\mathfrak{B}(a, V)$ et $\mathfrak{I}(a, V)$; puis, en divisant les deux premières équations ci-dessus membre à membre, $\cos^2 \varphi$ disparaîtra et l'on aura pour la valeur de φ

(19)
$$\tan \varphi = \frac{2\mathfrak{Z}(a, V) \tan \varphi - \mathfrak{V}(a, V) \tan \varphi}{2\mathfrak{Z}(a, V) - \mathfrak{V}(a, V)};$$

ayant tang ϕ et ϕ et on en déduira $\cos \phi$, puis la valeur de V qui sera égale à $\frac{V_t}{r} \frac{r}{\cos \phi}$.

On devra remarquer que dans le cas du tir plongeant, la valeur de θ étant négative, le second terme du numérateur sera positif.

On calculera l'angle et la vitesse de projection d'une manière beaucoup plus simple et suffisamment approchée en partant de valeurs approximatives de V et de φ , et en les employant pour calculer $\mathfrak{A}(a, V)$ ainsi que $\mathfrak{I}(a, V)$; en substituant celles-ci dans l'équation (19), on en déduira tang φ ; on aura ainsi l'angle φ et $\cos \varphi$. On tirera alors la valeur de V de l'équation 16, laquelle, en y remplaçant 2gh par V', donnera pour la valeur positive de V

(20)
$$V = \frac{1}{\cos \varphi} \sqrt{\frac{1}{2} ga \frac{2\mathfrak{J}(a, V) - \mathfrak{V}_{\mathfrak{b}}(a, V)}{\tan g \cdot - \tan g \cdot \theta}}.$$

Les valeurs approchées de φ et de V, dont on a besoin s'obtiendront facilement en résolvant le problème, sans tenir compte de la résistance de l'air (art. 22).

APPLICATION. Un obus de 22^{cm} , pour lequel $c=1\,140^m$, doit raser la crête d'un parapet à 400^m de distance horizontale et élevé de 8^m au-dessus de la bouche de l'obusier, puis pénétrer dans l'ou-

vrage sous un angle de 10° au-dessous de l'horizon, quels doivent être l'angle et la vitesse de projection?

On aura
$$a = 400^{\text{m}}$$
; $b = 8^{\text{m}}$; $\theta = 10^{\text{o}}$, et de la tange = 0.02; tange = -0.17633; $\frac{a}{c} = 0.3509$.

Prenant comme valeur approchée, calculée en faisant abstraction de la résistance de l'air (art. 22), $\varphi = 12^{\circ}12'5$; $\cos \varphi = 0.9774$; V = 102.2, on aura

$$\mathfrak{H}(a, V) = 1,159, \quad \mathfrak{Z}(a, V) = 1,243$$

et

$$\tan \varphi = \frac{2,486.0,02 + 1,159.0,17633}{2,486 - 1,159} = 0,19102;$$

$$\varphi = 10^{\circ} 48' 9, \quad \cos \varphi = 0,9823;$$

et ensuite

$$V = \frac{1}{0,9823} \sqrt{4,9045.400.\frac{2,486-1,159}{0,02-0,17633}} = 117^{m:2}2.$$

Ces valeurs sont suffisamment approchées; en les employant pour recommencer le calcul on n'arriverait qu'à des différences négligeables.

96. Remarque. Si l'on faisait abstraction de la résistance de l'air, les fonctions $\mathfrak{B}(a,V)$ et $\mathfrak{S}(a,V)$ se réduiraient à l'unité, et l'on aurait, en ne considérant que la valeur absolue de θ ,

$$tang \varphi = 2 tang \varepsilon + tang \varphi$$
,

si les angles sont petits, ils pourront remplacer leurs tangentes, et l'on verra que l'angle de tir sera à très-peu près égal à l'angle de chute augmenté du double de l'angle d'élévation du but au-dessus de l'horizon.

Si le sommet de la trajectoire devait se trouver au point m, on aurait $\theta = 0$, et dans le vide tang $\phi = 2$ tang ϵ . C'est la limite inférieure de l'angle de projection qui peut

donner un tir plongeant. Dans l'air, avec cet angle et la vitesse qui ferait passer le projectile par le point donné, ce projectile serait déjà dans la branche descendante de la trajectoire, et le tir serait plongeant.

97. Solution des divers problèmes lorsque le but est à hauteur de la bouche à feu. On peut résoudre, au moyen des mêmes formules que précédemment, mais simplifiées, les divers problèmes relatifs au tir des boulets et des obus lorsque le but est à hauteur de la bouche à feu. Appelant X la portée horizontale, faisant y=0 dans l'équation de la trajectoire et divisant ensuite par X, on aura

$$2h\sin 2\varphi = X\psi_{\bullet}(X, V).$$

Cette équation se déduirait également de la solution générale déjà obtenue (88) en y faisant $\alpha = 1$. Au moyen de cette relation, on pourra déterminer l'une de ces trois choses : la vitesse initiale V, l'angle de projection φ , ou la portée X, lorsque les deux autres seront connues.

Vitesse. La vitesse V sera, d'après ce qu'on a vu (84),

(22)
$$V = \frac{r}{\cos \varphi} \left(\frac{N}{Q - M} + \sqrt{\frac{F\left(\frac{X}{c}\right)}{Q - M} + \left(\frac{N}{Q - M}\right)^{2}} \right)$$

ou

(23)
$$V = \frac{r}{\cos \phi} \cdot \frac{N}{Q - M} \left(1 + \sqrt{1 + \frac{Q - M}{N^2} F\left(\frac{X}{c}\right)} \right).$$

Dans ces expressions on a fait pour simplifier,

$$\frac{2r^{2}\operatorname{tang}\phi}{gX} = Q, \ F\left(\frac{X}{c}\right) - F\left(\frac{X}{2c}\right) = N, \ N - \left[F\left(\frac{X}{2c}\right) - 1\right] = M.$$

On pourra déterminer V beaucoup plus facilement au moyen de la table XVI, comme on l'a fait déjà (art. 84). En faisant y=0 dans l'équation (1) de la trajectoire,

divisant par X; remplaçant $2gh\cos^2\varphi$ par V_i^2 et $\frac{V_i}{r}$ par V_o , on aura

(24)
$$\frac{4h(X, V)}{V_0^2} = \frac{2r^2 \tan g \phi}{gX}$$
 ou $\frac{V_0}{\sqrt{\frac{2}{2h}(X, V)}} = \frac{1}{r} \sqrt{\frac{gX}{2 \tan g \phi}} = q$.

A l'aide de la table XVI, et en opérant comme on l'a indiqué (art. 84), on aura la valeur de V_0 ou $\frac{V\cos\phi}{r}$, puis, en la multipliant par $\frac{r}{\cos\phi}$, on aura la vitesse cherchée V.

APPLICATION. Déterminer la vitesse initiale de l'obus de 22^{cm} en usage, de 0^m2202 de diamètre, du poids de 22^k , pour lequel on a $c=1140^m$; et qui, sous l'angle de 10^o 44′ 5 au-dessus de l'horizon, a été porté à 350^m sur un plan horizontal à hauteur de la bouche à feu.

On aura $\phi = 10^{\circ} 44' 5$; $\cos \phi = 0.9825$; $X = 350^{m}$; $\frac{X}{c} = 0.3070$; $\tan \phi = 0.18970$; puis

$$q = \frac{1}{435} \sqrt{\frac{4,9045.350}{0.18970}} = 0.22049;$$

de là (table XIV).

$$V_o = \frac{V\cos\phi}{r} = 0.2352$$
 et $V = \frac{0.2352.435}{0.9825} = 104^{m:s}1$.

Sans la résistance de l'air la vitesse serait

$$\sqrt{\frac{gX}{\sin 2\phi}} = \sqrt{\frac{9,809.350}{0,3662}} = 96^{\text{mass}}.$$

Dans le cas où la valeur de $\frac{X}{c}$ est peu considérable et où l'on peut remplacer $\mathfrak{B}(X, V)$ par $[\mathfrak{Q}_{i}(x, V)]^{i}$, c'est-à-dire par $\left[\left(1+\frac{V_{i}}{r}\right)F\left(\frac{X}{2c}\right)-\frac{V_{i}}{r}\right]^{i}$ (art. 67), on aura plus

simplement, en faisant $V = \sqrt{\frac{gX}{\sin 2\phi}}$,

(25)
$$V = V' \frac{F\left(\frac{X}{2c}\right)}{1 - \left[F\left(\frac{X}{2c}\right) - 1\right] \frac{V'\cos\phi}{r}}.$$

98. Angle de projection. Si l'angle de projection est l'inconnue, on remarquera que cet angle entre dans la valeur de $V = V\cos z$ et par conséquent dans la fonction $\mathfrak{B}(x, V)$, mais que $\cos z$ ne peut pas s'écarter beaucoup de l'unité, puisque les angles de projection sont supposés petits; on pourra donc regarder son cosinus comme égal à l'unité, sans erreur notable; en tous cas on pourra lui supposer une valeur approchée et admettre que la valeur de $\mathfrak{B}(x, V)$ est déterminée; alors on aura simplement

(26)
$$\sin 2\phi = \frac{X}{2h} \text{ Vb}(X, V) = \frac{gX}{V^2} \text{ Vb}(X, V).$$

APPLICATION. Sous quel angle doit être projeté un obus de 22^{cm} (pour lequel c = 1140), si, étant animé de la vitesse initiale $V = 104^{m}1$, il doit avoir une portée de 350^{m} ? On aura $X = 350^{m}$; V = 104.1; $\Re(x, V) = 1,1382$, et h = 552, d'où

$$\sin 2\phi = \frac{350}{2.552}1,1382 = 0,3612,$$

$$\sin 2\phi = 22 \cdot 2', \ \phi = 11 \cdot 1'.$$

La légère différence avec l'angle qu'on devrait trouver tient à la différence dans la valeur de $\mathfrak{A}(x, V)$, qui eût été moindre si à V on eût substitué V.

99. Portée. Si la portée est l'inconnue, on mettra l'équation sous la forme

(27)
$$\frac{X}{c}\mathfrak{B}(X, V) = \frac{2h\sin 2\varphi}{c} = \frac{V^2\sin 2\varphi}{g} = p;$$

à l'aide de la table XV, et en opérant comme on l'a indiqué article 83, on déterminera la valeur de $\frac{X}{c}$ qui satisfait à celle de p pour celle de V_0 ou $\frac{V\cos\phi}{r}$ qui est connue.

APPLICATION. Quelle sera la portée sur un plan horizontal à hauteur de la bouche à feu d'un obus de 22cm projeté sous l'angle de 10° 44′ 5 avec une vitesse initiale de 104m:s1? On aura

$$c = 1140^{\text{m}}, V = 104^{\text{m} \cdot 81}, \phi = 10^{\circ} 44' 5,$$

$$p = \frac{(104,1)^{\circ} \cdot 0.36352}{9.809 \cdot 1140} = 0.3523;$$

et comme $\frac{{
m V}\cos\phi}{r}=0.2350$, on trouvera au moyen de la table XIV

$$\frac{X}{c} = 0.3093$$
 d'où $X = 0.3093.1140 = 352,5$.

100. Angle de chute sur un plan horizontal. Sur un plan à hauteur de la bouche à feu on aura pour l'angle de chute, $\tan \theta = \tan \varphi - \frac{X}{2h\cos^2\varphi} S(x, V)$, ou plutôt, en ne considérant que la valeur absolue de cet angle, qui est toujours négatif, — $\tan \theta = \frac{X}{2h\cos^2\varphi} S(x, V)$ — $\tan \varphi$; or, pour atteindre un point situé à la distance X, l'angle de projection φ est donné par la relation $\tan \varphi = \frac{X}{4h\cos^2\varphi} W(X, V)$, on aura donc pour la valeur de l'angle de chute

$$-\tan\theta = \frac{X}{4h\cos^2\phi} [25(X, V) - \Re(X, V)],$$

ou, en remarquant que V = 2gh et $V = V \cos \varphi$,

(28)
$$- \tan \theta = \frac{\frac{1}{2}gX}{V.2} [25(X, V) - v_b(X, V)].$$

Lorsque les angles de projection sont très-petits on peut remplacer V, par V; dans les autres cas, il suffira de connaître approximativement la valeur de φ .

101. L'angle de chute est plus grand que l'angle de projection. En divisant l'une par l'autre les valeurs de tangθ et de tangφ on obtient

$$\frac{-\tan\theta}{\tan\phi} = 2\frac{\mathfrak{Z}(X,\,V)}{\mathfrak{V}_b(X,\,V)} - 1.$$

Or, d'après ce qu'on a vu (64), la fonction $\mathfrak{I}(X,V)$ étant composée avec la fonction représentée par la caractéristique F' comme $\mathfrak{L}(X,V)$ l'est avec celle représentée par F, et celle-ci étant toujours plus petite que la première, il s'ensuit que $\frac{\mathfrak{I}(X,V)}{\mathfrak{L}(X,V)}$ sera toujours plus grand que l'unité et que l'angle de chute θ sera toujours plus grand que l'angle de projection θ , les ouvertures étant dirigées dans des sens contraires; leur rapport sera d'autant plus grand que les portées X et les vitesses initiales V seront plus considérables.

102. Inclinaison, durée, vitesse. Dans chacun des problèmes qui précèdent on aura l'inclinaison de la trajectoire, la durée du trajet et la vitesse du projectile en un point quelconque et en particulier à l'arrivée au but, par les formules qui ont été données:

vee au but, par les formules qui ont été données :
$$\tan \theta = \tan \phi - \frac{\alpha}{2h\cos^2 \phi} \delta(a, V), \quad t = \frac{\alpha}{V\cos \phi} \mathfrak{V}(a, V),$$
$$v = \frac{V}{\mathfrak{V}(a, V)} \cdot \frac{\cos \phi}{\cos \theta}.$$

Dans le tir sous les très-petits angles de projection, pour le point de chute ou pour les points peu élevés au-dessus de la bouche à feu, $\cos \varphi$ et $\cos \theta$ différent peu l'un de l'autre et l'on aura sensiblement

$$(29) v = \frac{V}{\mathfrak{O}(a, V)}.$$

On obtiendra la vitesse initiale en fonction de la vitesse du projectile à une distance quelconque en tirant la valeur de V, de l'équation 4 de l'article 91, qui, en y remplaçant $\mathfrak{V}(x, V)$ par sa valeur, est

$$v_{i} = \frac{V_{i}}{\left(1 + \frac{V_{i}}{r}\right)e^{\frac{x}{2c}} - \frac{V_{i}}{r}},$$

d'où, après avoir divisé les deux termes du second membre par $\frac{V_1}{r}$, l'on tire

$$V_{1} = \frac{v_{1}}{\left(1 + \frac{v_{1}}{r}\right)e^{-\frac{x}{2c}} - \frac{v_{1}}{r}} \quad \text{ou} \quad V = \frac{v}{\left(1 + \frac{v_{1}}{r}\right)e^{-\frac{x}{2c}} - \frac{v_{1}}{r}} \cdot \frac{\cos \theta}{\cos \varphi}.$$

Quand on considère la résistance de l'air comme proportionnelle au carré de la vitesse, on doit poser $\frac{1}{r} = 0$,

et l'on a simplement $v = V \cdot e^{-\frac{x}{2c}}$.

Ces formules sont analogues aux précédentes, au signe près de x, et on aurait pu les en déduire directement en considérant le mouvement d'avant en arrière, c'est-à-dire en changeant le signe de x et en mettant v, ou $v\cos\theta$ à la place de V, ou $V\cos\varphi$; on rend cette proposition encore plus évidente en mettant la relation de V, à v, sous la forme

$$\left(1+\frac{r}{V_{\perp}}\right)e^{\frac{x}{2c}}=\left(1+\frac{r}{v_{\perp}}\right).$$

Dans le cas où les trajets parcourus sont très-petits le calcul de la vitesse peut être rendu beaucoup plus facile. En effet, en développant la puissance de e, après avoir effectué la division de la valeur de V, mise sous la

forme
$$\frac{e^{\frac{x}{2c}}}{1 - \frac{v_1}{a}(e^{\frac{x}{2c}} - 1)}$$
 v_1 , en négligeant la deuxième puis-

sance de $\frac{x}{2c}$ devant l'unité, et la différence insensible entre $\cos \varphi$ et $\cos \vartheta$, on aura

(30)
$$V = v \left[1 + \frac{x}{2c} \left(1 + \frac{v}{r}\right)\right]$$
 ou $V - v = \frac{x}{2c} \left(1 + \frac{v}{r}\right)v$.

Cette dernière expression donne immédiatement la quantité V - v à ajouter à la vitesse connue v; elle est particulièrement applicable à la recherche des vitesses initiales au moyen du pendule balistique ou au moyen des appareils électro-balistiques, pour ramener les vitesses mesurées à une petite distance de la bouche à feu aux vitesses effectives au point de départ.

103. Dans le tir habituel des canons et des obusiers, l'angle de projection rapporté à la ligne qui va de la bouche à seu au point à battre, est sensiblement indépendant de l'élévation de ce point. L'expression de l'angle de projection d'un projectile qui doit atteindre un objet situé à une distance et à une hauteur déterminées audessus de la bouche à seu (92) est plus compliquée que dans le cas où l'objet à battre est à la même hauteur (96); mais elle peut devenir aussi simple dans les cas ordinaires, ceux où l'angle d'élévation du but et l'angle de tir ne sont pas grands.

En effet, si a et b sont les distances horizontale et verticale du but, pour que le projectile passe par ce point on devra avoir

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} V_b(a, V).$$

Divisant par a, observant que si ϵ est l'angle d'élévation du but on a tang $\epsilon = \frac{b}{a}$, remplaçant $\cos^2 \varphi$ par $\frac{1}{1 + \tan^2 \varphi}$ on aura

$$\frac{\tan \varphi - \tan \varphi}{1 + \tan \varphi} = \frac{a}{4h} \psi(a, V).$$

Dans cette équation, le premier membre ne diffère de $\tan g(\phi - \epsilon)$ qui est $\frac{\tan g\phi - \tan g\epsilon}{1 + \tan g\phi \cdot \tan g\epsilon}$, qu'en ce que le dénominateur $\tan g^2\phi$ est remplacé par $\tan g\phi$ tang ϵ . Or, ces quantités sont très-petites si ϕ et ϵ ne sont pas grands, et leur différence est négligeable devant l'unité; on aura donc sensiblement

(31)
$$\tan (\varphi - \epsilon) = \frac{a}{4h} \operatorname{VL}(a, V).$$

D'après cette formule, l'inclinaison sous laquelle on doit tirer sera donnée relativement à la ligne qui va au but sans qu'on ait besoin de considérer l'élévation du point à battre au-dessus de la bouche à feu.

On arrive à une expression du même genre en mettant la première équation sous la forme $\frac{a}{4h}v_b(a, V) = (\tan \varphi - \tan \varepsilon)\cos^2\varphi$; alors, par une transformation déjà effectuée (art. 16), le second membre devient $\sin(\varphi - \varepsilon)\frac{\cos \varphi}{\cos \varepsilon}$; on aura donc

(32)
$$\sin(\phi - \epsilon) = \frac{a}{4h} \psi_b(a, V) \cdot \frac{\cos \epsilon}{\cos \phi};$$

or, lorsque les angles ε et φ sont petits, leurs cosinus et par conséquent le rapport de ceux-ci, diffèrent très-peu de l'unité, on aura donc sensiblement

$$\sin(\varphi - \epsilon) = \frac{a}{4h} y_b(a, V),$$

expression qui ne dépend plus que de la différence des angles φ et ε et où l'angle de tir φ — ε est rapporté à la ligne qui va au but.

C'est sur ce théorème important qu'est fondée la théorie du tir au moyen de la hausse, le plus habituellement pratiqué avec les canons et les obusiers.

L'erreur que l'on commet est une fraction de l'unité représentée par tang φ — tang φ tang φ qui est négligeable dans le tir avec de grandes vitesses et sous de petits angles au-dessus de l'horizon des canons et des obusiers. Ainsi avec un canon de campagne de 12 à la distance de 1000^{m} sur les pentes que l'on rencontre ordinairement, l'erreur correspondrait à une différence de moins de un diamètre du boulet sur l'élévation du point frappé.

§ II.

Mouvement des projectiles, abstraction faite de l'effet de la pesanteur.

104. Mouvement des projectiles, abstraction faite de l'effet de la pesanteur. L'action de la résistance de l'air s'exerçant toujours dans la direction même du mouvement du projectile ne peut changer cette direction. La pesanteur seule produit cet effet. On obtiendra les formules du mouvement dans l'air, abstraction faite de l'effet de la pesanteur, en partant des formules générales que nous avons obtenues (art. 63, éq. 7) et en y faisant g=0. L'équation de la trajectoire, après qu'on y aura remplacé h par sa valeur $\frac{V^2}{2g}$, et avoir remarqué qu'en

faisant g = 0 le second terme disparaît, deviendra

$$y = x \tan \varphi;$$

cette équation est celle d'une ligne droite, et c'est ici la ligne de projection elle-même.

La formule de l'inclinaison (art. 64, éq. 8) donnerait aussi

$$tang\theta = tang \varphi$$
.

Les valeurs de t et de v en fonction de x seront données par les deux équations (64 et 65)

$$t = \frac{x}{V\cos\phi} \left[\left(1 + \frac{\alpha V_i}{r} \right) F'\left(\frac{\alpha x}{2c} \right) - \frac{\alpha V_i}{r} \right]$$

et

$$v = \frac{V}{\left(1 + \frac{\alpha V_1}{r}\right)e^{\frac{\alpha x}{2c}} - \frac{\alpha V_1}{r}} \cdot \frac{\cos \phi}{\cos \theta}.$$

Mais comme dans ce cas le rapport α de l'arc à sa projection est égal à $\frac{1}{\cos \varphi}$, on verra que αV , est égal à V et que αx ou $\frac{x}{\cos \varphi}$ est le chemin parcouru suivant la ligne de projection; or, si l'on compte les longueurs suivant cette ligne en continuant de les représenter par x, ce qui revient à faire $\varphi = 0$, et, si l'on remarque que $\cos \theta = \cos \varphi$, on aura simplement pour le mouvement rectiligne

(33)
$$t = \frac{x}{V} \left[\left(1 + \frac{V}{r} \right) F' \left(\frac{x}{2c} \right) - \frac{V}{r} \right] = \frac{x}{V} \mathcal{O}(x, V)$$

et

(34)
$$v = \frac{V}{\left(1 + \frac{V}{r}\right)e^{\frac{x}{2c}} - \frac{V}{r}} = \frac{V}{\mathfrak{V}(x, V)}.$$

En tirant de la deuxième équation la valeur de x en fonction de v, on aura

(35)
$$e^{\frac{x}{2c}} = \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)} \quad \text{et} \quad x = 2c\log\frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)}.$$

On pourrait tirer des équations 33 et 34 la valeur de t en fonction de v; mais on peut la déduire directement de la valeur qu'on a déjà obtenue (art. 64, éq. 9), en y faisant $\alpha = 1$ et remplaçant v, et V, par v et V; on aura alors

(36)
$$t = 2c \left(\frac{1}{v} - \frac{1}{V} - \frac{1}{r} \log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)} \right).$$

Cette équation permet aussi, lorsqu'on connaît la durée du trajet entre deux points où les vitesses sont connues, de déduire le coefficient c qui dépend de l'expression de la résistance de l'air, car on a

(37)
$$2c = \frac{t}{\frac{1}{v} - \frac{1}{v} - \frac{1}{r} \log \frac{\frac{1}{v} + \frac{1}{r}}{\frac{1}{v} + \frac{1}{r}}$$

La valeur de l'étendue du trajet en fonction de la durée résultera de l'équation (33), mais elle ne peut être déduite que par approximation. On y arrivera promptement par

* M. le général Piobert était déjà arrivé à ces deux expressions de la valeur de t et de x en fonction de v, dans un Mémoire présenté en 1837 au concours pour le grand prix de mathématiques de l'Institut, par MM. Piobert, Morin et Didion.

la substitution de valeurs successives de $\frac{x}{2c}$ et au moyen des parties proportionnelles, en mettant l'équation sous la forme

$$\frac{tV}{c} = \frac{x}{c} \mathfrak{Q}(x, V).$$

Cette opération sera rendue très-facile au moyen de tables calculées des valeurs de $\omega(x, V)$ (tab. X et XII).

On obtiendra x en série en mettant pour $F'\left(\frac{x}{2c}\right)$ son développement, en prenant la valeur de $\frac{x}{2c}$ au moyen du retour des suites, et en remplaçant pour abréger $\frac{V}{r}$ par V_o ; on trouvera

$$x = tV \left[1 - \frac{1 + V_0}{2} \frac{tV}{2c} + \frac{2 + 5V_0 + 3V_0^3}{2.3} \left(\frac{tV}{2c} \right)^3 - \frac{6 + 26V_0 + 23V_0^3 + 15V_0^3}{2.3.4} \left(\frac{tV}{2c} \right)^3 + \frac{24 + 154V_0 + 340V_0^3 + 315V_0^3 + 105V_0^4}{2.3.4.5} \left(\frac{tV}{2c} \right)^4 - \text{etc.} \right].$$

Connaissant x on trouvera la vitesse du projectile au moyen de l'équation (34) ci-dessus.

On s'est assuré par des applications numériques que, dans le cas de courtes durées, cette formule est assez convergente pour que le nombre de termes donnés ci-dessus soit suffisant.

105. Les longueurs et les durées des trajets de deux projectiles différents qui passent d'une vitesse donnée à une autre vitesse donnée, sont proportionnelles au produit des

diamètres par les densités. Dans les formules (35 et 36) qui donnent x et t en fonction de la vitesse, et qui sont

$$x = 2c \log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)} \quad \text{et} \quad t = 2c \left(\frac{1}{v} - \frac{1}{V} - \frac{1}{r} \log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)}\right),$$

les valeurs de x et de t sont proportionnelles à la quantité 2c qui dépend du diamètre et de la densité du projectile, et d'une certaine fonction de la vitesse initiale et de la vitesse du projectile.

Supposons deux projectiles dont les demi-diamètres soient respectivement R et R', et les densités D et D', et rappelant que le poids P a pour valeur $P = \frac{4}{3}\pi R^3D$, on aura (56)

$$2c = \frac{4}{3} \frac{\sigma R^3 D}{\Lambda \sigma R^2 g} = \frac{4}{3} \frac{RD}{\Lambda g} \text{ et } 2c' = \frac{4}{3} \frac{R'D'}{\Lambda g}.$$

Si ces projectiles partent avec la vitesse commune V, lorsque leur vitesse sera réduite à v, ils auront parcouru des trajets dont les longueurs respectives x et x' seront

$$x = 2c \log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)} \quad \text{et} \quad \dot{x'} = 2c' \log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)};$$

le rapport de ces deux longueurs sera, vu que la valeur de A ne varie pas en passant d'un projectile à l'autre, ou que la résistance de l'air est proportionnelle à la surface d'un grand cercle,

$$\frac{x}{x'} = \frac{2c}{2c'}$$
 ou $\frac{x}{x'} = \frac{RD}{R'D'}$.

* M. le général Piobert avait déjà appliqué ce principe en 1835, dans ses leçons aux élèves de l'École d'application.

Si t et t' sont les durées de ces trajets, on aura également

$$\frac{t}{t'} = \frac{2c}{2c'} = \frac{RD}{R'D'},$$

d'où l'on déduit ce théorème important:

Lorsque deux projectiles différents partent avec la même vitesse et arrivent avec des vitesses égales, les longueurs et les durées des trajets sont proportionnelles au produit des diamètres des projectiles par leurs densités.

Si les densités sont les mêmes, comme lorsqu'il s'agit de boulets de même matière, les longueurs et les durées des trajets sont proportionnelles aux diamètres. Si les diamètres sont les mêmes, comme lorsqu'il s'agit de boulets et d'obus du même calibre, les longueurs et les durées des trajets sont proportionnelles aux densités ou aux poids.

Ce théorème fait voir immédiatement l'avantage que présente, sous le rapport des vitesses à diverses distances, la grandeur des diamètres ou des densités des projectiles. La vitesse des petits projectiles est promptement diminuée, à moins qu'ils n'aient une grande densité, comme celle du plomb des balles de fusil; et l'on n'emploie les projectiles creux en fonte, dont la densité varie de moitié à deux tiers de celle de ce métal, que sous le calibre des gros boulets.

106. Démonstration directe. On peut démontrer ce théorème d'une manière élémentaire, sans passer par les formules du mouvement des projectiles, et l'on voit qu'il est indépendant de l'expression de la résistance en fonction de la vitesse, pourvu seulement que cette résistance soit proportionnelle à la superficie d'un grand cercle du projectile.

En effet, considérons un projectile animé de la vitesse initiale V, et soit V₁, V₂, V₃..., les vitesses qu'il conserve après avoir parcouru des trajets élémentaires suc-

cessifs et très-petits, e_1 , e_2 , e_3 Si P est le poids de ce projectile, R son rayon et D sa densité, la force vive perdue durant le trajet e_1 , en passant de la vitesse V à la vitesse V_1 , sera

$$\frac{\mathrm{P}}{a}(\mathrm{V}^2-\mathrm{V}_{\scriptscriptstyle 1}{}^2).$$

Ces deux vitesses étant très-peu différentes l'une de l'autre, la résistance n'a pas sensiblement varié durant le trajet, et elle pourra être représentée par la résistance ρ_1 qui correspond à la vitesse moyenne $\frac{V+V_1}{2}$; en désignant par la caractéristique f la fonction de la vitesse qui représente la résistance, de telle sorte que celle-ci soit exprimée par $\pi R' f(\frac{V+V_1}{2})$, la quantité de travail consommée pendant le trajet e_1 sera $e_1\pi R^2 f(\frac{V+V_1}{2})$, de sorte qu'on aura, en vertu du principe des forces vives,

$$\frac{\mathbf{P}}{g}(\mathbf{V}^2 - \mathbf{V}_1^2) = 2\pi \mathbf{R}^2 e_1 \mathbf{f}\left(\frac{\mathbf{V} + \mathbf{V}_1}{2}\right),$$

de là on tire, en remplaçant P par $\frac{4}{3}$ ⊕R³D

$$e_{i} = \frac{4}{3} \frac{\sigma R^{5}D(V^{2} - V_{i}^{2})}{2\sigma R^{2}g f\left(\frac{V+V_{i}}{2}\right)} = RD \frac{2}{3g} \frac{V^{2} - V_{i}^{2}}{f\left(\frac{V+V_{i}}{2}\right)}.$$

Si l'on suppose un second projectile de rayon R' et de densité D', partant avec la même vitesse initiale v, il arrivera à la vitesse V_1 , après avoir parcouru un trajet élémentaire e_i qui aura pour expression

$$e_{\cdot'} = R'D' \frac{2}{3g} \frac{V^2 - V_{\bullet}^2}{f\left(\frac{V + V_{\bullet}}{2}\right)};$$

de ces deux équations l'on tire, puisque la fonction de V et de V, est la même,

$$\frac{e_{i}'}{e_{i}} = \frac{R'D'}{RD} \quad \text{ou} \quad e_{i}' = e_{i} \frac{R'D'}{RD}.$$

Il est évident que pour les trajets élémentaires suivants l'on aurait également

$$e_2' = e_2 \frac{\mathrm{R'D'}}{\mathrm{RD}}, \quad e_3' = e_3 \frac{\mathrm{R'D'}}{\mathrm{RD}}, \quad e_4' = e_4 \frac{\mathrm{R'D'}}{\mathrm{RD}},$$

et ainsi des autres; en faisant la somme membre à membre, on aura

$$e_1' + e_2' + e_3' + e_4' + \text{etc.} = (e_1 + e_2 + e_3 + e_4 + \text{etc.}) \frac{R'D'}{RD},$$

ou, en appelant E la somme des trajets élémentaires $e_1 + e_2 +$ etc., c'est-à-dire l'étendue entière du trajet du premier projectile, lorsque la vitesse V sera réduite à v; et de même E' la somme des trajets élémentaires $e_1' + e_2' + e_3' +$ etc., ou l'étendue entière du trajet du second projectile, lorsque la vitesse V sera réduite à la même valeur v, on aura

$$E' = E \frac{R'D'}{RD}$$
 ou $\frac{E'}{E} = \frac{R'D'}{RD}$;

par conséquent, le rapport de l'étendue des trajets de deux projectiles est égal à celui des produits des diamètres, par les densités.

Quant au rapport des durées des trajets, on remarquera que les trajets élémentaires e, et e, étant parcourus avec la même vitesse moyenne $\frac{V+V_i}{2}$, les durées élémentaires t, t, seront proportionnelles aux longueurs de ces mêmes

trajets, ou aux rapports des produits des calibres par les densités, de sorte qu'on aura

$$\frac{t_i'}{t_i} = \frac{e_i'}{e_i} = \frac{R'D'}{RD} \quad \text{d'où} \quad t_i' = t_i \frac{R'D'}{RD};$$

on aura de même pour les durées élémentaires suivantes

$$t_2' = t_2 \frac{R'D'}{RD}, \quad t_3' = t_3 \frac{R'D'}{RD}....,$$

et ainsi des autres; de sorte qu'en appelant T' et T, les durées totales des trajets, pour passer de la vitesse V à la vitesse v, on aura

$$T' = T \frac{R'D'}{RD}$$
 ou $\frac{T'}{T} = \frac{R'D'}{RD}$.

Par conséquent aussi, le rapport des durées des trajets des deux projectiles est égal à celui des produits des diamètres par les densités.

107. Tables fondées sur le principe précédent. Si l'on connaît pour un projectile l'étendue et la durée du trajet qu'il parcourt pour passer d'une vitesse donnée à une série de vitesses différentes, suffisamment rapprochées et décroissant, pour plus de simplicité, par quantités égales entre elles, on aura les longueurs et les durées pour un autre projectile quelconque en multipliant les premières par le rapport des produits des diamètres par les densités ou par le rapport $\frac{2d}{2c}$. On trouvera au moyen des différences et des parties proportionnelles, ce qui se rapporte aux vitesses comprises entre les nombres de la table. On obtiendrait plus de facilités dans les applications, trop simples, d'ailleurs, pour qu'il soit nécessaire de les détailler ici, en calculant une table pour une valeur de 2c exprimée

par un nombre rond dans les limites des valeurs de 2c, 1000^m par exemple; on la rendrait ainsi indépendante du coefficient du carré de la vitesse dans l'expression de la résistance de l'air; mais elle dépendrait encore du rapport de ce coefficient à celui du cube de la vitesse.

En conservant A pour coefficient du premier terme de l'expression de la résistance de l'air, on devra avoir $\frac{4 \text{ RD}}{3 \text{ Ag}} = 1000$, ce qui particularise le projectile auquel se rapporte la table.

Cette table étant calculée pour une valeur déterminée de $\frac{1}{r}$ il faudra, dans le cas d'une autre valeur, regarder les nombres de la colonne des vitesses comme augmentés dans le même rapport que la nouvelle valeur; alors le rapport $\frac{V}{r}$ resterait le même, et la valeur de x qui est x

$$2c \log \frac{1+\frac{r}{V}}{1+\frac{r}{r}} \text{ ne dépendrait plus que de } \frac{v}{r} \text{ et } \frac{V}{r}.$$

Dans la valeur de t qui est

$$t = 2c \left(\frac{1}{v} - \frac{1}{V}\right) - \frac{x}{r}$$
 ou $t = \frac{2c}{r} \left(\frac{r}{v} - \frac{r}{V} - \log \frac{1 + \frac{r}{v}}{1 + \frac{r}{V}}\right)$

ou bien encore

$$t = \frac{2c}{r} \left\{ \left(1 + \frac{r}{v} \right) - \left(1 + \frac{r}{\overline{V}} \right) - \left[\log \left(1 + \frac{r}{v} \right) - \log \left(1 + \frac{r}{\overline{V}} \right) \right] \right\},$$

le second facteur ne dépend que du rapport $\frac{r}{v}$ et $\frac{r}{V}$, mais le premier facteur variant en raison inverse de r, on voit que le tableau des durées relatives à $2c = 1000^{m}$ et à la

valeur de $\frac{1}{r}$ des tables ne pourrait servir pour une autre valeur supposée égale à $\frac{1}{r'}$; il pourrait cependant être utilisé à la condition de regarder la quantité 2c comme ayant varié aussi dans le même rapport que r et de supposer qu'elle a pour valeur $2c' = 1000\frac{r'}{r}$.

Nous ne donnons pas de tables de cette espèce à cause de l'inconvénient signalé. Les tables des valeurs de © et O (Tab. X et XII), dont l'application ne dépend pas des coefficients, les remplacent avec avantage sous tous les rapports.

108. Application au tir à grande vitesse sous de trèspetits angles de projection. Tant que les portées ne sont pas très-considérables, que le projectile est animé d'une grande vitesse et que par suite l'angle de projection est très-petit, la trajectoire est très-allongée dans le sens horizontal, et son inclinaison au-dessus ou au-dessous de l'horizon est toujours très-petite; on peut donc, entre certaines limites et sans beaucoup d'erreur, négliger la composante verticale de la résistance de l'air; la composante horizontale sera alors la seule force qui agira suivant cette direction, et la pesanteur la seule force verticale. Dans cette hypothèse, ces deux forces seront indépendantes l'une de l'autre; la première sera considérée comme on le fait dans le mouvement rectiligne, et la seconde comme si la résistance de l'air n'existait pas.

Cela posé; soit toujours φ l'angle de projection du mobile, V la vitesse initiale, x et y les coordonnées d'un point quelconque de la trajectoire, et v la vitesse du projectile en ce point; faisons $V\cos\varphi=V$, et conservons à c et à r les mêmes valeurs que précédemment.

Sans l'action de la pesanteur, le projectile se serait mû

suivant la direction initiale OA (Fig. 17), par conséquent, après avoir parcouru une longueur OB dont la projection horizontale est x, il se sera élevé de BC = $x \tan \varphi$; mais pendant la durée t du trajet, l'action de la pesanteur aura fait abaisser le projectile de la quantité Bm égale à $\frac{1}{2}gt^2$, et par conséquent la hauteur mC ou y, au-dessus de l'horizontale, sera $y = x \tan \varphi - \frac{1}{2}gt^2$; or, V. étant la vitesse initiale du mobile suivant la ligne horizontale, on aura $t = \frac{x}{V_i} \otimes (x, V)$, et par conséquent pour l'équation de la trajectoire, en faisant $V^2 = 2gh$,

$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} [\mathfrak{O}(x, \mathbf{V})]^2.$$

En comparant cette valeur de y à la valeur exacte (art. 63, éq. 7), on voit qu'elle en diffère en ce que la fonction $\mathfrak{B}(x, V)$ est remplacée par la fonction $[\mathfrak{D}(x, V)]^2$. Elle s'en éloigne plus que celle que l'on obtiendrait en remplaçant $\mathfrak{B}(x, V)$ par $[\mathfrak{D}_{-}(x, V)]^2$, dont on s'est déjà servi (85, 87, 97), après avoir calculé la différence qu'elles présentent avec $\mathfrak{B}(x, V)$ (67). Cette méthode n'a, d'ailleurs, qu'un avantage, celui de se prêter facilement à la construction de la trajectoire par points, lorsque l'on a la loi du mouvement, abstraction faite de la pesanteur; mais, au moyen des tables des valeurs de $\mathfrak{B}(x, V)$, la première formule est à la fois plus facile et plus exacte.

La manière dont Lombard a traité le mouvement des boulets dans l'air revient à celle-ci; mais cet auteur supposait la résistance de l'air proportionnelle au carré de la vitesse; de plus, il ne prenait que les premiers termes du développement de l'exponentielle, de sorte que la for-

^{*} Traité du mouvement des projectiles, appliqué au tir des bouches à feu, page 109 et suivantes.

mule comportait trois causes d'erreurs. On ne doit donc pas s'étonner si, dans les applications qu'on a faites de ces formules, on a trouvé peu d'accord avec l'expérience.

§ III.

Eypothèse de la résistance de l'air, proportionnelle au earré de la vitesse du mobile.

109. Circonstances dans lesquelles la résistance de l'air peut être représentée par un seul terme proportionnel au carré de la vitesse du projectile. — Simplifications qui en résultent. Lorsque l'angle de projection d'un mobile audessus de l'horizon n'est pas plus grand que celui que permet le tir des canons et des obusiers, on arrive, comme on a vu (§ I) à une solution assez facile des divers problèmes qu'on peut se proposer, sur le tir de ces bouches à feu; mais les formules se simplifient beaucoup encore, dans le cas où la résistance peut être exprimée par un seul terme proportionnel au carré de la vitesse.

Lorsque le projectile lancé sous un petit angle de projection n'a pas un grand trajet à parcourir, que sa vitesse initiale n'est pas considérable, et qu'en même temps il n'est ni de faible calibre ni de faible densité, il en résulte que sa vitesse diminue peu du commencement du trajet à la fin. Dans ce cas, il est permis de simplifier l'expression de la résistance de l'air et de la réduire à un seul terme proportionnel au carré de la vitesse.

Dans l'expression générale de la résistance de l'air $\rho = A\pi R^2 v^2 (1+v^2)$, la valeur de $\frac{1}{r}$ est une très-petite fraction, de sorte que, si v n'est pas grand, le rapport $\frac{V}{r}$ ne sera qu'une petite fraction; si en même temps il varie

peu du commencement à la fin du trajet, on pourra, sans grande erreur, remplacer sa valeur variable d'un point à l'autre par une valeur moyenne regardée comme constante.

Les circonstances de fort calibre, de faible vitesse et de distance peu considérables, se trouvent particulièrement réunies dans le tir très-plongeant ou tir à ricochet; ce tir ne s'exécute qu'avec les boulets ou les obus de fort calibre, avec des vitesses assez petites pour que le projectile soit dans sa branche descendante lorsqu'il arrive vers le point à battre et lorsqu'en même temps les distances de la bouche à feu sont limitées, à la fois, par les circonstances du service et par la crainte des trop grandes déviations; dans ce cas, $\frac{x}{c}$ ne sera qu'une petite fraction; le rapport de la vitesse initiale V à la vitesse d'arrivée v', qui, d'après l'expression de la force accélératrice de la résistance de l'air $\rho' = \frac{v^2}{2c} \left(1 + \frac{v}{r}\right)$, est $\frac{V}{v'} = \left[\left(1 + \frac{V_1}{r}\right)e^{\frac{x}{2c}} - \frac{V_1}{r}\right] \frac{\cos\theta}{\cos\theta}$, sera peu différent de l'unité; il résulte de là que $(1+\frac{v}{z})$ dans l'expression de la résistance de l'air, pourra être remplacé par sa valeur moyenne $1 + \frac{1}{r} \frac{V + v'}{2}$; de sorte qu'en faisant A' = A $\left(1 + \frac{1}{r} \frac{V + v'}{2}\right)$, cette résistance aura pour expression $\rho = A'\pi R^2 v^2$. La valeur de A' comme celle de v', et dans certains cas celle de V devront être déterminées au moins approximativement avant l'application des formules.

Soit, pour exemple, un boulet sphérique de 24, lancé avec une vitesse initiale de $120^{m:s}$, à une distance de 350^{m} . En prenant $\Lambda = 0.027$, $\frac{1}{r} = 0.0023$, pour la résistance de

l'air, 12^k01 pour le poids du boulet, $2R = 0^m1485$ pour son diamètre, $g = 9^m809$, on aura $2c = 2674^m$, $\frac{x}{2c} = 0,1139$ et v' = 104,0; les valeurs extrêmes de $\left(1 + \frac{V}{r}\right)$ seront 1,276 et 1,238; elles diffèrent de leur valeur moyenne 1,257 l'une et l'autre de 0,019 ou $\frac{1}{16}$ de cette moyenne, en plus ou en moins. Cette faible diffèrence, dans l'expression de la résistance de l'air, ne peut apporter dans la forme de la trajectoire et dans les relations des divers éléments entre eux, que des erreurs généralement négligeables.

On peut donc, dans des circonstances semblables à celles de cet exemple, remplacer l'expression binôme de la résistance par l'expression monôme, supposer celle-ci proportionnelle au carré de la vitesse et déterminer le coefficient de cette résistance d'après la vitesse moyenne qui devra être connue au moins approximativement. Dans l'exemple cité, on aurait A' = 1,257A, et par conséquent $\rho = 0,03395\pi R^2v^2$ et $2c' = \frac{2c}{1,257} = 2127m^3$, et en général pour l'expression de la résistance de l'air $\rho = A'\pi R^2v^2$, et, pour la force retardatrice, $\frac{v^2}{2c'}$, en faisant $2c' = \frac{P}{aA'\pi R^2}$.

La quantité c' est ici la hauteur due à la vitesse déterminée par la condition que la résistance qu'éprouve le projectile dans l'air est égale à son poids; car si u est cette vitesse, on devra avoir $A'\pi R'u' = P$, ce qui donne u' = 2gc'.

Cela posé, en suivant la même marche que précédemment, on arriverait à l'équation de la trajectoire, à l'inclinaison de cette courbe en un point quelconque, à la durée du trajet et à la vitesse du projectile, et ensuite à la solution des divers problèmes que l'on doit se proposer dans l'espèce de tir auquel l'hypothèse peut s'appliquer; mais il est plus simple de déduire la solution de ces questions des résultats auxquels on est déjà arrivé (§ I), en y supposant partout $\frac{1}{r} = 0$, et en remplaçant c par la valeur de c' calculée pour le cas dont il s'agit; alors, les fonctions composées $\mathfrak{B}(x, V)$ et $\mathfrak{F}(x, V)$, se réduisent respectivement à $F(\frac{x}{c'})$ et à $F'(\frac{x}{c'})$; les fonctions $\mathfrak{D}(x, V)$ et $\mathfrak{D}(x, V)$ à $F'(\frac{x}{2c'})$ et à $e^{\frac{x}{2c'}}$.

110. Formules qui résultent de l'hypothèse de la résistance de l'air proportionnelle au carré de la vitesse. D'après ce qui vient d'être exposé, on trouve pour l'équation de la trajectoire, l'inclinaison, la durée et la vitesse du projectile, en conservant les mêmes notations que précédemment, mais en accentuant la valeur de c pour la distinguer,

$$\begin{split} y &= x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} F\left(\frac{x}{c'}\right); & \tan \theta = \tan \varphi - \frac{x}{2h \cos^2 \varphi} F\left(\frac{x}{c'}\right), \\ t &= \frac{x}{V \cos \varphi} F'\left(\frac{x}{2c'}\right) & \text{et} \quad v = V \frac{\cos \varphi}{\cos \theta} \cdot \frac{1}{e^{\frac{x}{2c'}}}. \end{split}$$

Cette équation de la trajectoire et ces autres valeurs sont au fond les mêmes que celles qu'ont données divers auteurs *; seulement, elles sont devenues beaucoup plus simples par l'introduction des fonctions représentées par *les caractéristiques F et F', qui tiennent compte de la résistance de l'air.

^{*} Besout, Cours de Mécanique, nº 520. — Poisson, Cours de Mécanique, tome 1. — Persy, Cours de Balistique, lithographie de l'École d'application, à Metz, 1833. — D'Obenheim et divers auteurs (Aide-Mémoire d'Artillerie, 1844, page 641).

La solution des divers problèmes que l'on peut avoir à résoudre, s'obtiendra de même, en faisant $\frac{1}{r} = 0$, dans les formules déjà obtenues (§ I).

111. Solution de divers problèmes entre les portées, les vitesses initiales et les angles de projection. — Le but étant à hauteur de la bouche à feu. Lorsque le but est à hauteur de la bouche à feu, on a y=0; appelant X la portée horizontale, l'équation de la trajectoire, après avoir été divisée par X, deviendra

$$0 = tang \phi - \frac{X}{4h \cos^2 \phi} F\left(\frac{X}{c'}\right),$$

d'où l'on tire

$$\sin 2\varphi = \frac{X}{2h} F\left(\frac{X}{c'}\right), \ h = \frac{X}{2\sin 2\varphi} F\left(\frac{X}{c'}\right) \text{ ou } V = \sqrt{\frac{gX}{\sin 2\varphi} F\left(\frac{X}{c'}\right)}.$$

Puisque pour obtenir une portée donnée, l'angle ou la vitesse de projection doivent être plus grands dans l'air que dans le vide, il s'ensuit que, sous des angles et des vitesses de projection égaux, la portée dans l'air est moindre que dans le vide; on obtiendra cette portée au moyen de la première ligne de la table XIV et de l'équation cidessus mise sous la forme $\frac{X}{c'}F\left(\frac{X}{c'}\right)=\frac{2h}{c'}\sin 2\varphi$. On l'obtiendra en série par le développement de $F\left(\frac{X}{c'}\right)$ et par le retour des suites, lorsque $\frac{X'}{c'}$ sera une petite fraction. En appelant X' la portée dans le vide, qui est $2h\sin 2\varphi$, on aura

$$X = X' \left[1 - \frac{1}{3} \frac{X'}{c'} + \frac{5}{36} \left(\frac{X'}{c'} \right)^2 - \frac{17}{270} \left(\frac{X'}{c'} \right)^3 + \frac{193}{6480} \left(\frac{X'}{c'} \right)^4 + \frac{521}{45360} \left(\frac{X'}{c'} \right)^5 + \text{etc.} \right].$$

Durées. Sous des angles et des vitesses de projection

égaux, les durées des trajets dans le vide et dans l'air sont respectivement $T'=\frac{X'}{V\cos\phi}$ et $T=\frac{X}{V\cos\phi}F'\left(\frac{X}{2c'}\right)$; et, comme on a $XF\left(\frac{X}{c'}\right)=2h\sin2\phi=X'$; on aura

$$\frac{T}{T} = \frac{F\left(\frac{X}{c'}\right)}{F'\left(\frac{X}{2c'}\right)} = \frac{1 + \frac{1}{3}\frac{X}{c'} + \frac{1}{3.4}\frac{X^2}{c'^2} + \frac{1}{3.4.5}\frac{X^3}{c'^3} + \text{etc.}}{1 + \frac{1}{2}\frac{X}{2c'} + \frac{1}{2.3}\frac{X^2}{4c'^2} + \frac{1}{2.3.4}\frac{X^3}{8.c'^3} + \text{etc.}}$$

En comparant le numérateur et le dénominateur terme à terme, on voit que le premier est plus grand que le second; par conséquent la durée du trajet est plus grande dans le vide que dans l'air; le rapport de ces durées, déduit de l'expression ci-dessus, est, en effectuant la division,

$$1 + \frac{1}{12} \frac{X}{c'} + \frac{1}{48} \frac{X^2}{c'^2} + \frac{1}{360} \frac{X^3}{c'^3} + \text{etc.}$$

Sommet de la trajectoire. Appelant x' et y' les coordonnées du sommet de la trajectoire, observant qu'en ce point l'inclinaison est nulle on aura, en remplaçant les fonctions F et F' par leurs expressions en $e^{\frac{x'}{e'}}$, les deux équations

$$y' = x' \tan \varphi - \frac{c'^2}{2h \cos^2 \varphi} \left(e^{\frac{x'}{C'}} - \frac{x'}{c'} - 1 \right)$$

et

$$0 = \tan \varphi - \frac{c'}{2h\cos^2\varphi} \left(e^{\frac{x'}{C'}} - 1 \right),$$

d'où l'on tire

$$x' = c' \log \left(1 + \frac{h}{c'} \sin 2\varphi\right)$$

et

$$y' = x' \left(\tan \varphi + \frac{c'}{2h \cos^2 \varphi} \right) - c' \tan \varphi.$$

Angle de chute. Il y a entre l'angle de chute et l'angle de projection le rapport suivant, déduit de celui qui a déjà été donné (101)

$$\frac{-\tan\theta}{\tan\theta} = \frac{2F'\left(\frac{X}{c'}\right)}{F\left(\frac{X}{c'}\right)} - 1$$

ou

$$\frac{-\tan \theta}{\tan \theta} = 1 + \frac{1}{3}\frac{X}{c'} + \frac{1}{18}\frac{X^2}{c'^2} + \frac{1}{270}\frac{X^3}{c'^3} + \frac{1}{3240}\frac{X^4}{c'^4} + \text{etc.}$$

112. Le but n'étant pas à hauteur de la bouche à feu. Lorsque le point à battre n'est pas à hauteur de la bouche à feu, a et b étant les coordonnées de ce point, on a

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} F\left(\frac{a}{c'}\right),$$

en faisant $\frac{b}{a} = \tan a$ on aura, si la vitesse initiale est l'inconnue,

$$h = \frac{a}{4\cos^2 \varphi(\tan \varphi - \tan \varphi)} F\left(\frac{a}{c'}\right)$$

ou

$$V = \sqrt{\frac{ag}{2\cos^2\varphi(\tan\varphi - \tan\varphi)}} F\left(\frac{a}{c}\right),$$

et par des transformations connues (16)

$$h = \frac{a}{4\sin(\varphi - \varepsilon)} \cdot \frac{\cos \varepsilon}{\cos \varphi} F\left(\frac{a}{c'}\right) \text{ ou } V = \sqrt{\frac{ag}{2\sin(\varphi - \varepsilon)} \cdot \frac{\cos \varepsilon}{\cos \varphi} F\left(\frac{a}{c'}\right)}.$$

Si l'angle de projection φ est l'inconnue, on aura deux

valeurs dont la plus petite seule peut être admise, et, en faisant $\frac{h}{F\left(\frac{a}{c'}\right)} = h'$, cette valeur sera

$$\tan \varphi = \frac{2h'}{a} - \frac{2}{a} \sqrt{h'(h'-b) - \frac{\alpha'}{4}}.$$

113. Lorsque la trajectoire doit passer par deux points donnés dont les coordonnées sont a et b, a' et b', on tire la vitesse et l'angle de projection des deux équations qui doivent exister en même temps,

$$b = a \tan \phi - \frac{a^2}{4h \cos^2 \phi} F\left(\frac{a}{c'}\right), \quad b' = a' \tan \phi - \frac{a'^2}{4h \cos^2 \phi} F\left(\frac{a'}{c'}\right)$$

ou

$$\tan \varphi - \frac{b}{a} = \frac{aF\left(\frac{a}{c'}\right)}{4h\cos^2\varphi}, \quad \tan \varphi - \frac{b'}{a'} = \frac{a'F\left(\frac{a'}{c'}\right)}{4h\cos^2\varphi}$$

En divisant l'une par l'autre ou en retranchant l'une de l'autre membre à membre, on obtient respectivement

$$\tan \varphi = \frac{\frac{a}{c'} F\left(\frac{a}{c'}\right) \frac{b'}{a'} - \frac{a'}{c'} F\left(\frac{a'}{c'}\right) \frac{b}{a}}{\frac{a}{c'} F\left(\frac{a}{c'}\right) - \frac{a'}{c'} F\left(\frac{a'}{c'}\right)} \quad \text{et} \quad h = \frac{\frac{a'}{c'} F\left(\frac{a'}{c'}\right) - \frac{a}{c'} F\left(\frac{a}{c'}\right)}{4\left(\frac{b}{a} - \frac{b'}{a'}\right) \cos^2 \varphi},$$

puis

$$V = \sqrt{2gh}$$
.

Lorsque la trajectoire doit passer par un point donné dont les coordonnées sont a et b et faire en ce point un angle θ avec l'horizon, on déduira la vitesse et l'angle de projection des deux équations suivantes

$$b = a \tan \theta - \frac{a^2}{4h \cos^2 \theta} F\left(\frac{a}{c'}\right) \text{ et } \tan \theta = \tan \theta - \frac{a}{2h \cos^2 \theta} F'\left(\frac{a}{c'}\right),$$

qui doivent exister ensemble. En faisant $\frac{b}{a} = \tan g$, on aura

$$\tan \phi - \tan \phi = \frac{aF\left(\frac{a}{c'}\right)}{4h\cos^2\phi} \text{ et } \tan \phi - \tan \theta = \frac{aF'\left(\frac{a}{c'}\right)}{2h\cos^2\phi}.$$

Divisant l'un par l'autre et retranchant l'un de l'autre les membres de ces équations on obtiendra pour φ et pour h, puis pour $V = \sqrt{2gh}$,

$$\tan \varphi = \frac{2F'\left(\frac{a}{c'}\right)\tan \varphi - F\left(\frac{a}{c'}\right)\tan \varphi}{2F'\left(\frac{a}{c'}\right) - F\left(\frac{a}{c'}\right)}$$

et

$$h = \frac{a}{4\cos^2\phi} \cdot \frac{2F'\left(\frac{a}{c'}\right) - F\left(\frac{a}{c'}\right)}{\tan g \cdot \sin g \cdot \cos g}.$$

Dans chacun de ces problèmes, on déterminera la durée et la vitesse du projectile, par les valeurs de t et de v données plus haut (111).

La solution des principaux problèmes qu'on peut se proposer dans le tir plongeant, se trouve ainsi très-facile dans l'hypothèse de la résistance de l'air proportionnelle au carré de la vitesse du projectile; mais il est nécessaire, comme on l'a dit, de déterminer la valeur de c' pour chaque cas particulier, ce qui force à chercher, quand elles ne sont pas données, la vitesse initiale et la longueur du trajet, d'où dépend la vitesse moyenne et par suite la valeur de A' et celle de c'. Cette méthode n'est pas sans

inconvénients, à cause des opérations préliminaires qu'elle exige; on trouvera préférable, en général, d'employer les formules directes (§ I) qui ne demandent aucun calcul préparatoire.

114. Inexactitude de l'hypothèse dans le tir à grandes vitesses. La méthode que l'on vient d'indiquer, pour le cas des petites vitesses, des gros projectiles et des courtes distances, ne pourrait être appliquée, sans des erreurs notables, lorsque ces circonstances ne sont pas réunies; tel est le tir des boulets aux grandes distances et avec les vitesses qu'on leur imprime ordinairement; la vitesse du projectile varie trop rapidement, et le terme proportionnel au cube de la vitesse a une trop grande importance pour qu'on puisse ne considérer que le carré de la vitesse. Ainsi, un boulet de 24 ayant 0m1485 de diamètre, pesant 12k01, et animé d'une vitesse initiale de 500m:s, conserverait, d'après la loi de résistance de l'air que nous avons trouvée, aux distances de 433^m, 866^m, 1299^m, 1732^m, des vitesses de 360m:s, 270m:s, 212m:s, 169m:s. La valeur du coefficient $1 + \frac{v+v'}{2r}$ serait respectivement 1,988, 1,882, 1,818, 1,768, et, par suite, celle de A' qui doit multiplier $\pi R^2 v^2$, devrait être respectivement aussi 0,0537, 0,0502, 0,0491, 0,0472, et aller ainsi constamment en diminuant.

Si l'on prend, par exemple, la plus petite portée, celle de $433^{\rm m}$, pour déterminer la vitesse initiale d'après l'angle de projection observé, on devra adopter le coefficient A'=0.0537, et on retrouvera, à très-peu près, la vitesse initiale de $500^{\rm m}$:s. Si l'on cherchait la vitesse initiale d'après la portée de $866^{\rm m}$, et l'angle de projection observé, on devrait se servir du coefficient 0.0502; mais si l'on conserve le coefficient 0.0537, qui est trop grand pour ce dernier cas, on trouvera une vitesse initiale plus

grande que 500^{m·s}. Il en sera de même, avec des différences de plus en plus grandes, pour les distances de 1299^m et 1732^m. Par conséquent, lorsqu'on suppose la résistance proportionnelle au carré de la vitesse, et qu'on déduit les vitesses initiales des portées observées, on est conduit à trouver des vitesses initiales d'autant plus grandes, que les portées ou que les angles de projection, dont elles sont déduites, sont plus considérables '.

Il résulte, de là, que les formules qui ont été données en premier lieu (§ l), présentent à la fois et dans tous les cas, plus d'exactitude et plus de simplicité.

'C'est ce qui est arrivé presque constamment, notamment dans les expériences d'artillerie exécutées à Gavre, de 1830 à 1840, par ordre de M. le Ministre de la marine (Imprimerie royale, 1841), dans celles de Toulouse, en 1833, et dans celles de Valence, en 1843 (Archives du dépôt central de l'artillerie); c'est à tort qu'on en a conclu que la vitesse d'un boulet lancé avec des charges égales de poudre, augmentait avec l'angle de projection (Aide-Mémoire d'artillerie, 1844, page 430).

SECTION V.

MOUVEMENT DES PROJECTILES

EN SUPPOSANT LA RÉSISTANCE DE L'AIR PROPORTIONNELLE AU GARRÉ DE LA VITESSE DU MOBILE.

§ I.

Propriétés générales des trajectoires.

115. Exposé. Les expériences qui ont été faites pour déterminer la loi de la résistance que l'air fait éprouver aux projectiles en mouvement (sect. II), ont montré que cette résistance peut être représentée par deux termes, respectivement proportionnels, au carré et au cube de la vitesse; le second de ces termes a une valeur assez grande pour qu'aux vitesses dont sont généralement animés les boulets son influence ne soit pas moindre que celle du premier terme. Il n'est donc pas négligeable.

On a vu que quand les vitesses sont faibles, les distances peu considérables, les angles de tir peu élevés, et lorsqu'en même temps les projectiles sont de fort calibre, la vitesse éprouve peu de variation depuis le commencement du trajet jusqu'à la fin, et que l'on peut, avec une exactitude suffisante (109), représenter la résistance de l'air par un seul terme proportionnel au carré de la vitesse, à la condition cependant de déterminer le coefficient de cette résistance dans chaque cas particulier. Mais cette exactitude n'existe plus dans le cas du tir habituel des boulets sous de grandes vitesses initiales (114). Il en est de même dans le cas des grands

angles de projection, comme celui du tir des bombes, parce que l'action de la pesanteur sur le projectile se joignant à celle de la résistance de l'air pour en retarder la vitesse dans la branche ascendante, la vitesse varie beaucoup depuis le point de départ jusqu'au sommet de la courbe; elle varie de même dans la branche descendante et la variation est d'autant plus grande que l'angle de projection est plus élevé au-dessus de l'horizon et que la vitesse initiale est plus considérable.

On ne peut donc pas, dans ce cas, regarder la résistance de l'air comme proportionnelle au carré de la vitesse dans toute l'étendue de la trajectoire, même en adoptant un coefficient particulier pour chaque cas.

Or, c'est en se fondant sur cette loi que jusqu'à présent les géomètres ont traité le problème de la balistique. Les résultats de leurs savantes recherches deviennent par ces raisons moins susceptibles d'application; mais cependant, sous le rapport analytique surtout, ils conservent encore leur première valeur, à cause de l'analogie qu'ils présentent dans bien des cas avec les formules fondées sur une loi exacte; aussi, pour compléter ce Traité de balistique, nous croyons devoir donner un résumé des travaux de ces savants géomètres. D'ailleurs, quelques-uns de ces travaux, dus à une haute analyse, et encore manuscrits, présentent un grand intérêt, et plusieurs méthodes peuvent recevoir de nouveaux perfectionnements; en même temps les notations que nous avons adoptées et les tables que nous avons calculées, donnent à la plupart des formules une expression plus simple et en rendent l'application beaucoup plus facile.

116. Diverses méthodes d'approximation. Les méthodes qu'ont employées les géomètres pour résoudre le problème de la balistique sont de trois espèces. Par les unes, on arrive à des relations exactes entre certaines quantités qui appartiennent à la trajectoire, et au moyen desquelles on peut arriver aux relations dont on a besoin en calculant numériquement les diverses parties de cette trajectoire. L'approximation peut être augmentée à volonté en multipliant le nombre des parties et les calculs numériques. Telle est la méthode des quadratures et la méthode d'Euler.

Par d'autres méthodes, on obtient les valeurs qu'on cherche en séries développées suivant les puissances des quantités données. Elles présentent une exactitude d'autant plus grande que les séries sont plus convergentes et qu'on emploie un plus grand nombre de termes. Ces méthodes ont été successivement employées par Lambert, Borda, Tempelhof, et en dernier lieu par Français et quelques autres géomètres.

La troisième méthode consiste à remplacer les expressions qui se refusent à l'intégration par des expressions approchées qui soient intégrables, de façon qu'on arrive à des relations en termes finis entre les quantités que l'on a besoin de considérer; les valeurs qu'on obtient ainsi ne sont qu'approchées et l'on n'est pas le maître d'augmenter à volonté le degré de l'approximation; l'excellence de la méthode dépend du choix plus ou moins heureux de l'expression introduite; celle-ci doit à la fois donner une exactitude suffisante à l'objet qu'on se propose et rendre les calculs assez faciles dans les applications numériques.

Telle est la méthode ingénieuse imaginée par Borda, dans laquelle est entré après lui Besout, et qui a été ensuite perfectionnée par Legendre et Français.

En exposant les résultats de ces recherches analytiques, nous indiquerons sommairement la marche des calculs; quant à quelques démonstrations et aux développements, nous renvoyons aux ouvrages que nous citerons '.

Pour qu'il soit plus facile de saisir les rapports que les résultats

Les ouvrages principaux qui ont traité de la balistique et dont nous résumons en partie les résultats, sont les suivants:

La balistique, de Nicolas Tartaglia, publiée en 1537 sous le titre: la Science nouvelle; traduit de l'italien par Rieffel. Paris, 1845 et 1846.

Recherches sur la véritable courbe que décrivent les corps jetés dans l'air ou dans un autre fluide quelconque, par Euler; insérées dans l'Histoire de l'Académie royale des sciences et lettres de Berlin, année 1753, page 321 et suivantes.

Mémoire sur la résistance des fluides avec la solution du problème balistique, par Lambert; inséré dans les Mémoires de présentent entre eux, nous adopterons pour tous des notations communes et nous traduirons en conséquence les formules données par les divers auteurs.

Nous exposerons d'abord les propriétés générales de la trajectoire. 117. Notations, propriétés générales de la trajectoire. Soit 0 le point de départ du projectile, V sa vitesse initiale suivant OA (Fig. 17), P l'angle de projection au-dessus du plan horizontal, h la hauteur due à cette vitesse, P le poids du projectile, R son rayon. D sa densité ou le poids de l'unité de volume de ce projectile, x et y l'abscisse et l'ordonnée d'un point quelconque M de la trajectoire; soit s la longueur de l'arc OM, t le temps em-

l'Académie de Berlin pour 1767, page 102 à 188, réimprimé au Journal des armes spéciales, 1845, avec des notes de M. Rieffel.

Sur la courbe décrite par les boulets et les bombes en ayant égard à la résistance de l'air, par le chevalier Borda; inséré dans les Mémoires de l'Académie des sciences de Paris, pour l'année 1769, réimprimé au Journal des armes spéciales, 1846.

Cours de mathématiques à l'usage du Corps royal de l'artillerie, tome IV, par Besout, de l'Académie royale des sciences, année 1788. — Mouvement des projectiles, page 138 à 197 de l'édition de 1788, et appendice.

Dissertation sur la question de balistique proposée par l'Académie royale des sciences et belles-lettres de Prusse pour le prix de 1782, par Legendre; réimprimée au Journal des armes spéciales, 1845.

Mémoire sur le problème balistique ou sur le mouvement d'un corps dans un milieu résistant en raison du carré des vitesses, par M. de Tempelhof; inséré dans les Mémoires de l'Académie de Berlin pour les années 1788 et 1789, page 216 à 229, ou le Bombardier prussien, par de Tempelhof, capitaine d'artillerie au service de Sa Majesté le roi de Prusse; Berlin, 1791.

Traité du mouvement des projectiles, appliqué aux bouches à feu, par J. L. Lombard, professeur aux Écoles d'artillerie d'Auxonne, 1796.

Mémoire sur la théorie du mouvement des projectiles dans les milieux résistants, par le capitaine Moreau; inséré dans le Journal de l'École polytechnique, 11e cahier, 1802.

Recherches sur le mouvement des projectiles dans les milieux résistants, par F. Français, professeur de mathématiques à l'École

ployé à le parcourir, v la vitesse au point M, z la hauteur due à cette vitesse, θ l'inclinaison de l'élément de la trajectoire ou de la direction du mouvement du projectile arrivé en ce point, nous ferons $p = \frac{dy}{dx}$, on aura donc $p = \tan \theta$, $\cos \theta = \frac{dx}{ds}$, $\sin \theta = \frac{dy}{ds}$ et $v = \frac{ds}{dt}$; soit encore g la pesanteur ou la vitesse acquise par un corps après la première seconde de sa chute dans le vide. La résistance ρ sera représentée par nv^2 ; dans cette expression $n = A \sigma R^2$ (52 et 55); on a aussi $A = \frac{k\delta}{2g}$, δ étant la densité de

d'artillerie de la Fère; an XIII; ouvrage manuscrit appartenant à la bibliothèque de l'École d'application de l'artillerie et du génie, à Metz, et dont copie a été adressée à l'Institut de France.

Balistique. — Indication de quelques expériences propres à compléter la théorie du mouvement des projectiles de l'artillerie, précédée de l'analyse nécessaire, par A. M. d'Obenheim, professeur de mathématiques à l'École d'artillerie de Strasbourg, 1814.

Traité de mécanique, par S. D. Poisson. — Mouvement des projectiles dans le vide et dans un milieu résistant.

Cours de balistique à l'usage des élèves de l'École d'application de l'artillerie et du génie, par M. Persy, professeur; lithographie de l'École d'application, octobre 1833.

Note sur la formule employée par Lombard, pour le tir du but en blanc et pour la formation des tables de tir, par M. Bellencontre, lieutenant-colonel d'artillerie. — Voir aussi l'Aide-Mémoire d'artillerie de 1844, page 642.

Formules balistiques et tables de tir, par M. Chiniac, chef d'escadron d'artillerie. — Voir aussi l'Aide-Mémoire d'artillerie de 1844, page 642.

Tables balistiques générales et théorie mathématique du tir à ricochet, par Otto, traduit de l'allemand par M. Rieffel, et Journal des armes spéciales, année 1844.

Mémoire sur la trajectoire des projectiles de l'artillerie, par le comte de Græwenitz, traduit de l'allemand par M. Rieffel, et Journal des armes spéciales, 1844.

Dei moto de' proietti ne' mezzi resistenti. — Du mouvement des projectiles dans les milieux résistants, par Paolo di San Roberto, Turin, 1855.

l'air et k un coefficient déterminé par l'expérience. La masse du mobile étant $\frac{P}{g}$, la force retardatrice due à la résistance de l'air

sera
$$\rho \frac{P}{g}$$
 ou $\frac{1}{2c}v^2$ en faisant $2c = \frac{P}{ng} = \frac{P}{A\varpi R^2g} = \frac{8}{3}\frac{RD}{k\delta}$.

En partant des deux équations du mouvement $d\frac{dx}{dt} = -\frac{v^2}{2c}\frac{dx}{ds}dt$ et $d\frac{dy}{dt} = -\frac{v^2}{2c}\frac{dy}{ds}dt - gdt$, faisant dy = pdx, et supposant dx constant, ces équations deviendront, comme on l'a fait voir (61, éq. 1 et 2),

(a)
$$dxdp = -gdt^2$$
 et $cd^2p = dpds$. (b)

La seconde de ces équations est celle de la trajectoire, la première donnera la vitesse et le temps du mouvement. La densité de l'air et par conséquent $\frac{1}{c}$ étant constants, l'équation $cd^2p = dpds$ aura pour intégrale $\frac{dp}{dx} = Be^{-\frac{s}{c}}$.

Pour déterminer la constante B, on prendra l'équation $dpdx = -gdt^2$ qui donne $\frac{dp}{dx} = -g\frac{dt^2}{dx^2}$; et comme au point de projection la vitesse horizontale est $\frac{dx}{dt} = V\cos\varphi$, on aura

$$B = -\frac{g}{V^2 \cos^2 \varphi} = -\frac{1}{2h \cos^2 \varphi},$$

donc

(1)
$$\frac{dp}{dx} = -\frac{e^{\frac{s}{c}}}{2h\cos^2\varphi},$$

on aura aussi, en divisant membre à membre avec l'équation (a).

$$\frac{dx^2}{dt^2} = 2gh\cos^2\varphi e^{\frac{s}{c}} \text{ ou } z = \frac{h\cos^2\varphi}{\cos^2\theta} e^{-\frac{s}{c}} \text{ et } v = V\frac{\cos\varphi}{\cos\theta} e^{-\frac{s}{2c}}.$$

Le second membre de l'équation (1) qu'on vient de trouver étant multiplié par ds et le premier l'étant par la quantité égale $dx\sqrt{1+p^2}$, on aura

$$-e^{\frac{s}{c}}ds = 2h\cos^2\phi dp \sqrt{1+p^2},$$

d'où en intégrant et en appelant $\xi(\theta)$ l'intégrale $\int dp \sqrt{1+p^2} = \frac{1}{2}p\sqrt{1+p^2} + \frac{1}{2}\log(p+\sqrt{1+p^2})$, laquelle (art. 76, note) changera de signe dans la branche descendante, où p et tangé sont négatifs, on aura

(2)
$$-e^{\frac{s}{c}} = \frac{2h}{c}\cos^2\varphi[\xi(\theta) - C].$$

La constante — C est déterminée par la condition qu'à l'origine du mouvement on ait s = 0 et $\theta = \varphi$, on aura donc

$$C = \frac{c}{2h\cos^2 \alpha} + \xi(\varphi).$$

Ainsi la trajectoire a pour équation

$$e^{\frac{\xi}{c}} = 1 + \frac{2h\cos^2\phi}{c} [\xi(\phi) - \xi(\theta)].$$

Si le mouvement avait lieu dans le vide, il faudrait faire $\frac{1}{c}$ = 0, et on aurait, comme on sait, une parabole. En mettant l'équation précédente sous la forme

$$\frac{e^{\frac{s}{c}}-1}{\frac{s}{c}} = \frac{2h\cos^2\varphi}{s} [\xi(\varphi) - \xi(\theta)];$$

remarquant que pour $\frac{1}{c} = 0$ le premier membre, d'après son développement connu (66), se réduit à l'unité, et en nommant s' l'arc correspondant de la parabole, on aura

$$s' = 2h\cos^2\varphi \left[\xi(\varphi) - \xi(\theta)\right],$$

on aura donc

$$e^{\frac{s}{c}} = 1 + \frac{s'}{c}$$
 ou $\frac{s}{c} = \log\left(1 + \frac{s'}{c}\right)$,

relation très-remarquable entre les deux arcs s de la trajectoire et s' de la parabole qui se terminent en deux points où les inclinaisons sont respectivement égales.

118. Asymptotes. Si l'on veut savoir ce que devient la courbe du côté de la branche ascendante, il faudra faire s et s' négatifs, ce qui donnera

$$\frac{s}{c} = -\log\left(1 - \frac{s'}{c}\right);$$

or, si on prend sur la parabole le point m' (Fig. 18) pour lequel s'=c, on aura $s=-c\log 0$, c'est-à-dire s infini; donc, ce n'est qu'à l'infini que l'inclinaison de la trajectoire devient égale à l'inclinaison au point m', donc il y a une asymptote dont l'inclinaison est égale à celle de la tangente en m'; l'inclinaison de cette asymptote sera donnée par la relation

$$-c = 2h\cos^2\varphi[\xi(\varphi) - \xi(\theta)] \quad \text{ ou } \quad \xi(\theta) = \frac{c}{2h\cos^2\varphi} + \xi(\varphi).$$

Cette valeur se calcule très-facilement au moyen de la table V.

Si on prend du côté de la branche descendante un arc parabolique On' de plus en plus grand, l'arc correspondant On de la trajectoire augmentera aussi, mais beaucoup moins rapidement. Donc On étant infini On' le sera aussi. Mais l'infini logarithmique étant du dernier ordre, on voit que la courbe Bn ne tardera pas à se confondre avec une verticale et qu'elle doit avoir par conséquent une asymptote verticale.

Pour le prouver, éliminons s entre les équations (1) et (2), on aura

$$\frac{dp}{dx} = \frac{1}{c} \left[\frac{1}{2} p \sqrt{1 + p^2} + \frac{1}{2} \log(p + \sqrt{1 + p^2}) + \text{const} \right].$$

Or, quand on intégrera entre deux valeurs très-grandes de p, on pourra négliger l'unité et $\log(p+\sqrt{1+p^2})$ devant p. Alors on aura simplement

$$\frac{dp}{dx} = \frac{p^2}{2c}$$
 d'où l'on tire $x = \text{const} - \frac{2c}{p}$,

donc à partir d'un point pour lequel p est déjà très-grand, lorsqu'on fait p infini la valeur de x est finie. Donc la branche descendante jouit d'une asymptote verticale.

119. Rayon de courbure. L'expression du rayon de courbure, dans l'hypothèse de dx constant, est, en le représentant par γ .

$$\gamma = -\frac{dx(1+p^x)^{\frac{x}{2}}}{dp}.$$

En substituant la valeur de $e^{\frac{x}{c}}$ dans celle de $\frac{dp}{dx}$, on trouve celle de dx,

$$dx = -\frac{cdp}{C - \xi(\theta)},$$

de là

$$\gamma = \frac{c(1+p^2)^{\frac{3}{2}}}{C-\xi(\theta)}.$$

Dans la branche descendante, la valeur de ξ (6) sera négative et par conséquent la valeur de γ sera plus grande pour les mêmes valeurs absolues de p. De plus, la valeur de γ ne sera infinie que pour p égal l'infini, ce qu'on sait déjà ; et, dans la branche ascendante où ξ (6) est positif, γ sera infini pour $C = \xi$ (6), ce qu'on a fait voir aussi (118).

Le point de plus grande courbure se détermine en égalant à zéro la différentielle de γ , ce qui donne, en se rappelant que tang $\theta = p$ et $\xi(\theta) = \int \sqrt{1 + p^2} dp$.

$$\frac{1}{3}\frac{(1+p^2)^{\frac{5}{2}}}{-p}+\xi(\theta) \quad \text{ou} \quad -\frac{1}{3}\frac{1}{\cos^2\theta \cdot \sin\theta}+\xi(\theta)=C.$$

Cette équation, qui ne sera satisfaite que quand θ sera négatif, ce qui rend aussi $\xi(\theta)$ négatif, donnera la valeur de θ à laquelle correspond le minimum du rayon de courbure.

120. Vitesse. La vitesse du mobile en un point quelconque a été donnée en fonction de s (117); en substituant dans cette

209

RÉSISTANCE PROPORT. AU CARRÉ DE LA VITESSE.

expression la valeur de s tirée de l'équation (2), on aura

$$z = \frac{c(1+p^2)}{2[\mathsf{C} - \xi(\theta)]} \quad \text{ou} \quad v^2 = \frac{gc(1+p^2)}{\frac{c}{2h\cos^2\phi} + \xi(\phi) - \xi(\theta)}.$$

Au sommet de la trajectoire, où l'on a p=0, et par suite $\xi(0)=0$, on aura simplement

$$v^2 = \frac{gc}{\frac{c}{2h\cos^2\varphi} + \xi(\varphi)}.$$

A partir du sommet, la vitesse va en décroissant par l'effet de la résistance de l'air; mais, à une certaine distance du sommet, la pesanteur commence à augmenter cette vitesse, de sorte que son effet compense celui de cette résistance. La vi esse en ce point est alors un minimum.

On détermine ce point en différentiant la valeur de la vitesse prise sous la forme $z=\frac{c(1+p^2)}{2[C-\xi(0)]}$ et en posant dz=0; de là résulte, à cause de $d\xi(0)=\sqrt{1+p^2}dp$, la valeur de p donnée par la relation

$$\frac{1}{2} \frac{(1+p^2)^{\frac{3}{2}}}{-p} + \xi(\theta) \quad \text{ou} \quad -\frac{1}{2} \frac{1}{\cos^2 \theta \cdot \sin \theta} + \xi(\theta) = C,$$

laquelle n'est satisfaite que pour une valeur négative de 8; c'est-àdire que le point où la vitesse est un minimum est dans la branche descendante.

En comparant entre elles les équations qui donnent respectivement le point du minimum de rayon de courbure et celui du minimum de vitesse, on voit que le premier membre de l'une et de l'autre équation est infini pour $\theta = 0$ et qu'il décroît quand θ augmente; il en résulte que la fonction de θ relative au rayon de courbure qui contient le coefficient $\frac{1}{3}$ atteindra la valeur de C plus rapidement et par conséquent pour une moindre valeur de θ , que celle qui se rapporte au minimum de vitesse et qui contient le coefficient $\frac{1}{2}$; par conséquent, le point de la trajectoire où le rayon

de courbure est un minimum est plus près du sommet que celui où la vitesse est un minimum. Cette propriété est rendue encore plus évidente par le tableau suivant; ce tableau pourra en outre servir à calculer facilement, dans chaque cas, la position de ces deux points; on y a représenté $\frac{1}{\cos^2 \theta \cdot \sin \theta}$ par $f(\theta)$.

θ	$\frac{1}{2}\mathbf{f}(\theta) - \boldsymbol{\xi}(\theta)$	$\frac{1}{3}f(\theta) - \xi(\theta)$	θ	$\frac{1}{2}\mathbf{f}(\theta) - \xi(\theta)$	$\frac{1}{3} f(\theta) - \xi(\theta)$
o°	infini.	infini.	8	3,52263	2,30142
1	28,64062	19,08792	9	3,11736	2,02523
2	14,30939	9,52795	10	2,79167	1,80204
3	9,52747	6,33417	11	2,52383	1,61736
4	7,13452	4,73302	12	2,29937	1,46152
5	5,69317	. 3,76624	13	2, 10823	1,32789
6	4,73092	3,11886	14	1,94338	1,21162
7	4,04154	2,65333	15	1,79945	1,10926
	ł	1	l	1	

Au delà du point où la vitesse est un minimum cette vitesse augmente, mais non pas indéfiniment; elle se rapproche continuellement de celle pour laquelle la résistance de l'air est égale au poids du mobile, en même temps que la direction du mouvement se rapproche de la verticale; cette limite de la vitesse est donnée par la relation

$$\frac{v^2}{2c} = g \quad \text{ou} \quad z = c.$$

§ II.

Méthode des quadratures et méthode d'Euler.

121. Équations fondamentales. Des deux équations du mouvement (61, a et b) Euler' déduit la relation que nous avons

¹ Recherche sur la véritable courbe que décrivent les corps jetés dans l'air, par Euler. — Histoire de l'Académie de Berlin, année 1753.

donnée (61, éq. 1),

$$\frac{dpdx}{dt^2} + g = 0$$

et ensuite par diverses transformations il obtient

(2)
$$\frac{2gdt^2}{dx^2} = \frac{2dp}{dx} = 2K + \frac{2}{c} \int dp \sqrt{1+p^2},$$

d'où l'on tire

(3)
$$dx = \frac{-dp}{K - \frac{1}{c} \int dp \sqrt{1 + p^2}}, \quad dy = \frac{-pdp}{K - \frac{1}{c} \int dp \sqrt{1 + p^2}},$$

$$ds = \frac{-dp \sqrt{1 + p^2}}{K - \frac{1}{c} \int dp \sqrt{1 + p^2}}, \quad dt = \frac{1}{\sqrt{g}} \cdot \frac{-dp}{\sqrt{K - \frac{1}{c} \int dp \sqrt{1 + p^2}}},$$

$$v^3 = \frac{g(1 + p^2)}{K - \frac{1}{c} \int dp \sqrt{1 + p^2}}.$$

L'expression $\int dp \sqrt{1+p^2}$ est celle de la longueur d'un arc de parabole; celle-ci a pour valeur, comme on l'a fait voir (76), $\frac{1}{2}p\sqrt{1+p^2}+\frac{1}{2}\log\left(p+\sqrt{1+p^2}\right)$ représentée par la fonction $\xi(\theta)$ dans laquelle $p=\tan \theta$ et qui s'évanouit pour $\theta=0$. Au point de départ où $\theta=\varphi$, elle devient $\xi(\varphi)$, et, en remplaçant K par $\frac{C}{2}$ on aura plus simplement .

$$\mathbf{z} = c \int \frac{dp}{\mathbf{C} - \xi(\theta)}, \quad y = c \int \frac{pdp}{\mathbf{C} - \xi(\theta)}, \quad s = c \int \frac{dp \sqrt{1 + p^2}}{\mathbf{C} - \xi(\theta)},$$

$$t = \frac{\sqrt{2c}}{\sqrt{2g}} \int \frac{dp}{\sqrt{\mathbf{C} - \xi(\theta)}}, \quad v^2 = \frac{cg(1 + p^2)}{\mathbf{C} - \xi(\theta)}.$$

Ces intégrales sont prises de manière à s'évanouir pour $\theta = 0$. La vitesse au sommet sera $v' = \frac{cg}{C}$. Dans la branche descendante e et p changent de signe et la fonction ξ (e) conserve la même valeur en changeant seulement de signe. Au point de départ où $0 = \varphi$ et v = V, on a comme précédemment (117)

$$\mathbf{V}^{2} = \frac{cg(1 + \tan^{2}\phi)}{\mathbf{C} - \xi(\phi)}, \quad \text{d'où} \quad \mathbf{C} = \frac{c}{2h\cos^{2}\phi} + \xi(\phi).$$

122. Méthode des quadratures. On peut déterminer par les quadratures tout ce qu'il est nécessaire de connaître dans la trajectoire et la tracer par points :.

L'abscisse d'un point quelconque de la trajectoire est égale à la somme des valeurs infiniment petites de $dx = c \frac{-dp}{C - \xi(\theta)}$ comprises depuis e = e jusqu'à la valeur de e qui répond au point que l'on considère. On aura la valeur de x par approximation, en partageant l'intervalle des valeurs extrêmes de e en un très-grand nombre de parties que l'on fera égales entre elles pour plus de simplicité; en calculant ensuite les produits des valeurs de $\frac{c}{\mathbf{C}-\boldsymbol{\xi}(\boldsymbol{\theta})}$ par la différence très-petite entre les valeurs consécutives de p. que l'on représentera par Δp et que l'on substituera à la différence infiniment petite dp. La somme des valeurs de Δx ainsi obtenues approchera d'autant plus d'être exacte que Δp sera plus petit. En continuant le calcul jusqu'à ce qu'on soit parvenu à $\theta = 0$, on aura, aussi exactement qu'on se le proposera, les abcisses de tous les points de la branche ascendante de la trajectoire; la dernière abcisse sera celle du sommet. Au delà de ce point, dans la branche descendante, les valeurs de et celles de p deviendront négatives; en continuant le même calcul on aura les abscisses des divers points de cette branche. Par un procédé semblable appliqué à la valeur de dy, on aura les ordonnées correspondantes aux valeurs successives de p et on pourra construire la courbe par points; on obtiendra de même la valeur du temps t. La vitesse en chaque point sera donnée directement par la valeur

[·] Traité de mécanique de Poisson.

de $v^3 = \frac{cg(1+p^2)}{C-\xi(\theta)}$; il en sera de même de celle de s comme on va le voir.

123. Méthode d'Euler. Remarquant avec Euler que $dp \sqrt{1+p^2}$ = $d\xi(\theta)$, on aura

$$ds = c \frac{d\xi(\theta)}{C - \xi(\theta)}, \quad \text{d'où} \quad s = c \log \frac{C - \xi(\theta)}{C},$$

sans constante, expression fort commode pour décrire la courbe, car, dit Euler, « Calculant pour un grand nombre de valeurs de

- p ou de e, celle de s, on trouve autant de portions de courbe;
- et sachant de chacune l'inclinaison à l'horizon, on en tirera
- aisément les parties de l'abscisse et de l'ordonnée qui leur con-
- » viennent; lesquelles étant ajoutées ensemble, donneront tant
- » l'abscisse que l'ordonnée entière, qui répondent à chaque point
- de la courbe. Ensuite, ayant la vitesse à chaque point de la
- courbe par la formule $v^2 = \frac{cg(1+p^2)}{C-\xi(\theta)}$, chaque particule de la
- courbe divisée par v donnera le temps que le corps met à la
- » parcourir; pourvu qu'on prenne les particules de la courbe
- assez petites, on obtiendra assez exactement, tant la figure de
- la courbe que le mouvement du corps. » C'est là ce qui constitue essentiellement la méthode d'Euler.

Pour cette méthode une table des valeurs de la fonction ξ (6) étant très-utile. Euler en a calculé une de degré en degré (tab. V, 1^{re} partie).

Il distingue les courbes en espèces déterminées par les valeurs de C; les autres ne dépendant de c que pour les dimensions, elles seront semblables.

124. Construction par points. Pour construire d'après la méthode d'Euler, un arc aux extrémités duquel les inclinaisons sont respectivement θ et θ' et les tangentes p et p', on aura (Fig. 19)

$$\mathbf{AM} = \operatorname{clog} \frac{\mathbf{C} - \boldsymbol{\xi}(\boldsymbol{\theta})}{\mathbf{C}} \quad \text{et} \quad \mathbf{AM'} = \operatorname{clog} \frac{\mathbf{C} - \boldsymbol{\xi}(\boldsymbol{\theta'})}{\mathbf{C}},$$

donc

$$MM' = c \log \frac{C - \xi(\theta')}{C - \xi(\theta)};$$

l'inclinaison moyenne de l'arc étant $\frac{1}{2}$ ($\theta+\theta'$), la portion qq' de l'abscisse sera

$$c\log\frac{\mathbf{C}-\xi(\theta')}{\mathbf{C}-\xi(\theta)}\cos\frac{\theta+\theta'}{2},$$

et la portion de l'ordonnée correspondante sera

$$c\log\frac{C-\xi(\theta')}{C-\xi(\theta)}\sin\frac{\theta+\theta'}{2}$$
,

pourvu que les différences de 6 et 6' soient assez petites.

On calculera de même les vitesses en M et M' qui sont

$$v = \sqrt{gc \frac{1+p^2}{C-\xi(\theta)}}$$
 et $v' = \sqrt{gc \frac{1+p'^2}{C-\xi(\theta)}}$;

la vitesse moyenne entre les deux, étant $\frac{1}{2}(v+v')$, le temps employé à parcourir l'arc sera

$$\frac{1}{\frac{1}{2}(v+v')}c\log\frac{C-\xi(\theta')}{C-\xi(\theta)}.$$

Euler fait ensuite l'application de ces formules à une espèce de trajectoire en calculant numériquement les arcs de cinq degrés en cinq degrés .

125. Correction de Legendre. L'erreur que l'on commet par la méthode d'Euler tient à ce que la projection des arcs partiels est déterminée comme si ces arcs étaient des portions de ligne droite; en opérant ainsi, on prend ces projections trop grandes et on obtient des portées et des élévations trop considérables.

Legendre a corrigé cette méthode en déterminant la projection

Les autres espèces de trajectoires ont été calculées par arcs de moindre étendue par le comte de Græwenitz et par M. Otto (Mémoire sur la trajectoire des projectiles et Théorie mathématique du tir à ricochet, au Journal des armes spéciales, années 1844 et 1845).

des arcs de trajectoire comme si c'étaient des arcs de cercle. Il trouve alors que les projections doivent être multipliées par le rapport du sinus du demi-angle que l'on considère à ce demi-angle lui-même, de sorte que les portions d'abscisses et d'ordonnées seront données respectivement par ces formules

$$c\log\frac{C-\xi(\theta)}{C-\xi(\theta)}\cos\frac{\theta+\theta'}{2}\cdot\frac{\sin\frac{1}{2}(\theta-\theta')}{\frac{1}{2}(\theta-\theta')}$$

et

$$c\log\frac{\mathbf{C}\!-\!\xi(\theta)}{\mathbf{C}\!-\!\xi(\theta)}\!\sin\!\frac{\theta+\theta'}{2}\cdot\!\frac{\sin\!\frac{1}{2}(\theta-\theta')}{\frac{1}{2}(\theta-\theta')}.$$

lci $\theta - \theta'$ représente l'arc dont le rayon est égal à l'unité; le rapport $\frac{\sin\frac{1}{2}(\theta - \theta')}{\frac{1}{2}(\theta - \theta')}$ diffère de l'unité, lorsque l'arc est petit, de $\frac{1}{24}(\theta - \theta')^2$; cette valeur est de $\frac{1}{3150}$ ° lorsque $\theta - \theta'$ est de cinq degrés.

126. Correction proposée. La correction introduite par Legendre donne plus d'exactitude à la méthode d'Euler. En effet, quand on considère les projections horizontales des arcs d'une trajectoire ou les portées, on reconnaît facilement qu'au rapport d'un arc de trajectoire à sa projection il est plus exact de substituer le rapport analogue d'un arc de cercle dont les inclinaisons aux extrémités sont données, que celui d'une ligne droite qui aurait une inclinaison moyenne entre les inclinaisons des extrémités des arcs. Mais il est facile de voir que si, au lieu d'un arc de cercle, on prenait un arc de parabole choisi de telle sorte qu'il fût osculateur à l'une des extrémités et qu'il se terminât à l'autre sous une inclinaison commune, on obtiendrait un rapport beaucoup plus approché encore. Nous avons donné ce rapport (76 et table V) représenté par $\alpha = \frac{\xi(\theta) - \xi(\theta')}{\tan \theta - \tan \theta}$. Ainsi la valeur la plus approchée

Dissertation balistique, par Legendre, page 14, ou Journal de l'École polytechnique, onzième cahier, mémoire de Moreau, p. 222; réimprimée en 1846 (Journal des armes spéciales).

² Plus exactement $\frac{1}{5 \cdot 15}$.

de la projection horizontale d'un arc de trajectoire serait

$$c\log\frac{\mathbf{C}-\xi(\theta')}{\mathbf{C}-\xi(\theta)}\cdot\frac{\tan\theta-\tan\theta'}{\xi(\theta)-\xi(\theta')}.$$

Quant aux ordonnées, nous avons trouvé pour $\frac{s}{y}$ le rapport

$$\frac{s}{y} = \frac{\xi(\theta) - \xi(\theta')}{\frac{1}{2}(\tan^2\theta - \tan^2\theta')} = \frac{s}{x} \frac{1}{\frac{1}{2}(\tan\theta + \tan\theta')}.$$

127. Degré d'exactitude des diverses méthodes. Pour juger de leur exactitude, comparons les trois méthodes entre elles au moyen des rapports qu'elles donnent: 1° celle d'Euler, 2° celle de Legendre, 3° la méthode proposée. Nous choisirons les arcs de 60° à 55°, de 45° à 40°, de 25 à 20° et de 5° à 0°, et nous aurons respectivement pour ces quatre arcs et pour leurs différences avec la correction proposée regardée comme la plus exacte:

DÉSIGNATION DES ARCS.	60 à 55°	Dif.	45 à 40°	Dif.	25 à 20°	Dif.	5 à 0°	Bif.
$10 \cos \frac{(\theta + \theta')}{2} \dots$	0,537 300	2674	0,737272	1445	0,923880	597	0,999048	318
$20 c \frac{\theta + \theta'}{2} \frac{s \frac{1}{2} (\theta - \theta')}{\frac{1}{2} (\theta - \theta')}$	0,537130	2504	0,737038	1211	0,923587	304	0,998734	1
$30 \frac{(\tan \theta - \tan \theta')}{\xi(\theta) - \xi(\theta')}$.	0,534626	0	0,735827	0	0 ,9232 83	0	0,998730	0

En comparant entre elles les corrections qui résultent des méthodes d'Euler et de Legendre et de la méthode proposée, on voit que la correction de Legendre ne diffère pas sensiblement de cette dernière, pour les petites inclinaisons; mais l'approximation diminue à mesure qu'on s'éloigne du sommet de la trajectoire. La différence est partout plus grande dans la méthode d'Euler, et surtout pour l'arc de 0° à 5°; elle est encore double pour l'arc de 20° à 25°; elle en est les 6 pour l'arc de 40° à 45° et les 16 pour celui de

55° à 60°. Comparée à la quantité cherchée, le résultat de la méthode d'Euler diffère du résultat de la méthode proposée respectivement de 3130°, 1548°, 509°, 200° à 25°, de 40° à 45°, de 55° à 60°. Les différences sous les grands angles ne sauraient être négligées.

Cette observation fait voir aussi que pour appliquer convenablement la méthode d'Euler, même avec la correction de Legendre, il ne faudrait pas prendre les arcs d'un pareil nombre de degrés quelle que fût leur inclinaison, mais qu'il faut d'autant plus resserrer les divisions que les angles sont plus élevés, comme nous l'avons fait dans l'application au tir sous les grands angles, lorsque la résistance de l'air était exprimée par deux termes (77).

En opérant pour les ordonnées comme pour les projections horizontales, on aura pour les valeurs des corrections dans les trois méthodes les quantités contenues dans le tableau suivant:

DÉSIGNATION DES ARCS.	60 à 55°	Dif.	45 à 40°	Dif.	25 à 20°	Dif.	5 à 0°	Dif.
$1 \circ \sin \frac{\theta + \theta'}{2} \dots$		1 1						1
$20 \text{ s} \frac{\theta + \theta'}{2} \frac{\text{s} \frac{1}{2} (\theta - \theta')}{\frac{1}{2} (\theta - \theta')}$	0,843124	1444	0,67 5376	1286	0,382561	730	0 ,04360 6	83
$3^{\circ} \frac{t^{\theta} - t^{\theta'}}{\xi(\theta) - \xi(\theta')} \frac{t^{\theta} + t^{\theta'}}{2}$	0,844568	o	0,676662	0	0 ,3832 91	0	0,043689	0

En regardant, d'après ce qu'on a déjà dit, la méthode proposée comme celle des trois qui donne la plus grande exactitude et en y rapportant en conséquence le résultat des autres, on verra que la correction de Legendre est moins exacte que celle d'Euler; les différences, relativement à la projection parabolique, sont comme 6 à 5 et d'environ $\frac{1}{500}$ à $\frac{1}{700}$ des parties d'ordonnées.

Pour mettre hors de doute la plus grande exactitude de la méthode proposée, sur celles d'Euler et de Legendre, il suffira de considérer le cas où la vitesse serait très-faible, le projectile trèslourd, et où par conséquent la trajectoire ne différerait pas sensiblement d'une parabole. Dans ce cas, la méthode proposée donnerait exactement les abscisses et les portées, tandis que la méthode d'Euler et celle de Legendre donneraient des abscisses ainsi que des portées trop grandes et des ordonnées trop petites, dans les rapports qu'on vient d'indiquer.

§ III.

Méthode des séries.

128. Méthode des séries. La seconde méthode qu'on a appliquée à la solution du problème balistique donne les quantités cherchées en séries procédant suivant les puissances successives des quantités données par la question, de façon que l'excellence de la méthode et le degré d'approximation qu'on peut obtenir dépendent du degré de convergence des séries et du nombre de termes qu'on calcule.

Résultats de Lambert. Lambert 'est entré le premier dans cette voie; après être arrivé par des moyens analogues à ceux d'Euler à l'expression de dx en fonction de p, déjà obtenue,

$$dx = \frac{-dp}{C - \frac{1}{c} \int dp \sqrt{1 + p^2}},$$

il fait voir que cette fraction étant résolue en une série procédant suivant les puissances de $\int dp \sqrt{1+p^2}$, on arrive 2 à la valeur de x en fonction de l'inclinaison et des puissances paires de la vitesse; il obtient une série semblable pour l'expression de la durée du trajet, et montre que la valeur de y=pdx n'offrirait pas de termes moins compliqués.

¹ Histoire de l'Académie royale de Berlin, pour 1765; Mémoire sur la résistance des fluides avec la solution du problème balistique, pages 102 à 188.

² Idem, page 167.

Pour arriver à une relation directe entre y et x, regardant dx comme constant et remarquant que l'on a $dx^2 = v^2 \cos^2\theta dt^2$ et que dy décroîtra de la quantité due à l'action de la gravité, on aura

$$d^{\mathbf{2}}y = - g dt^{\mathbf{2}} \quad \text{et} \quad \frac{dx^{\mathbf{2}}}{d^{\mathbf{2}}y} = - \, \frac{v^{\mathbf{2}}\cos^{\mathbf{2}}\theta}{g};$$

on obtient aussi la relation que nous avons déjà obtenue

$$\frac{ds}{c} = \frac{d^2p}{dp} = \frac{d^3y}{d^2y} \quad \text{ou} \quad c \, d^3y = d^2y \, ds.$$

En exprimant la valeur de y par un développement qui procéderait suivant les puissances de x, on aurait

$$y = \beta x - \gamma x^2 - \delta x^3 - \varepsilon x^4 - \mu x^5 - \text{etc.}$$

En considérant une abscisse infiniment petite, on trouve que β doit être la tangente de l'angle de projection; γ se détermine par l'équation $\frac{d^2y}{dx^2} = -\frac{g}{v^2\cos^2\theta}$ et par celle tirée de la série cidessus

$$\frac{d^2y}{dx^2} = -2\gamma - 6\delta x - \text{etc.};$$

lesquelles, puisqu'on a à la fois x=0, v=V et $\theta=\varphi$, donnent

$$\gamma = \frac{g}{2V^2 \cos^2 \varphi}.$$

En prenant les différentielles dy, d^3y , les valeurs de $\frac{ds}{dx}$ et de $\frac{ds^2}{dx^2} = 1 + \frac{dy^2}{dx^2}$, puis faisant le produit de d^2y et de ds, l'égalant terme à terme à celui de cd^3y , Lambert obtient une relation qui représente la trajectoire. En y remplaçant V^2 , par 2gh, mettant $\frac{x^2}{4h\cos^2\varphi}$ en facteur commun, nous obtenons

(1)
$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi}$$

 $\times \left[1 + \frac{1}{3} \frac{x}{c \cos \varphi} + \frac{1}{3.4} \left(\frac{x}{c \cos \varphi} \right)^2 + \frac{1}{3.4.5} \left(\frac{x}{c \cos \varphi} \right)^3 + \text{etc.} \right]$
 $-\frac{\sin \varphi}{2.3.4} \frac{x^2}{ch \cos^2 \varphi} - \frac{\sin \varphi}{2.3.5} \frac{x^3}{ch^2 \cos^3 \varphi} - \text{etc.}$
 $+\frac{\cos^2 \varphi}{2.3.5.8} \frac{x^3}{ch^2 \cos^3 \varphi} + \text{etc.}$
 $+\text{etc.}$

C'est par le facteur entre parenthèses que cette expression de y diffère de ce qui aurait lieu sans la résistance de l'air; la première ligne de ce facteur n'est autre que la fonction que nous avons représentée par $F\left(\frac{x}{\cos x}\right)$ (66).

En conservant ce terme seul et en négligeant les autres, on aurait l'équation d'un très-petit arc de la trajectoire; celle-ci se déduirait également de l'équation que nous avons déjà obtenue (68). dans la mème hypothèse sur la résistance de l'air pour un arc d'une certaine étendue en y faisant le rapport α de l'arc à sa projection égal à celui du premier élément qui est séc φ ou $\frac{1}{\cos \varphi}$. Les termes autres que le premier sont relatifs à la plus grande étendue de l'arc.

129. Portée horizontale. Pour obtenir la portée horizontale il faut faire y = 0 dans l'équation précédente, et en tirer la valeur de x; Lambert obtient par le retour des suites et en faisant pour simplifier $\frac{2\sin\phi V^2}{c\sigma} = \xi$ et $\frac{cg}{V^2} = m$.

$$\frac{x}{c\cos\phi} = \xi - \frac{1}{3}\xi^2 + \frac{5}{36}\xi^3 + \frac{17}{270}\xi^4 + \text{etc.} + \frac{1}{12}m\sin\phi\xi^3 - \frac{19}{180}m\sin\phi\xi^4 + \text{etc.} - \frac{1}{60}m^2\cos^2\phi\xi^4 + \text{etc.} + \text{etc.}$$

Cette suite est peu convergente, à moins que V ne soit très-petit comparativement à c, ou que φ ne soit lui-même très-petit. Suivant Lambert, elle est applicable au tir sous les petits angles au-dessus de l'horizon, comme celui des canons.

En remarquant que ξ est facteur commun du deuxième membre et que ce facteur multiplié par $c\cos\varphi$ est égal à $2\sin\varphi\cos\varphi$ ou à la portée dans le vidc, portée que nous appellerons X'. remarquant alors que $\xi=\frac{X'}{c\cos\varphi}$, que $m=\frac{2\sin\varphi}{\xi}$, on aura

(2)
$$X = X' \left[1 - \frac{1}{3} \frac{X'}{c\cos\varphi} + \frac{5}{36} \left(\frac{X'}{c\cos\varphi} \right)^2 + \frac{17}{270} \left(\frac{X'}{c\cos\varphi} \right)^3 + \text{etc.} \right]$$

 $+ \frac{1}{6} \sin^2\varphi \frac{X'}{c\cos\varphi} - \frac{19}{90} \sin^2\varphi \left(\frac{X'}{c\cos\varphi} \right)^2 + \text{etc.}$
 $- \frac{1}{60} \sin^2\varphi \frac{X'}{c\cos\varphi} + \text{etc.} + \text{etc.}$

La première ligne de cette expression se rapporte à un angle de projection peu élevé et tel qu'on le déduirait de l'expression que nous avons obtenue (art. 83), en y développant $\mathfrak{B}(x, V)$, en reprenant X par le retour des suites', et en y supposant ensuite la résistance de l'air proportionnelle au carré de la vitesse, puis en remplaçant le rapport α de l'arc à sa projection par celui du premier élément ou séc φ . Les autres termes tiennent compte de la plus grande étendue de l'arc; mais ils sont incomplets. Lambert paraît n'avoir pas remarqué que la valeur de m contenant ξ au dénominateur, il en résultait que dans les termes où entre cette quantité, la puissance de ξ se trouvait diminuée; par suite, les termes sont incomplets à partir du second et la formule de Lambert ne peut pas servir telle qu'elle est.

130. Inclinaison. Lambert, par la différentiation de la valeur de y relativement à x, trouve la valeur de l'inclinaison de la

¹ Voir la première édition, celle de 1848 (art. 74, éq. 6), page 100.

trajectoire en un point quelconque; elle devient, par les mêmes substitutions que précédemment,

(3)
$$\tan \theta = \tan \varphi - \frac{x}{2h \cos^2 \varphi}$$

 $\times \left[1 + \frac{1}{2} \frac{x}{c \cos \varphi} + \frac{1}{2.3} \left(\frac{x}{c \cos \varphi} \right)^2 + \frac{1}{2.3.4} \left(\frac{x}{c \cos \varphi} \right)^3 + \text{etc.} \right]$
 $- \frac{c \sin \varphi}{12h} \left(\frac{x}{c \cos \varphi} \right)^2 - \frac{c \sin \varphi}{8h} \left(\frac{x}{c \cos \varphi} \right)^3 - \text{etc.}$
 $+ \frac{c^2 \cos^2 \varphi}{96h^2} \left(\frac{x}{c \cos \varphi} \right)^3 + \text{etc.}$
 $+ \text{etc.} + \text{etc.}$

Sous cette forme, on voit que le premier terme $\frac{x}{2h\cos^2\varphi}$ donne l'expression de l'inclinaison qui aurait lieu sans la résistance de l'air; la partie entre parenthèses est donc le facteur qui tient compte de cette résistance; dans celui-ci, la première ligne n'est autre que ce que nous avons représenté par $F'\left(\frac{x}{c\cos\varphi}\right)$ et qui donne l'inclinaison lorsqu'on ne considère qu'un arc de très-peu d'étendue.

131. Durée. Lambert obtient aussi pour la durée du trajet, une formule qui, par les substitutions que nous y avons faites, devient

$$(4) \quad t = \frac{x}{V\cos\phi} \\ \times \left[1 + \frac{1}{2} \frac{x}{2c\cos\phi} + \frac{1}{2.3} \left(\frac{x}{2c\cos\phi}\right)^2 + \frac{1}{2.3.4} \left(\frac{x}{2c\cos\phi}\right)^3 + \text{etc.} \right. \\ \left. - \frac{c\sin\phi}{2.3h} \left(\frac{x}{2c\cos\phi}\right)^2 - \frac{5}{2.3.4} \frac{c\sin\phi}{h} \left(\frac{x}{2c\cos\phi}\right)^3 + \text{etc.} \right. \\ \left. + \frac{1}{2.3.4} \left(\frac{c\cos\phi}{h}\right)^2 \left(\frac{x}{2c\cos\phi}\right)^3 + \text{etc.} \right. \\ \left. + \text{etc.} + \text{etc.} \right]$$

Sous cette forme, comme dans ce qui précède, on voit que le .

premier facteur est la durée qui aurait lieu sans la résistance de l'air, et que le deuxième donne l'influence de cette résistance. Dans celui-ci, la première ligne n'est autre que la fonction que nous représentons par $F'\left(\frac{x}{2c\cos\varphi}\right)$ et qui à elle seule donne la

durée $t=\frac{x}{{
m V}\cos\varphi}$ F $\left(\frac{x}{2c\cos\varphi}\right)$, relative à un arc de très-peu d'étendue.

132. Résultats de Borda. Borda', en partant des deux valeurs de x et de y

$$x = \int \frac{c \, dp}{\int dp \, \sqrt{1 + p^2}} \quad \text{et} \quad y = \int \frac{cp \, dp}{\int dp \, \sqrt{1 + p^2}}$$

a aussi cherché à exprimer y par une fonction des puissances successives de l'abscisse x, et au moyen des coefficients indéterminés il a trouvé la valeur suivante :

(5)
$$y = x \tan \varphi - \frac{1}{4h \cos^2 \varphi} x^2 - \frac{1}{12ch \cos^3 \varphi} x^3$$

 $+ \frac{1}{24} \left(\frac{\sin \varphi}{4ch^2 \cos^4 \varphi} - \frac{1}{2c^2 h \cos^4 \varphi} \right) x^4$
 $+ \frac{1}{120} \left(\frac{\sin \varphi}{c^2 h^2 \cos^5 \varphi} - \frac{1}{2c^3 h \cos^5 \varphi} - \frac{1}{8ch^3 \cos^3 \varphi} \right) x^5 + \text{etc.}$
 $+ \text{etc.} + \text{etc.}$

Cette équation peut se mettre sous la forme déjà obtenue (128, éq. 1) d'après celle de Lambert, et elle donne lieu aux mêmes observations.

133. Résultats de Tempelhof. Tempelhof 2 a traité la question

^{&#}x27; Sur la courbe décrite par les boulets et les bombes, en ayant égard à la résistance de l'air, par Borda; Mémoire de l'Académie des sciences de Paris, pour 1769.

² Mémoire sur le problème balistique ou sur le mouvement d'un corps dans un milieu résistant en raison du carré de la vitesse.

du mouvement des projectiles dans le cas où l'on suppose la densité de l'air variable, soit suivant une fonction de l'inclinaison de la trajectoire, soit suivant la longueur de l'arc parcouru, soit enfin avec l'élévation du projectile au-dessus de la terre. Il traite ensuite le cas où la densité est supposée constante.

Partant de la relation finie qu'on obtient entre la grandeur d'un arc et ses inclinaisons aux deux extrémités, il cherche par la méthode des coefficients indéterminés la série qui exprime x et y en fonction de e^{x} , de l'angle de départ φ , et de la vitesse initiale V. Les formules étant très-compliquées et l'arc n'étant pas la longueur qu'on a à considérer dans les applications, nous ne donnerons pas ces formules. Nous aurons d'ailleurs à en rapporter d'autres de ce genre, beaucoup plus simples.

Tempelhof donne encore d'autres formules relatives à la portée sur un plan horizontal et à l'angle de chute, que nous ne rapporterons pas pour les raisons qu'on vient de donner.

134. Résultats de Français. Français', dans des recherches non publiées sur le mouvement des projectiles, s'est attaché de préférence aux méthodes d'analyse qui ne négligent rien, conservent dans toute leur intégrité les données et les formes, et qui ne sont approximatives que par l'impuissance où l'on se trouve de revêtir certaines expressions de formes finies; c'est par le calcul des dérivations, à la naissance duquel il a assisté et même coopéré, et où il a trouvé, dit-il, des ressources inespérées, qu'il a traité la question balistique. Il ajoute que cette méthode lui a permis d'arriver à des formules qui non-seulement n'auraient pu être trouvées par l'analyse ordinaire, mais qui ne pourraient pas même être figurées.

Au calcul des dérivations, Français a associé une espèce particulière de différentiation qui lui a permis de tirer, presque sans peine, des formules remarquables qu'aucune autre méthode ne

^{&#}x27; Recherches sur le mouvement des projectiles dans les milieux résistants, par F. Français, an XIII. Manuscrit appartenant à la bibliothèque de l'École d'application de l'artillerie et du génie à Metz, et dont copie a été adressée à l'Institut de France.

RÉSISTANCE PROPORT. AU CARRÉ DE LA VITESSE. 225

saurait donner aussi immédiatement et d'une manière aussi facile.

Des deux équations du mouvement, Français déduit les deux équations connues

(a)
$$dp dx + g dt^2 = 0$$
 et $dp ds - c d^2p = 0$. (b)

L'équation (b) mise sous la forme $d \log \frac{dp}{dx} = \frac{ds}{c}$, donne en intégrant

$$\frac{dp}{dx} = Be^{\frac{s}{c}},$$

B étant une constante dont on trouve la valeur $B = -\frac{1}{2h\cos^2\varphi}$, par la condition de satisfaire aux données relatives au point de départ; ce qui donne, en faisant, pour simplifier les expressions,

$$\frac{1}{c} = i$$

(c)
$$\frac{dp}{dx} = -\frac{e^{is}}{2h\cos^2\varphi};$$

puisque $p = \tan \theta$, et $\frac{ds}{dx} = (\cos \theta)^{-1}$ on aura

$$\frac{dp}{dx} = \frac{1}{\cos^3 \varphi} \cdot \frac{d\theta}{ds},$$

valeur qui substituée dans l'équation (c) donne

$$\frac{d\theta}{\cos^3\theta} = -\frac{e^{is}ds}{2h\cos^2\phi} = -\frac{1}{2ih\cos^2\phi}de^{is},$$

et faisant $\frac{1}{2i\hbar\cos^2\varphi} = m$ on aura

$$\frac{d\theta}{\cos^3\theta} = -m \, de^{is},$$

et, en intégrant

$$\int \frac{d\theta}{\cos^3\theta} = -me^{is} + C.$$

Si la première intégrale est prise de manière à disparaître lorsque s = 0, ou lorsque $\theta = \varphi$, il faudra que C = m d'où

(d)
$$\int \frac{d\theta}{\cos^3 \theta} = m(1 - e^{i\theta}),$$

dont il faut tirer une valeur de s en fonction de θ et ensuite les valeurs de x et de y. Mais avant d'aller plus loin, nous devons expliquer la valeur des notations qu'emploie Français.

135. Notations employées par Français. Si $f(\phi)$ est une fonction de ϕ , la différentiation de cette fonction, dans laquelle, après l'opération, la différentielle $d\phi$ serait remplacée par une certaine fonction, qui sera ici $\cos^3\phi$, sera représentée par $\Im f(\phi)$; d'après cela, $\Im f(\phi) = \frac{d(f\phi)}{d(\phi)}\cos^3\phi$.

En différentiant de la même manière cette première dérivée et en remplaçant de nouveau d^{φ} par $\cos^3 \varphi$, on aura $\Im^2 f(\varphi)$; répétant la même opération sur $\Im^2 f(\varphi)$ on aura $\Im^3 f(\varphi)$ et ainsi de suite. De plus, introduisant la cédille sous la caractéristique \Im pour exprimer 1.2, 1.2.3, 1.2.3.4, on écrira

$$\mathfrak{P}^2 f(\phi) \text{ pour } \frac{1}{1.2} \mathfrak{D}^2 f(\phi); \qquad \mathfrak{P}^3 f(\phi) \text{ pour } \frac{1}{1.2.3} \mathfrak{D}^3 f(\phi)...$$

En opérant de cette manière pour $f(\phi) = \sin \phi$ et pour $f(\phi) = \cos \phi$, on trouvera les résultats ci-après qui serviront dans tout ce qui sera dit sur cette partie des recherches de Français.

(6)
$$\partial \sin \phi = \cos^4 \phi$$

 $\partial^2 \sin \phi = -4 \cos^6 \phi \sin \phi$
 $\partial^3 \sin \phi = -4 \cos^8 \phi (1 - 7 \sin^2 \phi)$
 $\partial^4 \sin \phi = 8 \cos^{10} \phi \sin \phi (11 - 35 \sin^2 \phi)$
 $\partial^5 \sin \phi = 8 \cos^{12} \phi (11 - 226 \sin^2 \phi + 455 \sin^4 \phi)$
 $\partial^6 \sin \phi = -64 \cos^{14} \phi \sin \phi (73 - 625 \sin^2 \phi + 910 \sin^4 \phi)$
 $\partial^7 \sin \phi = -64 \cos^{16} \phi (73 - 2964 \sin^2 \phi + 15141 \sin^4 \phi - 17290 \sin^6 \phi)$
etc. etc.

On obtiendra de même

(7)
$$\cos \varphi = -\cos^3 \varphi \sin \varphi$$

 $\cos^3 \cos \varphi = -\cos^5 \varphi (1 - 4 \sin^3 \varphi)$
 $\cos^3 \cos \varphi = \cos^9 \varphi \sin \varphi (13 - 28 \sin^3 \varphi)$
 $\cos^4 \cos \varphi = \cos^9 \varphi (13 - 188 \sin^3 \varphi + 280 \sin^4 \varphi)$
 $\cos^5 \cos \varphi = -\cos^{13} \sin \varphi (493 - 3188 \sin^3 \varphi + 3640 \sin^4 \varphi)$
 $\cos^6 \cos \varphi = -\cos^{13} \varphi (493 - 15480 \sin^3 \varphi + 62852 \sin^4 \varphi)$
 $\cos^7 \cos \varphi = \cos^{15} \varphi \sin \varphi (37369 - 483528 \sin^3 \varphi)$
 $\cos^7 \cos \varphi = \cos^{15} \varphi \sin \varphi (37369 - 483528 \sin^3 \varphi)$
etc. etc.

On pourrait calculer les fonctions représentées par les caractéristiques \mathfrak{D} , \mathfrak{D}^2 ... des cinq ou six premiers ordres pour un certain nombre d'angles suffisamment rapprochés et en former des tables.

Voici les valeurs des cinq premiers ordres que nous avons calculées pour les angles de 0°, 5°, 10°, 15°, 30°, 45° et 60°:

Table des valeurs des fonctions $\Im \sin \varphi$, $\Im^2 \sin \varphi$ $\Im \cos \varphi$, $\Im^2 \cos \varphi$ pour diverses valeurs de φ .

φ	⊅sin φ	Ͻ°sin φ	Ͻ³sinφ	ລ⁴sin φ	ລ⁵sinφ
0 5 40 45 50 45 60	1,000000 0,9848652 0,9406032 0,8705128 0,8624999 0,350000 0,0625000 0,0000000			0,000000 7,204556 41,855954 42,674078 2,455742 — 1,449048 — 0,403179 — 0,000000	88,00000 71,14561 30,61743
ф	Ω cos Φ	°Cos⊄	2³ cos⊅	D⁴cosφ	D ⁵ cosφ
0 0 5 10 45 30 45 60	— 0,0000000 — 0,0861648 — 0,1658535 — 0,2572531 — 0,3247594 — 0,2500000 — 0,1082531 0,0000000		0,000000 1,085437 1,896004 2,258799 1,096064	13,000000 11,197200 6,609352 1,217148 	0,00060 59,19666 58,72078 52,28105 7,86083 9,98458 0,06322 0,00000

Les sinus des angles de 30°, 45° et 60° pouvant être exprimés d'une manière simple, les dérivées des différents ordres $\mathfrak{D}, \mathfrak{D}^{\mathbf{a}}, \mathfrak{D}^{\mathbf{a}}$ le sont également. Nous en donnons les expressions dans le tableau ci-après :

Tableau des valeurs des fonctions \Im , \Im^2 ,... pour les angles de 30°, 45° et 60°.

φ	⊅sin φ	ລ³sinφ	ລ³sinφ	ລ⁴sin φ	Ͻ ⁵ sin φ
30°	$\frac{3^2}{2^4}$	$-rac{3^5}{2^5}$	3 ⁵ 2 ⁸	$\frac{3^7}{2^{10}}$	$-\frac{3^{7}.7.13}{2^{13}}$
4 5	$\frac{1}{2^2}$	$-\frac{1}{2\sqrt{2}}$	$\frac{5}{2^3}$	$-\frac{13}{2^3\sqrt{2}}$	$\frac{47}{2^5}$
6 0	$\frac{1}{2^4}$	$-rac{\sqrt{3}}{2^5}$	$\frac{17}{2^8}$	$-\frac{61\sqrt{3}}{2^{10}}$	1559 213
•	Dcosφ	Ω² cos φ	² cos φ	D ⁴ cos φ	ລ⁵cosφ
30°	$-\frac{3\sqrt{5}}{2^4}$	0	$\frac{3\sqrt{3}}{2^7}$	$-\frac{3^{5}\sqrt{3}.11}{2^{10}}$	$\frac{3^{7}\sqrt{3}.17}{2^{13}}$
45	$-\frac{1}{2^{2}}$	$\frac{1}{2^2\sqrt{2}}$	$-\frac{1}{2^{i}}$	$-\frac{11}{2\sqrt{2}}$	191 2°
60	$-\frac{\sqrt{3}}{2^i}$	1/24	$-\frac{\sqrt{3}}{2}$	59 210	$-\frac{\sqrt{3}.13.23}{2^{13}}$

Au moyen de ces valeurs, les termes des séries qui se rapportent aux angles de 30°, 45° et 60°, les plus en usage dans le tir des bombes, pourront être exprimés très-simplement.

136. Valeurs des abscisses et des ordonnées en fonction de la longueur des arcs. Au moyen de la différentiation particulière exprimée par la caractéristique $\mathfrak D$. Français est arrivé aux résultats suivants :

(8)
$$y = \sin \phi.s - m \ge \sin \phi \int (e^{is} - 1) ds + m^2 \Im^2 \sin \phi \int (e^{is} - 1)^2 ds - m^3 \Im^3 \sin \phi \int (e^{is} - 1)^3 ds + \text{etc.}$$

 $x = \cos \phi.s - m \ge \cos \phi \int (e^{is} - 1) ds + m^2 \Im^2 \cos \phi \int (e^{is} - 1)^2 ds - m^3 \Im^3 \cos \phi \int (e^{is} - 1)^3 ds + \text{etc.}$

Dans ces expressions les intégrales doivent être prises de manière à s'évanouir avec s. Or, il est facile de faire voir que si Δ est la caractéristique des différences finies se rapportant à la seule variabilité de i dont la différence $\Delta i = i$, on a

$$\int (e^{is} - 1) ds = i \left(\frac{e^{is} - is - 1}{i^2} \right)$$

$$\int (e^{is} - 1)^2 ds = 2i \left(\frac{e^{2is} - 2is - 1}{(2i)^2} - \frac{e^{is} - is - 1}{i^2} \right) = 2i \Delta \left(\frac{e^{is} - is - 1}{i^2} \right)$$

$$\int (e^{is} - 1)^3 ds = 3i \left(\frac{e^{3is} - 3is - 1}{(3i)^2} - 2 \frac{e^{2is} - 2is - 1}{(2i)^2} + \frac{e^{is} - is - 1}{i^2} \right)$$

$$= 3i \Delta^2 \left(\frac{e^{is} - is - 1}{i^2} \right)$$

etc. etc.

Les équations (8) deviennent donc en y introduisant la caractéristique. F et en rappelant que is $=\frac{s}{c}$

(9)
$$y = s \left\{ \sin \phi - \frac{1}{2} is \left[m \gtrsim \sin \phi F (is) - 2m^2 \Im^2 \sin \phi \Delta F (is) + 3m^3 \Im^3 \sin \phi \Delta^2 F (is) - \text{etc.} \right] \right\}$$

 $x = s \left\{ \cos \phi - \frac{1}{2} is \left[m \gtrsim \cos \phi F (is) - 2m^2 \Im^2 \cos \phi \Delta F (is) + 3m^3 \Im^3 \cos \phi \Delta^2 F (is) - \text{etc.} \right] \right\}$

Les équations (8), (9) sont des équations à la trajectoire exprimées en y et s ou en x et s.

Il est très-remarquable que par l'emploi de la caractéristique \mathfrak{D} , l'ordonnée y soit exprimée en $\sin \varphi$, comme x l'est en $\cos \varphi$; c'est une symétrie qu'on aura lieu de remarquer encore plusieurs fois et que les méthodes employées jusque-là n'avaient pas permis de reconnaître.

Quoique Français ait énoncé que ses formules étaient trop

compliquées pour les applications, on peut voir cependant qu'avec la simplification qu'a introduite la fonction représentée par la caractéristique F que nous avons rencontrée dans la plupart des formules de balistique, et au moyen de tables comme celles que nous donnons (tab. IX), les opérations sont bien simplifiées. En effet, pour calculer les divers degrés de ΔF (is), il suffira de calculer le rapport $\frac{s}{c}$ ou is, de le multiplier successivement par 2, 3, 4, 5..., de chercher dans les tables les valeurs F (is), F (2is), F (3is), F (4is); d'en prendre les différences qui seront ΔF (is), ΔF (2is), ΔF (2is),...; les différences de ces quantités donneront ΔF (is), ΔF (2is)...; les différences entre celles-ci donneront ΔF (is)... et ainsi de suite.

On opérerait de même pour une seconde valeur de is, et en choisissant les valeurs de s de façon que is soit contenu dans les tables, et que par suite les multiples de cette quantité y soient aussi, le calcul de F(is), $\Delta F(is)$,... F(2is), $\Delta F(2is)$... se réduira à des opérations extrêmement simples.

Quant aux fonctions exprimées par la caractéristique \mathfrak{D} , en en formant une table pour des angles suffisamment rapprochés, comme nous l'avons fait pour les angles le plus en usage dans le tir des bombes et pour les cinq premiers degrés, les calculs cesseraient d'être compliqués. Pour les angles de 30°, 45° et 60° l'expression est beaucoup plus simple que pour les autres.

On arrive encore à une expression très-simple des coordonnées des divers points de la trajectoire au moyen de l'angle asymptotique, c'est-à-dire de l'angle que fait avec l'horizon l'asymptote à la branche ascendante de la trajectoire; cet angle étant désigné par λ , qui se calcule d'ailleurs facilement comme on l'a vu (118) au moyen des tables de fonctions $\xi(\varphi)$, on aura

(10)
$$\sin \lambda = \sin \phi + m \sin \phi + m^2 \sin \phi + m^3 \beta^3 \sin \phi + \text{etc.}$$

(11)
$$y = \sin \lambda . s - 2 \sin \lambda \frac{m}{i} (e^{is} - 1) + \frac{1}{2} \mathcal{P}^2 \sin \lambda \frac{m^2}{i} (e^{2is} - 1) - \frac{1}{3} \mathcal{P}^3 \sin \lambda \frac{m^3}{i} (e^{3is} - 1) + \text{etc.}$$

$$x = \cos \lambda . s - 2 \cos \lambda \frac{m}{i} (e^{is} - 1) + \frac{1}{2} 2^{3} \cos \lambda \frac{m^{2}}{i} (e^{2is} - 1) - \frac{1}{3} 2^{3} \cos \lambda \frac{m^{3}}{i} (e^{2is} - 1) + \text{etc}_{-1}$$

Nous pouvons donner à ces formules une expression plus simples par l'emploi de la caractéristique F' (69) et écrire

(12)
$$y = s \left[\sin \lambda - 2 \sin \lambda m F'(is) + \frac{2}{3} \sin \lambda m^3 F'(2is) - \frac{2}{3} \sin \lambda m^3 F'(3is) + \text{etc.} \right]$$

$$x = s \left[\cos \lambda - 2 \cos \lambda m F'(is) + \frac{2}{3} \cos \lambda m^3 F'(2is) - \frac{2}{3} \cos \lambda m^3 F'(3is) + \text{etc.} \right]$$

137. Valeurs des ordonnées et des abscisses en fonction de l'in—clinaison. Français est arrivé aussi à des expressions des coordon—nées de la trajectoire en fonction de l'inclinaison de la courbe erchaque point.

On a vu qu'on avait $\int \frac{d\theta}{\cos^3 \theta} = m(e^{i\theta} - 1)$ (134, éq. d). Expedésignant par $\xi(\theta)$ la valeur de l'intégrale $\int \frac{d\theta}{\cos^3 \theta}$ prise de manière qu'elle s'évanouisse avec $\theta = 0$, c'est-à-dire en faisant (76) $\xi(\theta) = \frac{1}{2} \frac{\sin \theta}{\cos^2 \theta} + \frac{1}{2} \log \tan (45^\circ + \frac{1}{2} \theta)$, l'arc s'étant compris entre le point de départ où l'inclinaison est ϕ et celui où l'inclinaison est θ , on aura

$$m(1-e^{is})=\xi\theta-\xi\varphi;$$

on en tire

$$e^{is} = \frac{m + \xi \varphi - \xi \theta}{m}$$
 et $s = c \log \frac{m + \xi \varphi - \xi \theta}{m}$,

et d'après les équations (11) on aura

(13)
$$y = c \left\{ \sin \lambda \left[\log \left(m + \xi \phi - \xi \theta \right) - \log m \right] - 2 \sin \lambda \left(\xi \phi - \xi \theta \right) \right. \\ \left. + \frac{1}{2} \mathcal{P}^{3} \sin \lambda \left[\left(m + \xi \phi - \xi \theta \right)^{2} - m^{2} \right] - \frac{1}{3} \mathcal{P}^{3} \sin \lambda \left[\left(m + \xi \phi - \xi \theta \right)^{3} - m^{3} \right] \right. \\ \left. + \text{etc.} \right\}$$

RÉSISTANCE PROPORT. AU CARRÉ DE LA VITESSE. 253

$$x = c \left\{ \cos \lambda \left[\log (m + \xi \phi - \xi \theta) - \log m \right] - 2 \cos \lambda (\xi \phi - \xi \theta) + \frac{1}{2} 2^{3} \cos \lambda \left[(m + \xi \phi - \xi \theta)^{3} - m^{3} \right] - \frac{1}{3} 2^{3} \sin \lambda \left[(m + \xi \phi - \xi \theta)^{3} - m^{3} \right] + \text{etc.} \right\}$$

Ces formules fournissent des expressions assez simples de la hauteur du jet Y et de l'amplitude de la branche ascendante X; en y faisant $\theta = 0$, et, partant $\xi(\theta) = 0$, on aura

(14)
$$Y = c \left\{ \sin \lambda \left[\log (m + \xi \varphi) - \log m \right] - 2 \sin \lambda \xi \varphi + \frac{1}{4} \mathcal{P}^2 \sin \lambda \left[(m + \xi \varphi)^2 - m^2 \right] - \frac{1}{3} \mathcal{P}^3 \sin \lambda \left[(m + \xi \varphi)^3 - m^3 \right] + \text{etc.} \right\}$$

$$X = c \left\{ \cos \lambda \left[\log (m + \xi \varphi) - \log m \right] - 2 \sin \lambda \xi \varphi + \frac{1}{2} \mathcal{P}^2 \sin \lambda \left[(m + \xi \varphi)^2 - m^2 \right] - \frac{1}{3} \mathcal{P}^3 \sin \lambda \left[(m + \xi \varphi)^3 - m^3 \right] + \text{etc.} \right\}$$

138. Équation de la trajectoire. Après avoir établi différentes formules pour calculer les coordonnées et les abscisses de la trajectoire au moyen de l'arc s ou de l'angle tangentiel 0. Français arrive à la partie la plus épineuse du problème. l'établissement de l'équation de la trajectoire en x et en y S'il est au-dessus des forces de l'analyse, telle qu'on la possède, d'arriver à une équation finie de cette courbe, on peut cependant en avoir l'expression en séries, sous plusieurs formes très-différentes, dont nous ne donnerons ici que les plus remarquables et celles qui peuvent présenter le plus d'utilité.

Pour y arriver, il faut éliminer s ou φ , entre les valeurs de y et de x qui les contiennent. En employant, à cet effet, les formules du calcul des dérivations, Français est arrivé à l'expression suivante :

$$(15) \quad y = \tan \varphi \cdot x$$

$$-\frac{1}{1.2} \frac{1}{2h} \left(\frac{x}{\cos \varphi}\right)^{3}$$

$$-\frac{1}{1.2.3} \frac{1}{2hc} \left(\frac{x}{\cos \varphi}\right)^{3}$$

$$-\frac{1}{1.2.3.4} \left[\frac{1}{2hc^{2}} - \frac{1}{(2h)^{2}c} \sin \varphi\right] \left(\frac{x}{\cos \varphi}\right)^{4}$$

$$-\frac{1}{1.2.3.4.5} \left[\frac{1}{2hc^{3}} + \frac{1}{(2h)^{3}c} - \frac{4}{(2h)^{2}c^{2}} \sin \varphi - \frac{1}{(2h)^{3}c} \sin^{2} \varphi\right] \left(\frac{x}{\cos \varphi}\right)^{5}$$

$$-\frac{1}{1.2.3.4.5.6} \left[\frac{1}{2hc^{4}} + \frac{7}{(2h)^{3}c^{2}} - \left(\frac{11}{(2h)^{2}c^{3}} - \frac{3}{(2h)^{4}c}\right) \sin \varphi\right]$$

$$-\frac{3}{(2h)^{3}c^{2}} \sin^{2} \varphi - \frac{3}{(2h)^{4}c} \sin^{3} \varphi\right] \left(\frac{x}{\cos \varphi}\right)^{6}$$

$$-\frac{1}{1.2.3.4.5.6.7} \left[\frac{1}{2hc^{5}} + \frac{32}{(2h)^{5}c^{5}} - \frac{3}{(2h)^{5}c} - \left(\frac{26}{(2h)^{2}c^{4}} - \frac{18}{(2h)^{4}c^{2}}\right) \sin \varphi\right]$$

$$+ \left(\frac{2}{(2h)^{3}c^{3}} + \frac{18}{(2h)^{5}c}\right) s^{2} \varphi - \frac{18}{(2h)^{4}c^{2}} s^{3} \varphi - \frac{15}{(2h)^{5}c} s^{4} \varphi\right] \left(\frac{x}{\cos \varphi}\right)^{7}$$

$$- \text{etc.} \quad \text{etc.}$$

Français donne encore les termes en $\left(\frac{x}{\cos\phi}\right)^8$, $\left(\frac{x}{\cos\phi}\right)^9$, $\left(\frac{x}{\cos\phi}\right)^{10}$, que nous ne reproduisons pas ici à cause de leur longueur.

Borda, comme nous l'avons dit (132), a donné les cinq premiers termes de cette expression de y qui, suivant lui, suffisent pour déterminer les portées des bouches à feu lorsque la vitesse n'excède pas 65 mètres par seconde; vitesse très-faible et qui n'est utilisée que dans quelques cas.

Cette formule, lorsqu'on fait sortir le terme $\frac{x^2}{4h\cos^2\varphi}$, donne pour les termes de la première ligne verticale le développement de $F\left(\frac{x}{\cos\varphi}\right)$, que nous avons fait ressortir dans les formules de Lambert et de Borda, et elle prend la forme suivante lorsqu'on y rem-

place pour simplifier les expressions, $\frac{c}{2h}$ par c_1 et $\frac{x}{c\cos\phi}$ par x_1 : $y = x \tan\phi - \frac{x^2}{4h\cos^2\phi} \Big[F(x_1) + \frac{1}{3.4} c_1 \sin^4 x_1^2 + \frac{1}{3.4.5} [c_1^2 - 4c_1 \sin\phi - c_1^2 \sin^2\phi] x_1^3 + \frac{1}{3.4.5.6} [7c_1^2 - (11c_1 - 3c_1^2) \sin\phi - 3c_1^2 \sin^2\phi - 3c_1^3 \sin^3\phi] x_1^4 + \frac{1}{3.4.5.6.7} [32c_1^2 - 3c_1^4 - (26c_1 - 18c_1^3) \sin\phi + (2c_1^2 + 18c_1^4) \sin^2\phi - 18c_1^3 \sin^3\phi - 15c_1^4 \sin^4\phi] x_1^5 + \frac{1}{3.4.5.6.7.8} [122c_1^2 - 33c_1^4 - (57c_1 - 36c_1^3 + 45c_1^5) \sin\phi + (58c_1^2 + 180c_1^4) \sin^2\phi - (70c_1^3 - 150c_1^5) \sin^3\phi + (58c_1^2 + 180c_1^4) \sin^2\phi - (70c_1^3 - 150c_1^5) \sin^5\phi] x_1^6 + \frac{1}{3.4.5.6.7.8.9} [423c_1^2 - 201c_1^4 + 45c_1^6 \cdot (120c_1 + 216c_1^3 + 696c_1^5) \sin\phi + (345c_1^2 + 1146c_1^4 - 675c_1^5) \sin^2\phi - (280c_1^3 - 2208c_1^5) \sin^3\phi - (945c_1^4 - 1575c_1^6) \sin^4\phi - 1512c_1^5 \sin^5\phi - 945c_1^6 \sin^6\phi] x_1^7$

Français a encore calculé le terme en x_i^s que nous ne donnons pas ici.

139. Autre équation de la trajectoire. Français, par une application différente du calcul des dérivations, est arrivé à une formule 'qui est très-remarquable et qui contient aussi ce terme que nous venons de signaler; en l'isolant et en introduisant la caractéristique F, on obtient

(16)
$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} F(x_1)$$

 $+ \frac{c^3}{2 \cdot 3 \cdot 4(2h)^2} (1 - e^{-x_1})^4 \left\{ \sin \varphi + \frac{1}{5} \left[14 \sin \varphi - \cos^2 \varphi c_1 \right] (1 - e^{-x_1}) + \frac{1}{5 \cdot 6} \left[156 \sin \varphi - 2 \left(9 + \frac{2}{\cos^2 \varphi} \right) \cos^2 \varphi c_1 - 3 \sin \varphi \cos^2 \varphi c_1^2 \right] (1 - e^{-x_1})^4 \right\}$

+etc.

+etc.

^{&#}x27; Équation 86 du manúscrit.

$$\begin{split} & + \frac{1}{5.6.7} \bigg[1692 \sin \varphi - 2 \bigg(118 + \frac{59}{\cos^3 \varphi} \bigg) \cos^3 \varphi c_1 - 81 \sin \varphi \cos^2 \varphi c_1^2 \\ & + 3 \bigg(5 - \frac{4}{\cos^3 \varphi} \bigg) \cos^4 \varphi c_1^3 \bigg] (1 - e^{-x_1})^3 \\ & + \frac{1}{5.6.7.8} \bigg[18936 \sin \varphi - 2 \bigg(1401 + \frac{1210}{\cos^2 \varphi} \bigg) \cos^2 \varphi c_1 \\ & - 2 \bigg(770 - \frac{17}{\cos^2 \varphi} \bigg) \sin \varphi \cos^2 \varphi c_1^2 + 9 \bigg(63 - \frac{50}{\cos^3 \varphi} \bigg) \cos^4 \varphi c_1^3 \\ & + 15 \bigg(7 - \frac{4}{\cos^3 \varphi} \bigg) \sin \varphi \cos^4 \varphi c_1^4 \bigg] (1 - e^{-x_1})^4 \\ & + \text{etc.} \end{split}$$

Français a obtenu une autre série dont les deux premiers termes sont les mêmes que dans celle-ci; elle est ordonnée suivant les puissances de c et poussée jusqu'au terme c^6 .

M. Otto ² a obtenu aussi une série ordonnée de la même manière et dont il donne le terme général.

Nous remarquerons que $1-e^{-x_1}=\frac{e^{x_1}-1}{e^{x_1}}=x_1\frac{F'(x_1)}{e^{x_1}}$. Or, d'après ce qu'on a vu (66), on reconnaîtra que le rapport de $F(x_1)$ à e^{x_1} est toujours plus petit que l'unité et d'autant moindre que x_1 est plus grand; on reconnaîtra aussi que ce rapport est peu au-dessous de l'unité quand x_1 est petit. Le terme x_1 étant ainsi en dehors, on voit que la quantité comprise entre les accolades $\{ \}$ est ordonnée suivant les puissances de x_1 ; quant à la partie en dehors elle contient le coefficient $\frac{x^2}{4h\cos^2\varphi}$ et a pour valeur

$$\frac{x^2}{4h\cos^2\varphi}\cdot\frac{x^2}{2.3.4h\cos^2\varphi}\left(\frac{\mathbf{F}'(x_1)}{e^{x_1}}\right)^4.$$

140. Portée horizontale. Français a cherché aussi la portée

- ' Équation 63 du manuscrit.
- ² Théorie mathématique du tir à ricochet; 1833, traduit de l'allemand par M. Rieffel, 1845.

RÉSISTANCE PROPORT. AU CARRÉ DE LA VITESSE.

sur un plan horizontal. En la représentant par X on obtient

(17)
$$X = 2h\sin 2\varphi$$

$$\times \left\{1 - \frac{2}{3} \frac{2h\sin \varphi}{c} + \frac{5}{9} \left(\frac{2h\sin \varphi}{c}\right)^{2} - \left[\frac{68}{135} - \frac{1}{5} \left(\frac{c}{2h}\right)^{2}\right] \left(\frac{2h\sin \varphi}{c}\right)^{3} + \left[\frac{193}{405} - \frac{32}{45} \left(\frac{c}{2h}\right)^{2}\right] \left(\frac{2h\sin \varphi}{c}\right)^{4} - \left[\frac{262}{567} - \frac{94}{189} \left(\frac{c}{2h}\right)^{2} - \frac{4}{105} \left(\frac{c}{2h}\right)^{4}\right] \left(\frac{2h\sin \varphi}{c}\right)^{5} + \left[\frac{19349}{42525} - \frac{3008}{4725} \left(\frac{c}{2h}\right)^{2} - \frac{2}{175} \left(\frac{c}{2h}\right)^{4}\right] \left(\frac{2h\sin \varphi}{c}\right)^{6} - \text{etc.} \quad \text{etc.} \right\}$$

Dans cette expression, $2h\sin 2\varphi$ n'est autre que la portée dans le vide X', et $\frac{2h\sin\varphi}{c}$ est égal à $\frac{X'}{c\cos\varphi}$. Cette formule est peu convergente à moins que $\frac{2h\sin\varphi}{c}$ ou le rapport $\frac{X'}{c\cos\varphi}$ soit luimême peu considérable.

141. Vitesse initiale. Français a aussi cherché une expression de la vitesse qui produit, sous un angle donné, une portée donnée sur un plan horizontal. Représentant par X la portée qu'il obtient², introduisant les caractéristiques F' dans son expression et faisant pour simplifier $\frac{X}{c\cos\phi} = X_1$, on aura

$$(18) \quad \frac{e}{2h} = \frac{2\sin\phi}{X_1FX_1} + \frac{1}{4} \left(\frac{2\sin\phi}{X_1FX_1}\right)^3 \left[(e^{X}i + 5)F'X_1 - 2(2e^{X}i + 1) \right]$$

$$+ \frac{1}{72} \left(\frac{2\sin\phi}{X_1FX_1}\right)^5 \left[(5e^{2X}i + 32e^{X}i + 59)(F'X_1)^2 - 2(16e^{2X}i + 97e^{X}i + 17 + 18X_1e^{X}i)F'X_1 + 12(9e^{2X}i - 1 + 3X_1e^{X}i) \right]$$

$$- \frac{2}{\sin^2\phi} \left[(e^{2X}i - 8e^{X}i - 17)(F'X_1)^2 - (e^{2X}i - 26e^{X}i - 23)F'X_1 - 6(3e^{X}i + 1) \right]$$

^{&#}x27; Équation 55 du manuscrit. ' Équation 67 du manuscrit.

$$\begin{split} &+\frac{1}{576} \Big(\frac{2\sin\phi}{X_1FX_1}\Big)^7 \Big[(13e^{3X}\mathbf{i} + 63e^{3X}\mathbf{i} + 135e^{X}\mathbf{i} + 149)(FX_1)^3 \\ &-2(46e^{3X}\mathbf{i} + 369e^{2X}\mathbf{i} + 600e^{X}\mathbf{i} - 475 + 36X_1e^{2X}\mathbf{i} \\ &+ 468X_1e^{X}\mathbf{i} + 48X_1^2e^{X}\mathbf{i})(F^{T}X_1)^3 \\ &+4(100e^{3X}\mathbf{i} + 828e^{2X}\mathbf{i} - 705e^{X}\mathbf{i} + 47 + 306X_1e^{2X}\mathbf{i} \\ &+198X_1e^{X}\mathbf{i} + 48X_1^2e^{X}\mathbf{i})F^{T}X_1 \\ &-24(64e^{3X}\mathbf{i} - 42e^{9X}\mathbf{i} - 10e^{X}\mathbf{i} + 3 + 48X_1e^{2X}\mathbf{i} \\ &-6X_1e^{X}\mathbf{i} + 4X_1^2e^{X}\mathbf{i}) \\ &-\frac{2}{\sin^2\phi} \Big[(5e^{3X}\mathbf{i} - 27e^{2X}\mathbf{i} - 243e^{X}\mathbf{i} - 275)(F^{T}X_1)^3 \\ &-4(4e^{3X}\mathbf{i} - 72e^{4X}\mathbf{i} - 291e^{X}\mathbf{i} - 46 - 36X_1e^{X}\mathbf{i})(FX_1)^3 \\ &-(13e^{3X}\mathbf{i} + 765e^{2X}\mathbf{i} + 969e^{X}\mathbf{i} - 127 + 288X_1e^{X}\mathbf{i})FX_1 \\ &+12(2e^{3X}\mathbf{i} + 42e^{2X}\mathbf{i} + 4e^{X}\mathbf{i} - 3 + 12X_1e^{X}\mathbf{i}) \Big] \Big] \end{split}$$

+etc. etc.

Cette formule offre la solution de cet important problème : Étant donné l'angle de projection φ , le coefficient de la résistance c et la portée horizontale X, déterminer la vitesse initiale.

Lorsque l'angle de projection φ est très-petit l'on peut négliger la troisième puissance et les puissances supérieures de $\sin \varphi$ devant la première; $\cos \varphi$ étant sensiblement égal à l'unité, la formule se réduit à

$$\frac{c}{2h} = \frac{2\sin\varphi}{X_1 F X_1} \quad \text{ou} \quad \frac{2c\sin\varphi\cos\varphi}{XF\left(\frac{X}{c}\right)}$$

d'où

$$h = \frac{X}{2\sin 2\varphi} F\left(\frac{X}{c}\right),$$

ce qui est conforme à ce que nous avons trouvé directement pour ce cas particulier (111).

Si la portée X est peu considérable, si en même temps le projectile est de fort calibre, c'est-à-dire si c est très-grand, pourvu que l'angle de projection ne soit pas très-grand lui-même, alors $\frac{X}{c\cos\phi}$ ou X_i est une très-petite fraction, alors aussi e^{X_i} , $F'X_i$, FX_i , peuvent être regardés comme égaux à l'unité; il en résulte que dans chacun des termes entre crochets [], facteurs des diverses puissances de $\sin\phi$, les termes facteurs de X_i , et de $\frac{1}{\sin^2\phi}$, ainsi que les autres termes, se réduisent chacun en particulier à zéro; de sorte que la formule se réduit à

$$h=\frac{X}{2\sin 2p},$$

ce qui est la vitesse qu'on obtiendrait dans le vide. Cela devait être; mais il n'était pas inutile de s'en assurer, vu les nombreux multiplicateurs numériques qui se trouvent dans cette formule.

Appelant h' cette valeur de $h=\frac{X}{4\sin\varphi\cos\varphi}$ dans le cas particulier du milieu non résistant, la formule peut prendre une expression plus simple; remarquant que $\frac{2\sin\varphi}{X_iFX_i}=\frac{c}{2h'FX_i}$, on aura

$$\begin{split} \frac{c}{2h} &= \frac{c}{2h' \mathrm{FX}_{\perp}} \Big\{ 1 + \frac{1}{4} \Big(\frac{c}{2h' \mathrm{FX}_{\perp}} \Big)^2 [\dots] + \frac{1}{72} \Big(\frac{c}{2h' \mathrm{FX}_{\perp}} \Big)^4 [\dots] \\ &+ \frac{1}{576} \Big(\frac{c}{2h' \mathrm{FX}_{\perp}} \Big)^6 [\dots] + \mathrm{etc.} \Big\} \end{split}$$

d'où

$$h = \frac{h' F X_1}{1 + \frac{1}{4} \left(\frac{c}{2h' F X_1}\right)^2 [..] + \frac{1}{72} \left(\frac{c}{2h' F X_1}\right)^4 [..] + \frac{1}{576} \left(\frac{c}{2h' F X_1}\right)^6 [..] + \text{etc.}}$$

Dans cette formule on n'a pas écrit les termes renfermés entre crochets [], ils doivent être pris dans la formule précédente.

142. Longueur de l'arc dont la projection est donnée. Français a trouvé pour la longueur d'un arc de la trajectoire compris entre l'origine et un point dont l'abscisse est x, la relation suivante, dans laquelle α est une quantité arbitraire :

$$(20) \quad s = \frac{1}{\alpha \cos \phi} (e^{\alpha x} - 1)$$

$$-\frac{1}{1.2} \left[\frac{1}{\alpha \cos \phi} + \frac{im}{\alpha^2} \sin \phi \right] (e^{\alpha x} - 1)^2$$

$$+\frac{1}{1.2.3} \left[\frac{2}{\alpha \cos \phi} + \frac{im}{\alpha^2} \sin \phi \left(3 - \frac{i}{\alpha \cos \phi} \right) + \frac{i^2 m^2}{\alpha^3} \cos^3 \phi \right] (e^{\alpha x} - 1)$$

$$+ \text{etc.} \quad \text{etc.},$$

jusqu'à la sixième puissance de $e^{\alpha x}$ — 1, après quoi il donne la loi de formation des termes.

Pour simplifier, faisons
$$\alpha = \frac{1}{c\cos\phi}$$
, remarquons que $\frac{i}{\alpha\cos\phi}$
= 1 et que $\frac{e^{\alpha x}-1}{ax} = F'\left(\frac{x}{c\cos\phi}\right)$, on aura

$$\begin{split} s &= \frac{x}{\cos \varphi} F\left(\frac{x}{c \cos \varphi}\right) \\ &- \frac{x^2}{12c} \left[\frac{1}{\cos^2 \varphi} + m \sin \varphi\right] \left[F'\left(\frac{x}{c \cos \varphi}\right)\right] \\ &+ \frac{x^3}{1.2.3 c^2} \left[\frac{2}{\cos^3 \varphi} + \frac{2m \sin \varphi}{\cos \varphi} + m^2 \cos^3 \varphi\right] \left[F'\left(\frac{x}{c \cos \varphi}\right)\right]^3 \\ &- \frac{x^4}{1.2.3.4 c^3} \left[\frac{6}{\cos^4 \varphi} + \frac{6m \sin \varphi}{\cos^3 \varphi} + m^2 \cos^4 \varphi \left(4 + \frac{1}{\cos^2 \varphi}\right) \right. \\ &- 3m^3 \cos^4 \varphi \sin \varphi\right] \left[F'\left(\frac{x}{c \cos \varphi}\right)\right]^4 \\ &+ \frac{x^5}{1.2.3.4.5 c^4} \left[\frac{24}{\cos^5 \varphi} + \frac{24m \sin \varphi}{\cos^3 \varphi} + 6m^2 \cos \varphi \left(3 - \frac{1}{\cos^2 \varphi}\right)\right] \\ &- \frac{17m^5 \cos^3 \varphi \sin \varphi - m^4 \left(15 - \frac{12}{\cos^2 \varphi}\right)\right] \left[F'\left(\frac{x}{c \cos \varphi}\right)\right] \\ &- \frac{x^6}{1.2.3.4.5.6 c^5} \left[\frac{120}{\cos^6 \varphi} + \frac{120m \sin}{\cos^4 \varphi} + 12m^2 \left(8 - \frac{3}{\cos^2 \varphi}\right)\right. \\ &+ 4m^5 \cos^2 \varphi \sin \varphi \left(18 - \frac{1}{\cos^2 \varphi}\right) - m^4 \cos^6 \varphi \left(58 - \frac{93}{\cos^2 \varphi}\right)\right. \\ &+ 5m^5 \cos^8 \varphi \sin \varphi \left(21 - \frac{12}{\cos^2 \varphi}\right)\right] \left[F'\left(\frac{x}{\cos^2 \varphi}\right)\right] \end{split}$$

+ etc. etc.

RÉSISTANCE PROPORT. AU CARRÉ DE LA VITESSE.

143. Durée du trajet. Partant de la formule $dxdp + g dt^2 = 0$ qui combinée avec $\frac{d\phi}{\cos^3\phi} = -ime^{is}ds$ donne $\frac{dt}{ds} = \left(\frac{im}{g}\right)^{\frac{1}{2}}\cos\phi e^{\frac{it}{2}}$. Français trouve une expression de la durée du trajet. En conservant aux dérivées exprimées par les caractéristiques \Im et \Im leurs valeurs, il arrive à l'expression suivante ':

$$(21) \quad t = 2\left(\frac{cm}{g}\right)^{\frac{1}{2}} \left\{\cos\varphi\left(e^{\frac{1}{2}is} - 1\right)\right\}$$

$$-\frac{1}{2}\frac{m}{c}\cos\varphi\left(e^{\frac{1}{4}is} - 1\right)^{2}$$

$$-\frac{1}{3}\frac{m}{c}\left[\frac{1}{2}\cos\varphi - \frac{m}{c}\Im^{3}\cos\varphi\right]\left(e^{\frac{1}{2}is} - 1\right)^{3}$$

$$+\frac{1}{4}\left(\frac{m}{c}\right)^{2}\left[\frac{2}{2}\Im^{3}\cos\varphi - \frac{m}{c}\Im^{3}\cos\varphi\right]\left(e^{\frac{1}{2}is} - 1\right)^{4}$$

$$+\frac{1}{5}\left(\frac{m}{c}\right)^{2}\left[\frac{1.2}{2.4}\Im^{3}\cos\varphi - \frac{3}{2}\frac{m}{c}\Im^{3}\cos\varphi + \left(\frac{m}{c}\right)^{2}\Im^{4}\cos\varphi\right]\left(e^{\frac{1}{2}is} - 1\right)^{5}$$

$$-\frac{1}{6}\left(\frac{m}{c}\right)^{3}\left[\frac{2.3}{2.4}\Im^{3}\cos\varphi - \frac{4}{2}\frac{m}{c}\Im^{4}\cos\varphi + \left(\frac{m}{c}\right)^{2}\Im^{5}\cos\varphi\right]\left(e^{\frac{1}{2}is} - 1\right)^{6}$$

$$-\frac{1}{7}\left(\frac{m}{c}\right)^{3}\left[\frac{1.2.3}{2.4.6}\Im^{3}\cos\varphi - \frac{3.4}{2.4}\frac{m}{c}\Im^{4}\cos\varphi + \frac{5}{2}\left(\frac{m}{c}\right)^{2}\Im^{5}\cos\varphi\right]$$

$$-\left(\frac{m}{c}\right)^{3}\Im^{6}\cos\varphi\right]\left(e^{\frac{1}{2}is} - 1\right)^{7}$$

$$+\frac{1}{8}\left(\frac{m}{c}\right)^{4}\left[\frac{2.3.4}{2.4.6}\Im^{4}\cos\varphi - \frac{4.5}{2.4}\frac{m}{c}\Im^{5}\cos\varphi + \frac{6}{2}\left(\frac{m}{c}\right)^{2}\Im^{6}\cos\varphi\right]$$

$$-\left(\frac{m}{c}\right)^{3}\Im^{7}\cos\varphi\right]\left(e^{\frac{1}{2}is} - 1\right)^{8}$$

$$+ \text{etc.} \qquad \text{etc.} \right\}$$

La loi de ces termes est facile à saisir.

Si l'on veut exprimer le temps de la montée par la branche ascendante, on changera $e^{\frac{1}{2}is}$ en $\left(1+\frac{\xi(\varphi)}{m}\right)^{\frac{1}{2}}$. On aurait de même le temps employé depuis le point de départ jusqu'au point où

^{&#}x27; Équation 102 du manuscrit.

l'inclinaison est de même grandeur qu'au point de départ, mais en sens opposé, en changeant $e^{\frac{1}{2}is}$ en $\left(1+\frac{2\xi(\bullet)}{m}\right)^{\frac{1}{2}}$.

La formule qui précède peut recevoir des modifications qui la rendent plus comparable à celle du mouvement dans le vide, ou à celle que nous avons obtenue pour les petits arcs. Pour cela, on remarquera que le premier terme $2\left(\frac{cm}{a}\right)^{\frac{1}{2}}\cos\varphi(e^{\frac{1}{2}is}-1)$ se

transforme en $\frac{s}{V}F'\left(\frac{s}{2c}\right)$; faisant subir cette transformation aux autres termes, on aura l'expression suivante dans laquelle devront être substituées les quantités entre crochets [] de la formule précédente:

$$(22) \quad t = \frac{s}{V} F'\left(\frac{s}{2c}\right)$$

$$\times \left\{1 - \frac{1}{2\cos\varphi} \frac{m}{c} \frac{s}{2c} \cos\varphi \cdot F'\left(\frac{s}{2c}\right) - \frac{1}{3\cos\varphi} \frac{m}{c} \left(\frac{s}{2c}\right)^2 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^2 + \frac{1}{4\cos\varphi} \left(\frac{m}{c}\right)^2 \left(\frac{s}{2c}\right)^3 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^3 + \frac{1}{5\cos\varphi} \left(\frac{m}{c}\right)^2 \left(\frac{s}{2c}\right)^4 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^4 - \frac{1}{6\cos\varphi} \left(\frac{m}{c}\right)^3 \left(\frac{s}{2c}\right)^5 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^5 - \frac{1}{7\cos\varphi} \left(\frac{m}{c}\right)^3 \left(\frac{s}{2c}\right)^6 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^6 + \frac{1}{8\cos\varphi} \left(\frac{m}{c}\right)^4 \left(\frac{s}{2c}\right)^7 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^7 - \frac{1}{9\cos\varphi} \left(\frac{m}{c}\right)^4 \left(\frac{s}{2c}\right)^8 \left[...\right] \left[F'\left(\frac{s}{2c}\right)\right]^8 + \text{etc.} \quad \text{etc.} \right\}$$

Dans cette expression, le terme en dehors de l'accolade est la durée relative au mouvement qui aurait lieu en ligne droite sans l'effet de la pesanteur; le terme entre accolades qui renferme l'angle de projection et le coefficient de la résistance de l'air donne la durée due à l'effet de la pesanteur; le terme $\frac{m}{c}$ est

égal à
$$\frac{1}{2h\cos^2\varphi}$$
.

Ces divers résultats auxquels est arrivé Français sont très-

remarquables par leur symétrie, par les nombreux termes calculés et par la loi de leur formation. Ils ont acquis une nouvelle simplicité par l'emploi des caractéristiques que nous avons adoptées et deviennent plus facilement applicables au moyen des tables que nous avons données.

§ IV.

Méthode d'approximation.

144. Méthodes d'approximation. La méthode d'Euler et les formules qui donnent par des séries les valeurs qu'on doit déterminer dans les problèmes de balistique, exigeant des calculs trèslongs, les géomètres ont cherché une autre voie et ont tâché d'obtenir des formules plus faciles et donnant en même temps une approximation suffisante.

Méthode de Borda. Borda', considérant que l'équation $\frac{d^3p}{dp} = \frac{ds}{c}$ se refuse à l'intégration, a pris pour la densité de l'atmosphère, qui entre dans le coefficient de la résistance, une fonction de l'inclinaison telle que l'intégration devint possible et qu'en même temps la densité n'éprouvât pas d'anomalies trop considérables. C'est une voie dans laquelle sont entrés après lui plusieurs géomètres qui y ont apporté de grands perfectionnements. La fonction qui a conduit Borda aux équations les plus simples est celle-ci: $\frac{\alpha}{\sqrt{1+p^2}}$, dans laquelle α est une quantité arbitraire.

Remplaçant donc la densité à de l'air par $\frac{\delta \alpha}{\sqrt{1+p^2}}$, ou, $\frac{1}{c}$ par $\frac{1}{c}\frac{\alpha}{\sqrt{1+p^2}}$, il détermine α de manière qu'au point de projection où $p=\tan g +$ la densité qui résulte de la supposition soit égale à la densité véritable, c'est-à-dire qu'on ait $\frac{\alpha}{\sqrt{1+p^2}}=1$, d'où

• Mémoires de l'Académie des sciences de Paris, pour l'année 1769; sur la courbe décrite par les boulets et les bombes, en ayant égard à la résistance de l'air. résulte $\alpha = \frac{1}{\cos \phi}$. Par là, la densité de l'air est variable en chaque

point et égale à $\delta \frac{\cos \theta}{\cos \varphi}$.

Par la substitution de $\frac{1}{c} \frac{1}{\cos \varphi \sqrt{1+p^2}}$ à $\frac{1}{c}$, l'équation ci-dessus, en remarquant que $ds = dx \sqrt{1 + p^2}$, devient

$$\frac{d^2p}{dp} = \frac{1}{c} \frac{ds}{\cos \phi \sqrt{1+p^2}} = \frac{1}{c} \frac{dx}{\cos \phi};$$

et, par l'intégration, Borda a obtenu pour l'équation de la trajectoire

$$y = x \left(\tan \varphi + \frac{c}{2h \cos \varphi} \right) - \frac{c^2}{2h} \left(e^{\frac{x}{c \cos \varphi}} - 1 \right).$$

La force retardatrice $\frac{1}{c} \frac{\cos \theta}{\cos \phi}$ est supposée exacte aux environs du point de départ ; mais elle est trop grande dans la partie supérieure de la trajectoire; elle redevient exacte dans la branche descendante au point où la courbe a même inclinaison qu'au départ, puis elle est supposée trop petite dans la partie qui suit jusqu'au point de chute. Borda pensait par là que les erreurs étaient assez bien compensées; cependant l'amplitude et la hauteur du jet sont trop petites. Mais si l'on calcule séparément la branche descendante, en partant de la vitesse au sommet qu'on peut calculer directement, on diminue l'erreur sur l'amplitude totale.

Cette formule de Borda peut être ramenée à celle que nous avons déjà donnée (110), en y introduisant la caractéristique F; elle devient alors

$$y = x \tan \varphi - \frac{x^{1}}{4h \cos^{2} \varphi} F\left(\frac{x}{c \cos \varphi}\right).$$

145. Formule de Besout. Besout est arrivé à des équations de même forme que celles qui résultent de la méthode précé-

[·] Cours de mathématiques à l'usage du corps royal d'artillerie. - Mouvement des projectiles.

dente, mais par des considérations compliquées; elles reviennent à remplacer par une quantité constante une quantité qui est variable a vec l'inclinaison des diverses parties de la trajectoire, c'est-à-dire q ue Besout représente par a la quantité

$$1 + \frac{\frac{2}{3} \tan g^{2} \frac{1}{2} \theta + \frac{4}{13} \tan g^{4} \frac{1}{2} \theta + \frac{4}{105} \tan g^{6} \frac{1}{2} \theta + \text{etc.}}{1 - \tan g^{2} \frac{1}{2} \theta}$$

et qu'il choisit pour e la plus grande valeur qu'elle peut avoir, c'est-à-dire e. L'équation qu'il obtient peut se ramener comme la précédente à la forme suivante :

$$y = x \operatorname{tang} \phi - \frac{x^2}{4h \cos^2 \phi} \operatorname{F}\left(\frac{ax}{c}\right).$$

Il montre ensuite que la quantité a est équivalente à

$$\frac{1}{2}$$
 séc $\varphi + \frac{1}{2}$ cot $\varphi \log (45^\circ + \frac{1}{2}\varphi)$.

que nous avons représenté au moyen de la caractéristique ξ par $\frac{\xi(\phi)}{\tan \phi}$.

Besout donne ensuite une table de ces valeurs et il propose un moyen d'avoir égard au changement de densité de l'atmosphère; mais, par ce moyen, l'erreur sur l'amplitude est plus grande que quand on suppose la densité invariable.

146. Méthode de Legendre. Legendre 'a proposé plusieurs méthodes d'approximation pour obtenir l'équation de la trajectoire, en faisant une supposition sur la variation de la densité

toire, en faisant une supposition sur la variation de la densité de l'air. La principale est fondée sur cette formule $\frac{1+\alpha p^2}{\sqrt{1+n^2}}$.

de façon que dans l'équation $\frac{d^2p}{dp} = \frac{ds}{c}$, on remplace $\frac{1}{c}$ par $\frac{1}{c} \frac{1+\alpha p^2}{\sqrt{1+p^2}}$ ou δ par $\delta \frac{1+\alpha p^2}{\sqrt{1+p^2}}$, ce qui la transforme en celle-ci:

$$\frac{d^2p}{dp} = (1 + \alpha p^2) \frac{dx}{c}.$$

'Dissertation sur la question de balistique, proposée par l'Académie royale des sciences et belles-lettres de Prusse, pour le prix de 1782, par Legendre. Il détermine α de manière qu'au point de départ où $p = \tan \varphi$ la densité soit exactement celle qu'on doit avoir, c'est-à-dire qu'il

fait
$$\frac{1 + \alpha \tan^2 \varphi}{\sqrt{1 + \tan^2 \varphi}} = 1$$
 d'où $\alpha = \frac{\cos \varphi}{1 + \cos \varphi}$.

Par cette méthode, la densité supposée est égale à la densité réelle aux trois points où l'on a $p = \tan g + p = 0$ et $p = -\tan g + p$. Dans les autres positions, elle sera plus petite que la véritable.

Le minimum aura lieu au point où $p^2 = \frac{1-2\alpha}{\alpha} = \frac{1-\cos\phi}{\cos\phi}$ et le rapport de la densité supposée à la densité réelle sera $\sqrt{1-\tan^{4\frac{1}{2}\phi}}$, quantité en général peu différente de l'unité; car, lorsque ϕ est successivement 30°, 45°, 60°, ce rapport est respectivement inférieur à l'unité de $\frac{1}{400}$, $\frac{1}{67}$, $\frac{1}{18}$.

Cela posé, l'équation $cdp^2 = dpds$, en y remplaçant ds par $dx\sqrt{1+p^2}$, devient

$$cd^2p = (1 + ap^2)dx \cdot dp.$$

De cette équation, en faisant $B = \frac{c}{2h\cos^2\phi} + \tan\phi + \frac{\alpha}{3}\tan\phi^3\phi$, déterminant C par l'équation cubique $\frac{\alpha}{3}C^3 + C - B = 0$, faisant ensuite $\sqrt{\frac{3}{4}C^2 + \frac{3}{\alpha}} = m$, déterminant enfin les valeurs des angles A et P par les relations

$$\tan A = \frac{\tan \varphi + \frac{1}{2}C}{m}$$
 et $\tan P = \frac{p + \frac{1}{2}C}{m}$,

on aura

$$x = \frac{c}{1 + C^2 \alpha} \left(\log \frac{C - P}{C - \tan \varphi} + \log \frac{\cos P}{\cos \Lambda} + \frac{3C}{2m} (A - P) \right)$$

et

$$y = Cx - \frac{3c}{\alpha m}(A - P).$$

On observera 1° que C doit être calculé avec précision au moven des fausses positions, 2° que les logarithmes indiqués

sont hyperboliques et que A — P désignant la longueur absolue d'un arc, devra, après avoir été estimé en degrés, être multiplié par $\frac{\pi}{180}$. On aura ainsi les valeurs de x et de y pour autant de valeurs de p que l'on voudra.

Cette méthode et plusieurs autres que Legendre développe ont le mérite d'une grande exactitude; mais on ne saurait disconvenir qu'elles n'ont pas la simplicité nécessaire dans les applications et qu'elles conduisent à des calculs trop pénibles.

Legendre fait une application numérique et il compare sa formule à celle de Borda; mais les données de l'exemple qu'il choisit sortent des limites de la pratique; car il prend 1 h = 10c et l'angle de projection de 45° . Or, pour des bombes de $0^{\rm m}32$ ou de $0^{\rm m}22$ de diamètre, la valeur h = 10c indiquerait des vitesses respectives d'environ $460^{\rm m}$ et $360^{\rm m}$ par seconde, qu'on ne peut obtenir avec les mortiers que dans des circonstances rares; il ne peut pas non plus être appliqué aux canons, vu qu'on ne les tire pas sous des angles aussi grands.

Cet exemple était très-propre, sans doute, à faire ressortir l'exactitude relative des méthodes de Legendre et de Borda; mais il induirait en erreur sur leurs valeurs réelles, considérées sous le rapport des applications au tir des projectiles.

147. Méthode de Français. Français 2, tout en reconnaissant le mérite de la fonction de densité employée par Legendre, lui reproche de manquer d'homogénéité ou d'égalité de dimensions par rapport à p, entre le numérateur et le dénominateur, de sorte que p étant infini, la fonction $\frac{1+\alpha p^2}{\sqrt{1+p^2}}$ le devient elle-même. Par cette considération il lui préfère celle-ci :

$$\frac{1+ap^2}{\sqrt{1+bp^2}\cdot\sqrt{1+p^2}}.$$

Si l'on y supposait a = b = 1, elle serait rigoureusement

1 Ouvrage cité, page 21.

Recherches sur le mouvement des projectiles dans les milieux résistants, par Français; manuscrit de l'Éc. d'applic., an XIII, p. 134.

égale à l'unité. La condition principale à remplir étant que l'équation $cd^2p = dpds$ devienne intégrable, après qu'on l'aura multipliée membre à membre par l'équation $1 = \frac{1+ap^2}{\sqrt{1+bp^2} \cdot \sqrt{1+p^2}}$; on y satisfait en faisant $b = \frac{1}{2}a$. Posant pour seconde condition, que cette fonction soit rigoureusement égale à l'unité pour $p = \tan g +$, on y satisfait en supposant

$$a = 1 - \frac{3 - \sqrt{9 - 8\sin^2\varphi}}{4\sin^2\varphi}.$$

En remplaçant dans l'équation différentielle de la trajectoire $\frac{1}{c}$ par $\frac{1}{c} \frac{1+ap^2}{\sqrt{1+\frac{1}{a}ap^2} \cdot \sqrt{1+p^2}}$ et ds par $dx\sqrt{1+p^2}$, on aura

$$cd^{2}p = \frac{1+ap^{2}}{\sqrt{1+\frac{1}{3}ap^{2}}}dxdp,$$

d'où l'on tire par l'intégration la valeur de $\frac{dp}{dx}$ puis celles de dy et de dx et enfin celles de x et de y; en faisant

$$k = \frac{c}{2h\cos^2\varphi} + \tan\varphi\sqrt{1 + \frac{1}{2}a\tan^2\varphi},$$

représentant par β un angle constant tel que $\cot 2\beta = k\sqrt{2a}$, et ζ et γ des angles variables tels qu'on ait

$$\tan \zeta = \frac{p\sqrt{\frac{1}{2}a} + \sqrt{1 + \frac{1}{2}ap^{a}}}{\sqrt{\tan \beta}}$$

et

$$tang \gamma = \frac{tang \varphi \sqrt{\frac{1}{2}a} + \sqrt{1 + \frac{1}{2}a tang^2 \varphi}}{\sqrt{tang \beta}},$$

on aura'

$$x = c\cos\left(\beta - \frac{\omega}{4}\right) \sqrt{\sin 2\beta}$$

$$\times \left[2(\zeta - \gamma)\tan \left(\beta - \frac{\omega}{4}\right) + \log \frac{\cos(\beta + \zeta) \cdot \cos(\beta - \gamma)}{\cos(\beta - \zeta) \cdot \cos(\beta + \gamma)}\right]$$

Équation 110, manuscrit cité.

249

$$y = c \cdot k \sin 2\beta \left[\frac{2}{\cos 2\beta} \log \frac{\tan \zeta}{\tan \gamma} + \log \frac{\cos(\beta - \zeta) \cdot \cos(\beta + \zeta)}{\cos(\beta - \gamma) \cdot \cos(\beta + \gamma)} \right].$$

On a ainsi les coordonnées x et y en fonction de la variable p.

La supposition de $\sin \beta = \cos \zeta$ rend les valeurs de x et de y infinies négatives; cette hypothèse répond à une asymptote de la branche ascendante. Français fait remarquer que l'angle asymptotique qu'on en déduit ne diffère de l'angle obtenu par les formules exactes que de quelques secondes dans les cas les plus défavorables, ce qui atteste un grand degré d'approximation; il trouve de même l'existence d'une asymptote verticale dans la branche descendante et sa distance finie au point de départ; il trouve aussi les relations qui, dans cette hypothèse de la densité, donnent la portée horizontale, l'angle de chute et la durée du trajet.

148. Comparaison entre le degré d'approximation des méthodes de Legendre et de Français. On jugera du degré d'exactitude des méthodes de Legendre et de Français, par la comparaison des résultats numériques relatifs au cas discuté par Legendre. $\varphi = 45^{\circ}$, pour lequel on a dans son hypothèse $\alpha = 0.414214$ et dans celle de Français a = 0.618034; les valeurs des fonctions proposées par ces deux géomètres, lesquelles sont respectivement

$$\frac{1+\alpha p^2}{\sqrt{1+p^2}}$$
 et $\frac{1+ap^2}{\sqrt{1+\frac{1}{2}ap^2}\cdot\sqrt{1+p^2}}$

ont été calculées pour des valeurs de ϕ de 5° en 5°, et sont contenues dans le tableau suivant :

Tableau des valeurs comparatives des fonctions de Legendre et de Français pour diverses inclinaisons.

valeurs de	VALEURS DES FONCTIONS		valeurs de	VALEURS DES FONCTIONS	
φ.	de Legendre.	de Français.	φ.	de Legendre.	de Français.
0	1,000000	1,000000	45°	1,000000	1,000000
5	0,999353	0,999956	50	1,020931	1,006233
10	0,997491	0,998944	55	1,058152	1,015487
15	0,994652	0,997779	60	1,121320	1,028007
20	0,991256	0,996439	65	1,227673	1,043584
25	0,987937	0,995312	70	1,411430	1,061403
30	0,985699	0,994479	75	1,752011	1,079879
35	0,985510	0,994750	80	2,487081	1,096151
40	0,989456	0,996332	85	4,803613	1,107638
45	1,000000	1,000000	90	infini.	1,111785

Les valeurs minima des fonctions de Legendre et de Français ont lieu respectivement pour $\varphi=32^{\circ}$ 45′ 54″ et pour $\varphi=31^{\circ}$ 43′ 3″, et sont respectivement 0.985188 et 0.994412. On voit par là que dans l'intervalle de 0° à 45° la première diffère de l'unité de $\frac{1}{67}$, et la seconde de $\frac{1}{170}$ seulement. Au delà de 45°, la fonction de Legendre va en augmentant jusqu'à l'infini, celle de Français ne dépasse pas l'unité de plus de $\frac{1}{9}$. Celle-ci l'emporte donc sur la première pour l'exactitude, et elle marche de pair avec elle pour la simplicité.

149. Modification proposée. Les formules de Legendre et de Français sont encore susceptibles d'un peu plus d'exactitude. En effet, les valeurs de α et de a de ces formules étant déterminées de façon que la densité supposée soit égale à la densité réelle au point de départ et au sommet, il en résulte que dans tout le cours de la trajectoire, la densité supposée est inférieure à la densité véritable de quantités dont le maximum a été respectivement de $\frac{1}{67}$ et $\frac{1}{179}$; or, si l'on prend la moyenne de toutes les valeurs calculées de 5° en 5°, on trouve, d'après le tableau qui précède, 0,993 135 pour les premières et 0,997 399 pour les secondes;

ces quantités correspondent à une valeur du tableau, comprise respectivement entre 40° et 45° et entre 15° et 20° ; elles seraient environ 41° et 17° ; si donc on déterminait α et a par la condition que la densité supposée s'accordât avec la densité réelle pour les valeurs correspondantes de p, la valeur moyenne de la fonction serait ramenée à très-peu près à l'unité, et les plus grandes différences ne seraient plus que d'environ la moitié de ce qu'elles sont respectivement dans les méthodes de Legendre et de Français. Ces deux méthodes gagneraient ainsi en approximation.

150. D'après ce qu'on vient d'exposer, les recherches des géomètres sur la loi du mouvement des projectiles dans la supposition que la résistance de l'air est proportionnelle au carré de la vitesse, paraîtront sans doute assez complètes; si elles n'ont pas amené à des formules à la fois simples et exactes dans le cas général, cela tient à la nature même de la question et il ne paraît pas possible, au moins dans l'état actuel de l'analyse, d'arriver à une équation finie de la trajectoire, ni à l'expression également finie des principales relations dont on aurait besoin. Cependant les méthodes d'approximations qu'on possède seraient assez exactes pour qu'on pût s'en contenter dans les applications les plus précises, si ce n'était encore la longueur des calculs numériques. Mais, si ces recherches n'ont pas présenté jusqu'à présent l'accord désirable avec les résultats de l'expérience, ce n'est pas dans les formules qu'il faut en chercher la cause; elle gît principalement dans l'hypothèse de la proportionnalité de la résistance de l'air au carré de la vitesse, hypothèse dont l'inexactitude est bien démontrée maintenant (sect. Il et art. 114); elle tient aussi à d'autres causes (sect. IX).

SECTION VI.

TRACÉ DES TRAJECTOIRES

ET SOLUTION GRAPHIQUE DE DIVERS PROBLÈMES DE BALISTIQUE.

§ I.

Tracé des trajectoires.

151. Trajectoires des bombes. Lorsqu'un point matériel, par l'action de forces motrices quelconques auxquelles il est soumis, décrit une courbe dans l'espace, on peut le considérer à chaque instant comme se mouvant suivant l'arc de cercle osculateur de la courbe en ce point; et la composante des forces motrices, prise suivant le rayon, qui est la force infléchissante, est égale à la force centrifuge qui résulte de la vitesse du point matériel et du rayon du cercle osculateur à cet instant. Si V est la vitesse du point matériel, P son poids, $\frac{P}{g}$ sa masse, g représentant la gravité et g le rayon du cercle osculateur, la force cen-

trifuge sera $\frac{P}{g} \frac{V^2}{\gamma}$; et, si q représente la composante des forces motrices suivant le rayon, on aura

$$q = \frac{P}{g} \frac{V^2}{\gamma}$$
 et $\gamma = \frac{P}{q} \frac{V^2}{g} = 2h \frac{P}{q}$,

en représentant par h la hauteur $\frac{V^2}{2g}$ due à la vitesse V.

La longueur du rayon de courbure en un point étant connue et sa direction devant être perpendiculaire à la tangente à la trajectoire, ou à la direction du mouvement du mobile en ce point, on aura la position du centre de l'arc osculateur; on pourra donc décrire cet arc et avoir ainsi le chemin que parcourt le mobile dans le premier instant.

La composante des forces motrices, prise suivant la tangente, a pour effet de retarder ou d'accélérer la vitesse du mobile suivant le sens dans lequel elle agit.

Appliquons au tracé d'une trajectoire les principes qui viennent d'être rappelés '.

Soit 0 (Fig. 20) le point de départ, OA la ligne de projection du mobile considéré comme un point matériel relativement aux dimensions de la courbe qu'il parcourt, φ l'angle qu'elle fait avec l'horizontale OB, V la vitesse initiale du projectile; soit toujours g la pesanteur, h la hauteur due à la vitesse V, P le poids du projectile, 2R son diamètre.

Si au point O on élève à OA une perpendiculaire OC, on aura la direction du rayon du cercle osculateur.

Les forces motrices qui agissent sur le mobile sont : la

^{&#}x27;M. Poncelet a indiqué l'application de ce principe au tracé de la trajectoire d'un projectile, dans les *Leçons de Mécanique industrielle* qu'il a faites à Metz en 1828 et 1829 (lithographiées à Metz, 1829, deuxième partie, page 55).

pesanteur, dirigée de haut en bas suivant la verticale, et la résistance de l'air qui agit sur le mobile suivant la direction OA du mouvement, par conséquent suivant la tangente à la trajectoire et dans le sens opposé à celui de ce mouvement, c'est-à-dire de A vers O.

Soit pris, suivant la verticale, la longueur OD pour représenter le poids P, menons DF parallèle et DK perpendiculaire à la tangente OA, OF sera la composante q suivant le rayon du cercle osculateur. La résistance de l'air étant dirigée suivant la tangente OA, sa composante suivant le rayon OC est nulle, de sorte que q seul doit être égal à la force centrifuge et on aura

$$q = \frac{P}{g} \frac{V^2}{\gamma}$$
 ou $\gamma = 2h \frac{P}{q}$.

Prenons OL = 2h et par le point L menons l'horizontale LC, le point C où elle rencontre le rayon sera le centre du cercle osculateur cherché; en effet les deux triangles OLC et ODF étant rectangles et ayant l'angle 0 commun sont semblables et on a

$$OC = OL \times \frac{OD}{OF} = 2h \frac{P}{q} = \gamma;$$

maintenant, si du point C comme centre, avec un rayon OC, on décrit un arc de cercle, on aura la courbe que suivra le mobile dans le premier instant.

Dans le trajet, le mobile est soumis à l'effet de la résistance de l'air qui diminue sa vitesse. Soit t un temps très-court au bout duquel on veut avoir la position du mobile; au moyen des formules du mouvement des projectiles, abstraction faite de la pesanteur (104), on déterminera l'espace s parcouru en vertu de la vitesse initiale v et la vitesse v que conservera le mobile; mais, pendant ce même temps, la pesanteur aurait communiqué au corps,

abstraction faite de la résistance de l'air, une vitesse égale à gt dont la composante suivant la tangente à la trajectoire est gt sin φ ; de sorte que la vitesse du mobile, après le temps t, sera $v - gt\sin\varphi$, que nous représenterons par V'.

Si la pesanteur eût agi seule elle eût de même fait parcourir au mobile un chemin égal à $\frac{1}{2}gt^2$ suivant la verticale et égal à $\frac{1}{2}gt^2\sin\varphi$ suivant la trajectoire.

Cela fait, on portera sur l'arc de cercle, de O en O', une longueur égale à $s - \frac{1}{2}gt^2\sin\varphi$; le point O' sera la position du projectile après un temps t; la vitesse sera V', la direction du rayon osculateur O'C; la tangente sera O'A' perpendiculaire à O'C.

On évitera le calcul de $gt\sin\varphi$ et de $\frac{1}{2}gt^2\sin\varphi$ en prenant sur OD des longueurs qui représentent gt et $\frac{1}{2}gt^2$, et en les projetant sur OK, ou en mesurant la distance de l'extrémité de ces lignes au rayon OC.

On opérera au point O' comme on l'a fait au point de départ O; on prendra sur la verticale une longueur O'L'

 $=h'=rac{V'^2}{2g}$, on tracera l'horizontale L'C'; du point C' comme centre, on décrira l'arc de cercle O'O", égal à $s'-rac{1}{2}gt^2\sin\phi'$, décrit en vertu de la vitesse V' pendant le temps t; la vitesse au point O" sera égale à V' $-gt\sin\phi'$; ϕ' étant l'inclinaison de la trajectoire au point O'.

On opérera de même à partir du point O'' et ainsi de suite pour des intervalles de temps consécutifs t égaux ou inégaux, jusqu'à ce que la tangente à la trajectoire soit devenue horizontale, ce qui comprendra toute la branche ascendante; on continuera de même pour la branche descendante, jusqu'à ce que la trajectoire ait coupé la ligne horizontale OB ou toute autre ligne à laquelle devra se terminer le trajet du projectile. On aura de cette manière pour chacun des points considérés O', O", O",...., la

vitesse du mobile, la durée du trajet, l'inclinaison de la trajectoire; on aura ces valeurs par interpolation pour les points intermédiaires. La trajectoire du mobile pourra donc être regardée comme entièrement déterminée dans les limites du tracé.

152. Modification qui donne plus d'exactitude dans le tracé. Pour que le tracé qu'on vient de donner soit exact. il faut que la durée t, dont la grandeur est arbitraire, ne soit pas trop grande; autrement, la vitesse du projectile variant pendant la durée du trajet, le long de l'arc que l'on décrit des points C, C', C'',..... comme centres, le rayon du cercle osculateur devrait changer lui-même avec cette vitesse. On peut tenir compte de cette variation, au moins approximativement. Pour cela, quand on a obtenu après le temps t, la vitesse finale V, les composantes atsin φ et $\frac{1}{2}qt^2\sin\varphi$, on considérera l'arc comme parcouru en vertu de la vitesse moyenne $\frac{1}{2}(V + V')$; on prendra la valeur de h et par suite le rayon de courbure qui y correspondent. De même, la valeur de \(\phi \) dans les composantes $qt\sin\varphi$ et $\frac{1}{2}qt^2\sin\varphi$ sera remplacée par la valeur movenne $\frac{1}{2}(\varphi + \varphi')$; c'est-à-dire qu'au lieu de considérer la tangente au point de départ 0, on considérera la corde qui joint les points 0, 0',... laquelle est sensiblement parallèle à la tangente moyenne. On opérera de même pour les points suivants. Pour ceux-ci, la différence entre les résultats successifs déjà obtenus permettra généralement de déterminer très-approximativement et par une seule opération, la vitesse moyenne à employer pour obtenir le rayon de courbure; il en sera de même pour les valeurs de $gt\sin\varphi$ et de $\frac{1}{2}gt^2\sin\varphi$. Par ce moyen on pourra prendre la valeur de t, égale à une demi-seconde; on pourra la prendre d'une seconde quand l'échelle du dessin ne sera pas très-grande.

Les durées que l'on prend ainsi restant constantes,

celles de gt et de $\frac{1}{2}gt^2$ le sont aussi; elles peuvent être portées une fois pour toutes de 0 en D et de 0 en d, alors $gt\sin\varphi$, $gt\sin\varphi'$,... et $\frac{1}{2}gt'\sin\varphi$, $\frac{1}{2}gt'\sin\varphi'$,... sont donnés par des perpendiculaires, comme DF, df, au rayon du cercle osculateur, ou, sans qu'il soit besoin de les tracer, par une simple ouverture de compas.

La formule qui donne l'étendue du trajet en fonction de la durée est plus compliquée que celle qui donne la durée en fonction de la longueur du trajet. Pour rendre moins longs les calculs numériques, on peut se donner la vitesse à la fin d'un trajet de peu d'étendue qui doit être décrit avec un même rayon, chercher le rayon de courbure correspondant à la vitesse moyenne $\frac{1}{2}(V + V')$, déterminer l'étendue x et la durée t du trajet, dans l'hypothèse du mouvement rectiligne (104, éq. 35 et 36); déterminer ensuite les composantes $gt \sin \frac{1}{2}(\varphi + \varphi')$, $\frac{1}{2}gt^2 \sin \frac{1}{2}(\varphi + \varphi')$; corriger la vitesse finale et l'étendue du trajet, pour avoir ainsi l'extrémité du premier arc décrit avec le rayon 2. Continuer de même pour les arcs suivants. Il est encore mieux de se donner la longueur x du trajet; d'en déduire le temps écoulé t et la vitesse à la fin (104, éq. 33 et 34, et tab. XI et XIII), déterminer la hauteur h correspondante à la vitesse moyenne $\frac{1}{2}(V+v)$, décrire l'arc, déterminer $gt\sin\frac{1}{2}(\phi + \phi')$ et $\frac{1}{2}gt^2\sin\frac{1}{2}(\phi + \phi')$, retrancher la première de v pour avoir V' et la seconde de x pour avoir la longueur de l'arc. Dans ces deux cas gt et $\frac{1}{2}gt^2$ n'étant plus constants, les produits par $\sin \frac{1}{2}(\varphi + \varphi')$ ne sont plus aussi faciles à obtenir. Dans tous les cas, les longueurs des arcs doivent être portées par des ouvertures de compas assez petites pour que les arcs et les cordes ne dissèrent pas sensiblement. On simplifiera les opérations en calculant une petite table des vitesses et des durées, suivant les trajets du projectile donné.

153. Trace dans le cas de faible courbure. Lorsque la

vitesse des projectiles est grande, ou que la direction de leur mouvement s'étoigne beaucoup de l'horizontale, le rayon de courbure de la trajectoire est très-grand, et il devient difficile de tracer les arcs de cercle successifs comme éléments de la trajectoire; c'est ce qui aurait lieu pour les obus et les boulets animés des grandes vitesses qu'on leur imprime dans le tir sous de petits angles audessus de l'horizon, ou, pour les bombes, dans la partie de la trajectoire éloignée du sommet, et qui se rapproche de la verticale. Dans des cas semblables, il convient de tracer la trajectoire par points comme on va l'indiquer.

Soient O (Fig. 21) un point de la trajectoire, OP la ligne de projection ou la direction du mouvement du projectile, V sa vitesse. On calcule quel sera, après un temps très-court t, l'espace parcouru s et la vitesse du mobile v; on prend OD = gt et $od = \frac{1}{2}gt^2$; on mesure d'après le tracé la composante OL ou DF prise parallèlement à OA ou perpendiculairement au rayon du cercle osculateur, et qui sont DF = $gt\sin\varphi$ et $df = \frac{1}{2}gt^2\sin\varphi$; on les retranche des quantités déjà trouvées, si le projectile s'élève; on les ajoute si le projectile s'abaisse audessous de l'horizon. On aura ainsi $s = \frac{1}{2}gt^2 \sin \varphi$ pour l'espace parcouru suivant la direction du mouvement, et on la portera de 0 en A; on aura de même $v - qt\sin\varphi$ pour la vitesse restante V'. Mais, pendant le temps t et par l'effet de la pesanteur, le projectile se serait abaissé de $\frac{1}{2}gt^2$, si donc par le point A on mène une verticale $\Lambda 0' = 0d = \frac{1}{2}gt^2$, on aura la position 0' du projectile après le temps t.

Sans connaître le rayon de l'arc de cercle, et sans qu'il soit nécessaire de le tracer, on sait qu'il doit être tangent à OP au point O, et comme en même temps il doit passer par le point O', OO' sera la corde du premier arc; si on divise cette corde en deux parties égales par une perpen-

diculaire, celle-ci coupera OA en M; si on joint ce point et le point O', MO'A' sera la tangente et la direction du mouvement au point O' après le temps t; la vitesse V' est déjà connue et égale à $v - gt\sin \varphi$.

A partir du point 0' on opérera comme on vient de le dire; en continuant ainsi, on aura une suite de points 0, 0', 0"..., la direction des tangentes et la vitesse en ces points, et par conséquent tout ce qu'il faut pour tracer la trajectoire.

Afin que l'opération soit plus exacte, et après une première opération au point 0, on calculera l'espace parcouru et la vitesse perdue en vertu de la vitesse moyenne, et les composantes de la pesanteur relatives à l'inclinaison moyenne; mais, pour les autres positions, on rendra l'opération moins longue en déduisant à l'avance ces moyennes par les différences entre les résultats successifs déjà calculés; de cette manière, une seule opération suffira pour chaque point.

De ce que les durées et les espaces OA, O'A' doivent être petits, la grandeur AO' étant petite aussi, il en résulte qu'une très-faible erreur sur ces longueurs en produirait une beaucoup plus sensible sur la direction de la tangente MO'. Pour éviter ces erreurs, on portera sur OP une quantité égale à un certain nombre de fois OA, et on prendra sur la verticale menée par l'extrémité de cette ligne un pareil nombre de fois la valeur de $\frac{1}{2}gt^2$; on continuera le tracé, comme on l'a dit, et on aura une ligne à laquelle on mènera par le point O' une parallèle; cette ligne sera la direction du mouvement en ce point.

Pour tracer l'arc entre deux points 0, 0', on pourra employer une règle ployante; mais on obtiendra trèsapproximativement un nombre n de points intermédiaires aussi grand qu'on voudra, par le procédé suivant: on divisera 0A (Fig. 22) en n parties égales $0A_1$, A_1A_2 , A_2A_3 ...

et AO' en n^2 parties aussi égales entre elles. On prendra 1, 2^2 ou 4, 3^2 ou 9... de ces parties qu'on portera de A_1 en M_1 , de A_2 en M_2 , de A_3 en M_3 ...; les points M_1 , M_2 , M_3 appartiendront à la parabole osculatrice en O qui passerait par le point O'.

154. Propriétés générales des trajectoires. Sommet; minimum de la vitesse et du rayon de courbure. Le tracé de la trajectoire d'une bombe permet de reconnaître dans ces courbes plusieurs propriétés qui ont déjà été indiquées (73 et 75, 119 et 120), et de déterminer les points particuliers qui en jouissent.

Considérons les figures 23 et 23 (bis) qui représentent la trajectoire d'une bombe de 0^m22, projetée sous l'angle de 45° avec une vitesse initiale de 120^{m:s*}, en prenant des intervalles de temps constants égaux à une demi-seconde; dans cette figure on a conservé les notations de la figure 20 (151).

La courbe C, C', C''... qui passe par les centres des cercles osculateurs représente la développée de la trajectoire O, O', O''...; elle a en C, un point de rebroussement qui correspond au maximum de courbure. Le rayon de courbure le plus petit passe par ce point, et il est tangent aux deux branches de la développée.

Si on mène une ligne verticale ST tangente à la développée au point T, le point S où elle coupera la trajectoire sera le sommet de cette courbe; l'ordonnée SP donnera la plus grande hauteur du jet. On obtiendrait également cette hauteur en traçant une horizontale tangente à la trajectoire; mais le point de tangence étant difficile à apprécier exactement, l'abscisse du sommet serait déterminée d'une manière moins précise.

^{*} Le tracé de la figure résulte de coefficients de la résistance de l'air un peu différents de ceux qui sont actuellement adoptés.

Les vitesses en chacun des points O', O", O"... ont été déterminées à des intervalles de temps égaux pour le tracé de la trajectoire; on peut donc reconnaître la position de l'arc sur lequel se trouve le point où la vitesse est un minimum; on obtient également ce point par la comparaison des valeurs de 2h représentées par les lignes OL, O'L', O"L"... Si on mène des tangentes à la trajectoire et à la courbe L, L', L"..., les deux points O₄, L, sur la même verticale, qui jouiront de la propriété de donner deux tangentes parallèles, seront ceux où les deux courbes sont le moins éloignées; la longueur O₄L, donnera la plus petite valeur de 2h, et par suite celle de V qui est un minimum. On peut reconnaître que le point O₄, où la vitesse est un minimum, est plus éloigné du sommet S que le point où le rayon de courbure est un minimum (120).

La trajectoire, dans la partie qui est au-dessous de l'horizontale passant par le point de départ, et où les rayons de courbure sont très-grands, a été tracée par points au moyen du second des procédés indiqués (153).

155. Application du tracé au jet des bombes. Au moyen du tracé qui vient d'être indiqué pour la trajectoire des bombes, et connaissant la vitesse initiale et l'angle de projection, on pourra déterminer la portée du projectile, l'angle de chute, la durée du trajet et la vitesse finale, soit sur une ligne horizontale, soit sur toute autre ligne déterminée de position, pour le cas particulier qu'on a traité. En exécutant sur le même dessin un certain nombre de tracés semblables pour un même projectile sous le plus grand angle de projection en usage, et avec des vitesses variées, depuis celles qui donnent les plus petites portées que l'on veut considérer, jusqu'à celles que donnent les plus grandes charges de poudre, et que l'on emploie avec les bouches à feu, on pourra résoudre tous les problèmes qui seraient proposés; cela aura lieu, soit que l'une des

courbes satisfasse exactement aux conditions du problème, soit qu'on doive opérer par l'interpolation d'une courbe entre deux courbes voisines. Ce tracé s'applique particu—lièrement au jet des bombes, et pourra être limité aux angles de tir de 60° et aux vitesses que donnent les charge de poudre qui remplissent la chambre des mortiers.

Si l'on se proposait, par exemple, de déterminer l'angle de plus grande portée pour une vitesse donnée, on déterminerait sur chacune des trajectoires le point où la vitesse est égale à la vitesse donnée; on mesurerait la portée horizontale correspondante; on opérerait de même pour les diverses courbes 0; on reconnaîtrait la portée qui est la plus grande, et on mesurerait alors l'inclinaison de la trajectoire au point de départ; on aurait ainsi l'inclinaison cherchée pour la vitesse donnée.

Comme le maximum cherché peut se trouver entre deux des trajectoires tracées, on obtiendra le maximum demandé avec plus de précision par le tracé d'une courbe auxiliaire, en prenant pour abscisses les inclinaisons de la trajectoire aux divers points où la vitesse est égale à la vitesse proposée; et pour ordonnées les portées correspondantes; l'ordonnée du sommet de cette courbe donnera la portée maximum, et l'abscisse l'inclinaison sous laquelle on peut l'obtenir.

La solution d'un problème sur le jet des bombes peut paraître longue, lorsqu'il faut effectuer le tracé de la trajectoire pour chaque cas; mais, en ce qui regarde les projectiles en usage dans le service de l'Artillerie, le nombre des tracés à effectuer est peu considérable, surtout si l'on considère qu'ils sont limités aux angles de 30° à 60°, et qu'ils sont plus généralement relatifs à l'angle de 45°. La solution de ces problèmes pourrait donc être rendue trèsfacile au moyen d'un certain nombre de trajectoires tracées une fois pour toutes.

156. Tracé des trajectoires sous les petits angles de projection. Le tracé des trajectoires au moyen des arcs osculateurs consécutifs est très-convenable pour le cas du tir des bombes sous de très-grands angles de projection et avec de faibles vitesses initiales, cas dans lequel la grandeur des rayons est comparable aux portées et aux dimensions du papier sur lequel doit se faire le tracé. Mais la trajectoire d'un boulet ou d'un obus lancé sous un petit angle de projection au-dessus de l'horizon, avec la vitesse susceptible de donner les portées habituelles, étant par cela même très-aplatie, et ayant par suite de très-grands rayons de courbure, présente beaucoup de difficultés dans l'exécution à une échelle convenable. On peut bien déterminer divers points de la trajectoire les uns d'après les autres, comme on l'a indiqué (153); mais, de même qu'on arrive par des moyens analytiques à une équation finie de la trajectoire, on peut aussi déterminer directement par le tracé autant de points qu'on veut de cette courbe.

Soient (Fig. 24) O le point de départ, OB la ligne de projection faisant un angle φ avec l'horizontale OA, et h la hauteur due à la vitesse initiale V; x étant l'abscisse d'un point, l'ordonnée y de la trajectoire sera déterminée par l'équation

$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi} \Re(x, V).$$

La valeur de c, qui dépend de la densité de l'air, du diamètre et du poids du projectile, étant déterminée, on connaîtra $\frac{x}{c}$ et $\frac{V_1}{r}$ soit par le calcul numérique, soit par le tracé qui sera indiqué plus loin, et on déterminera la valeur de w(x, V).

Soit OD = x; si au point D on élève une perpendiculaire à l'horizontale OA, la portion DF comprise entre cette horizontale et la ligne de projection OB sera $x \tan g$ et représentera la hauteur à laquelle se serait élevé le projectile sans l'effet de la pesanteur. Le second terme de la valeur de y, ou l'abaissement du projectile peut être mis sous la forme

$$\frac{\frac{x}{\cos \varphi} \cdot x \, \mathfrak{V}_{\delta}(x, \mathbf{V})}{4h \cos x};$$

c'est une quatrième proportionnelle aux trois quantités $4h\cos z$, $\frac{x}{\cos \varphi}$ et x us (x, V).

Pour ne pas avoir à tracer des lignes trop longues, prenons sur OA une certaine fraction de 4h, le cinquième par exemple, c'est-à-dire, prenons $OC = \frac{4h}{5}$; si par le point C on abaisse une perpendiculaire CG sur OA, on aura $OG = h\cos\varphi$; puisque OD = x, et que DF est perpendiculaire à OB, on a $DF = \frac{x}{\cos\varphi}$. Pour avoir $x \cdot \mathcal{W}(x, V)$, prenons sur une ligne quelconque passant par le point O, sur la verticale par exemple, une quantité OK égale à une unité de longueur et $OL = \mathcal{W}(x, V)$; traçons DK et par le point L menons une ligne parallèle à KD, elle coupera OB en M, et on aura la proportion

$$\frac{OK}{OD} = \frac{OL}{OM}$$

d'où

$$OM = \frac{OD \cdot OL}{OK} = x \, vb \, (x, V).$$

Joignons GM et par le point F menons la parallèle FN, on aura

$$\frac{\text{OG}}{\text{OM}} = \frac{\text{OF}}{\text{ON}},$$

d'où

$$ON = \frac{OF \cdot OM}{OG} = 5 \frac{\frac{x}{\cos \varphi} \cdot x vb(x, V)}{4h \cos \varphi},$$

c'est cinq fois l'abaissement cherché; prenons-en le cinquième et portons-le de F en P, le point P sera le point cherché de la trajectoire. En opérant de même pour d'autres distances, on aura autant de points qu'on voudra de la trajectoire du projectile, et, en faisant passer une courbe continue par ces divers points, on aura la trajectoire tracée à l'échelle qu'on aura adoptée.

La figure 24 représente le tracé de la trajectoire d'un obus de 0^m22 projeté sous l'angle de 16° avec une vitesse de 144^m. On a fait la construction pour des points distants de 100^m en 100^m.

157. Simplifications. Plusieurs simplifications peuvent être apportées dans l'exécution du tracé.

Pour prendre facilement le cinquième des abaissements trouvés, on prendra OI égal à cinq fois une quantité quelconque; du point I comme centre avec un rayon IJ égal à une fois cette quantité ou $\frac{OI}{5}$, on tracera un arc de cercle et l'on y mènera une tangente par le point O. Cela fait, au lieu de prendre le cinquième de la ligne OD, il suffira de mesurer la distance du point D à la ligne OI, ce qui se fera facilement avec le compas sans tracer aucune ligne.

On pourra construire les ordonnées à une échelle plus grande que les abscisses, afin de rendre la loi des abaissements plus sensible, ce qui sera particulièrement utile dans le cas du tir des projectiles avec de grandes vitesses sous de petits angles de projection. Ainsi, si l'on adopte pour le rapport le même nombre 5 qu'on a pris pour le rapport de 4h, on prendra DF' = 5DF et on tracera OF'; c'est à partir de cette ligne qu'on portera les abaissements F'P' = ON tels qu'on les trouvera; on opérera de même pour les autres points, et on aura une trajectoire dont les ordonnées seront à une échelle cinq fois plus grande que

les abscisses. Lorsqu'on voudra mesurer les inclinaisons, on devra le faire par le moyen des tangentes trigonométriques estimées à l'échelle des ordonnées, le rayon devant être estimé à celle des abscisses.

Lorsque l'angle de projection sera petit, les lignes de construction du tracé couperont l'horizontale OA sous des angles très-aigus, et il pourra rester de l'incertitude sur les grandeurs cherchées. Pour éviter cet inconvénient, on tracera une ligne auxiliaire OB faisant avec l'horizontale un angle suffisamment ouvert, et on y portera, à partir du point O, les distances $\frac{x}{\cos \varphi}$ représentées par OF, ainsi que la grandéur $OG = h\cos \varphi$. On pourra se servir pour cela de la ligne OF' à laquelle sont rapportés les abaissements pris à une échelle multiple de celle des abscisses.

Le tracé pourra donner avec une grande facilité les valeurs de $\frac{x}{c}$; pour cela on prendra OQ = c; on élevera au point Q une perpendiculaire sur laquelle on prendra QR = 1, et on joindra OR; la partie DD' de la verticale passant par les divers points, tels que D compris entre cette ligne et l'horizontale OA, représentera à la même échelle que QR, pris pour unité, les rapports $\frac{x}{c}$.

On aura aussi facilement $\frac{V_1}{r}$. Pour cela, soit pris sur la ligne de projection à une échelle quelconque OS = V, et soit abaissée la verticale SS_1 ; OS_n sera égal à $OS \cos v = V_n$; soit pris encore à la même échelle OT = r, élevons la perpendiculaire TU = 1; menons OU; la partie S_nZ_n de la verticale limitée à cette ligne sera $\frac{v}{r}$. A l'aide d'un double-décimètre divisé en millimètres et en prenant un ou deux décimètres pour unité, les opérations que l'on vient de décrire deviennent très-faciles et assez exactes.

158. Tracé de la trajectoire pour des points équidistants. Lorsque les distances des points de la trajectoire qu'on se propose de tracer sont arbitraires, et lorsqu'on est maître de prendre des intervalles réguliers égaux, on peut exécuter le tracé avec plus de facilité. Pour cela, on remarquera que les abaissements dans le vide exprimés par $\frac{x^2}{4h\cos^2\varphi}$ croissent proportionnellement à x^2 , ou comme les carrés 1, 4, 9, 16.... des abscisses qui croîtraient comme la suite naturelle des nombres 1, 2, 3, 4,.... et que par conséquent de l'un des abaissements on déduira facilement les autres au moyen des lignes proportionnelles. Les abaissements dans l'air seront d'ailleurs égaux au produit des précédents par les fonctions $\Re(x, V)$.

Soit proposé de déterminer (Fig. 25) les points de la trajectoire dont les abscisses sont $100^{\rm m}$, $200^{\rm m}$, $300^{\rm m}$,... Soient OA la ligne de projection, OB l'horizontale passant par le point de départ; prenons sur cette ligne les points 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, distants de $100^{\rm m}$ entre eux, et 0C = h. Abaissons sur OA la perpendiculaire CG; soit OD l'une des distances, celle de $800^{\rm m}$ par

exemple; déterminons $\frac{x^2}{4h\cos^2\varphi}$ ou $\frac{x}{x\cos\varphi}$; pour cela, joignons DG, et par le point F où la verticale qui passe par le point D coupe la ligne de projection OA, menons FN parallèle à GD; prenons le quart de ON, et portons-le de F en p_8 ; p_8 sera le point de la trajectoire dans le vide à $800^{\rm m}$ de O. Si la ligne F p_8 était facilement divisible en un nombre de parties égales au carré de 8, nombre des intervalles égaux que l'on considère, on opérerait directement cette division; mais comme cela ne pourrait se présenter que par hasard, prenons un rayon plus grand que F p_8 et égal au nombre 64, carré de 8, des divisions

d'une règle divisée et décrivons un arc de cercle; par le point p_8 menons une parallèle à OA; elle coupera l'arc de cercle en q; menons la droite Fq, et portons sur cette ligne les nombres 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.... des divisions de la règle. Par chacun des points de divisions, menons des parallèles telles que q_5p_5 ; ces lignes couperont la verticale FD_5 en des points dont les distances au point F seront avec Fp dans le rapport des carrés 1, 4, 9.... de la suite naturelle des nombres, et seront par conséquent les abaissements à $100^{\rm m}$, $200^{\rm m}$, $300^{\rm m}$,.... ces parallèles prolongées couperont les verticales 1, 2, 3.... en des points p_1 , p_2 , p_3 ,.... qui sont les points de la trajectoire dans le vide.

Pour avoir les points correspondants de la trajectoire dans l'air, portons sur une ligne quelconque, sur FJ, par exemple, à partir de F, FK = 1, et ensuite F1, F2,... F5,... égaux à $\mathfrak{B}(x_1, V)$, $\mathfrak{B}(x_2, V)$,... $\mathfrak{B}(x_5, V)$,...; par l'un de ces points de divisions, tel que L_5 , menons une parallèle à la ligne q_5K , elle coupera Fq en Q_5 ; FQ_5 sera à Fq_5 comme $\mathfrak{B}(x_1, V)$ est à 1, et par conséquent si par Q_5 on mène une parallèle à p_5q_5 , cette ligne coupera la verticale à la distance de $500^{\rm m}$ en un point qui sera le point de la trajectoire dans l'air à cette distance; on opérera de même pour tous les autres points. On aura très-facilement par ce moyen des points aussi rapprochés qu'on le voudra de la trajectoire qu'on cherche.

On pourra au besoin rendre plus apparents les abaissements du projectile en prenant les ordonnées à une échelle plus grande que celle des abscisses.

159. Tracé des inclinaisons de la trajectoire. Par un tracé semblable au précédent, on détermine l'inclinaison de la trajectoire en chaque point. Cette inclinaison est donnée par l'équation tang $\theta = \tan \varphi - \frac{x}{2h\cos^2\varphi} \delta(x, V)$.

En la mettant sous la forme

$$x(\tan \varphi - \tan \theta) = \frac{x^2}{4h\cos^2\varphi} 25(x, V),$$

on voit, 1º que le premier membre représente la distance entre la ligne de projection et la ligne menée parallèlement à la tangente à la trajectoire, distance mesurée sur la verticale qui passe par le point proposé; 2° que le premier facteur du second membre est l'abaissement du projectile dans le vide. Il suffit donc de faire le produit de celui-ci par 2s(x, V) comme on a fait le produit par s(x, V) pour avoir la trajectoire.

Pour cela, on se servira des divisions faites sur Fq (Fig. 25), ou on en établira de semblables sur la ligne Fq'menée par le point F et par la seconde intersection de la ligne qp, et de l'arc de cercle tracé du point F comme centre avec le rayon Fq égal à 64 divisions. Par le point F on tracera une ligne quelconque FJ' sur laquelle on prendra FK' = 1, et les valeurs de $\delta(x_1, V)$, $\delta(x_2, V)$ et $\mathbf{FM} = \frac{1}{2}$. Opérant pour la distance de 500^m, par exemple, on joindra q₅M; par le point L₅' qui correspond à FL₅' $= \mathfrak{G}(x_5, V)$, on mènera une parallèle à Mq_5 , elle coupera la ligne Fq en Q₅', et si par le point Q₅' on mène une parallèle à pq elle coupera la verticale du point proposé au point p_5' , et la ligne $0p_5'$ sera parallèle à la tangente au point p_5' , et donnera par conséquent l'inclinaison de la trajectoire en ce point. En joignant par une courbe les points tels que p_5 , on obtiendra facilement par son moyen l'inclinaison de la trajectoire en un point quelconque.

160. Durée du trajet; vitesse. La durée du trajet depuis le point de départ jusqu'à une distance x est donnée par l'expression

$$t = \frac{x}{V_1} \mathfrak{V}(x, V).$$

Pour la déterminer, soit (Fig. 26) OP la ligne de projection, faisant avec l'horizontale OA un angle \mathfrak{e} . Prenez OC égal à la vite se V exprimée par le chemin parcouru dans une seconde à l'échelle des abscisses; par le point C abaissez la verticale CD; OD sera V cos \mathfrak{e} ou V_c. A partir du point O sur une ligne quelconque OG, sur la verticale par exemple, prenez OK = 1 à une échelle convenable pour représenter l'unité de temps; prenez ensuite OL = $\mathfrak{Q}(x, V)$, l'unité de ces valeurs étant prise à la même échelle que celle du temps; tirez DL. Par le point F à la distance x menez à cette ligne une parallèle; elle coupera OG en T, OT représentera la durée du trajet; car on a

$$\frac{\text{OD}}{\text{OL}} = \frac{\text{OF}}{\text{OT}}$$
,

ďoù

$$OT = \frac{OF \cdot OL}{OD} = \frac{x}{V_{\bullet}} \otimes (x, V).$$

On opérera de même pour toutes les autres distances.

La vitesse en un point dont l'abscisse est x, a pour expression

$$v = \frac{V}{\mathcal{O}(x, V)} \cdot \frac{\cos \varphi}{\cos \theta}.$$

Pour la déterminer, à partir du point O (Fig. 26) sur une ligne quelconque OG', portez OK' = 1, puis OL' égal à $\mathfrak{D}(x, V)$, joignez DL', et par le point K' menez à DL' une parallèle; cette ligne coupera l'horizontale OA en M; OM est égal à $V\cos\theta$, car on a

$$\frac{\mathrm{OL'}}{\mathrm{OD}} = \frac{1}{\mathrm{OM}}$$

d'où

$$OM = \frac{OD}{OK'} = \frac{V\cos p}{5(x, V)};$$

c'est la projection horizontale de la vitesse. Si par le point O on a tracé (159) la ligne OQ faisant avec OB un angle O égal à l'inclinaison de la trajectoire à la distance OB que par le point OB on élève la perpendiculaire OB sera égal à OB et par conséquent égal à OB . La courbe qui passerait par les divers points déterminés comme OB sera la courbe polaire des vitesses.

On peut exécuter les tracés des durées et des vitesses avec ceux des trajectoires et des inclinaisons, reporter sur les verticales de chaque point les longueurs qui représentent les durées et les vitesses et tracer des courbes par les extrémités de ces lignes; par leur moyen on obtiendra facilement, pour une distance quelconque, la position du projectile, la direction du mouvement, le temps écoulé et la vitesse. La grandeur des échelles pourra varier suivant les données, l'étendue que l'on doit considérer, et le degré de précision qu'on veut obtenir. L'échelle de 0m001 pour un mêtre pour les distances horizontales et les vitesses, 0m100 pour l'unité des valeurs de &, 5, 0, 0, et 0^m050 pour une seconde conviendront dans le plus grand nombre des cas. On aura besoin aussi avec les grandes vitesses de construire la trajectoire avec des ordonnées amplifiées, dans le rapport de 5 à 1, par exemple.

161. Courbes des valeurs des fonctions &, 5, 0, 0. Dans les tracés qui ont été indiqués, on a eu besoin d'exprimer par des longueurs de lignes les valeurs des fonctions de &, 5, 0, 0 qui sont données par les tables. On peut éviter les calculs numériques et faciliter les opérations graphiques en construisant une fois pour toutes les courbes qui représentent ces fonctions.

On l'a fait (Fig. 27) à l'échelle de 0^m100 pour une unité; on a pris, sur une verticale, les valeurs de

 $o = \frac{V_1}{r}$ des tables, pour abscisses; par chaque point de division, 0,05, 0,10, 0,15,... on a mené des perpendiculaires (qui sont ici parallèles au bas du cadre et horizontales); sur chacune de ces lignes et à partir de la verticale on a pris une longueur égale à la valeur correspondante de A(x, V) que donne la table numérique XII, pour $z = \frac{x}{c} = 0,05$; et, par les points qui limitent les longueurs, on a fait passer une courbe; elle est intitulée z = 0,05. On a opéré de même pour z = 0,10, pour z = 0,15,... etc.

Chacune de ces courbes représente aussi les valeurs de s(x, V) pour les valeurs de z' correspondantes des tables. Quant à la correction qui se rapporte à ces dernières valeurs, elle est toujours très-faible dans les limites des applications des tracés, et il a suffi de la construire pour quelques-unes des valeurs de z, telles que z=0,50, z=0,75, z=1,00, en prenant les diverses valeurs de V_0 pour abscisses. En les traçant du même côté que les valeurs de $v_0(x, V)$ et en remarquant que la correction est négative, on verra qu'une seule ouverture de compas donnera directement les valeurs de s(x, V). Lorsque la valeur de s(x, V) proposée ne sera pas l'une des valeurs exactes des courbes, on estimera la différence entre les deux courbes voisines, soit à vue seit par un autre moyen plus précis.

Lorsque, dans le cas du tracé d'une trajectoire, on sera maître du choix des distances, on les prendra de façon que les diverses valeurs de $\frac{x}{c}$ soient celles des courbes, alors une ligne tracée par le point dont l'abscisse est la valeur proposée de $V_o = \frac{V_o}{r}$, parallèlement aux ordonnées

donnera immédiatement par son intersection avec les diverses courbes z = 0.05, z = 0.10... les valeurs de (x, V) correspondantes; il n'y aura qu'à les porter sur la feuille du tracé de la trajectoire.

EXEMPLE. Si l'on doit tracer la trajectoire d'un boulet de 24 lancé avec une vitesse initiale de $500^{\text{m}:s}$, on aura $V_o = 1.15$; le poids du boulet étant $12^{\text{k}}010$, son diamètre $0^{\text{m}}1485$, on aura $c = 1309^{\text{m}}1$; par conséquent, pour $\frac{x}{c} = 0.05$, $\frac{x}{c} = 0.10$, $\frac{x}{c} = 0.15$,... on aura respectivement $x = 65^{\text{m}}40$, $150^{\text{m}}91$, $196^{\text{m}}51$,... et l'on trouvera sur l'horizontale, qui passe par la division $V_o = 1.15$, toutes les longueurs $W_o(x, V)$ correspondantes aux distances de x, qu'on vient d'indiquer; il sera très-facile de les rapporter sur le dessin pour construire la trajectoire. Il sera également très-facile de traduire ces longueurs en nombres, en

Lorsque la valeur de V_0 ne tombera pas sur un des points de division de la verticale, on y indiquera ce point, et, par ce point, on tracera une horizontale au crayon; celle-ci, par ses intersections avec les courbes z=0.05, z=0.10, z=0.15, déterminera les longueurs de $\mathfrak{V}_0(x, V)$ pour x=0.05, x=0.10, x=0.15...

appliquant sur la figure 5 une règle divisée.

On obtiendra de la même manière les valeurs de s(x, V); elles correspondent à des valeurs différentes de x.

Les courbes des valeurs de v(x, V) construites de la même manière, donneront également les valeurs de v(x, V), et serviront à la détermination graphique des vitesses du projectile et des durées du trajet.

Afin d'éviter la transformation des valeurs des vitesses en celles de $\frac{V}{r}$, on pourrait écrire ces vitesses sur la ligne des abscisses, aux points correspondants, pour la valeur adoptée de r.

Il serait également facile d'éviter la transformation des

valeurs de x en $\frac{x}{c}$, en écrivant à côté des valeurs de $\frac{x}{c}$ de chaque courbe la valeur de x qui y correspond pour chacune des espèces de projectiles auxquels on doit en faire l'application.

On faciliterait de même la réduction des vitesses V en hauteurs dues à ces vitesses au moyen d'une parabole tracée avec ces valeurs pour ordonnées. Avec des précautions convenables pour éviter l'altération des dimensions du tracé de ces courbes, on obtiendra une exactitude très-suffisante pour les applications ordinaires.

On peut aussi déterminer par des tracés les valeurs de e^z , F'(z), F(z), et traduire ainsi en courbes les tables numériques que nous avons calculées; mais cela n'est pas nécessaire.

§ II.

Solution graphique de divers problèmes de balistique.

162. Solution graphique de divers problèmes de balistique. On peut par des tracés très-simples résoudre la plupart des problèmes de balistique.

Afin d'éviter la répétition de plusieurs constructions élémentaires, nous les rappellerons en commençant.

Soient OA une horizontale (Fig. 28), OP une ligne de projection faisant un angle φ avec OA; soit M un point quelconque dont les coordonnées sont OC = a et MC = b, et soit OD une distance quelconque égale à x; si du point D on abaisse sur OP une perpendiculaire DF, et du point F une perpendiculaire FG sur OA, on aura

 $OF = x \cos \varphi$ et $OG = x \cos^2 \varphi$

et réciproquement

$$x = \frac{OF}{\cos \phi}$$
 et $x = \frac{OG}{\cos^2 \phi}$.

Si l'on joint 0 et M par une ligne, elle coupera la verticale DI en H, on aura

$$\frac{b}{a} = \operatorname{tang} MOC = \operatorname{tang}_{\epsilon}, \quad DI = x \operatorname{tang}_{\phi},$$

$$DH = x \tan \varphi, \quad IH = x (\tan \varphi - \tan \varphi)$$

et réciproquement

$$x = \frac{IH}{\tan \varphi - \tan \varphi}.$$

Dans les solutions qu'on va donner, on déterminera les valeurs des fonctions de $\Re(x, V)$ et $\Im(x, V)$ comme on l'a dit précédemment; mais dans le cas où la vitesse sera l'inconnue, on devra supposer que l'on a une valeur approchée de la projection horizontale de cette vitesse qui permette de déterminer les fonctions $\mathfrak{B}(x, V)$ et $\mathfrak{I}(x, V)$. La solution ne serait rigoureuse que dans le cas où l'on représenterait la résistance par un seul terme proportionnel au carré de la vitesse : mais comme c'est particulièrement au tir à de petites vitesses que les solutions graphiques dont nous parlons sont applicables, une petite différence sur la vitesse n'aura qu'une influence trèsfaible sur la valeur de $\mathfrak{B}(x, V)$; on pourra d'ailleurs toujours déterminer celle-ci par une première approximation. Il en est de même, mais à un degré d'importance tout à fait négligeable, de la valeur de q qui entre dans $V_{r} = V \cos z$.

163. Déterminer l'angle de projection sur un plan horizontal. Étant données la vitesse initiale V et la portée X sur un plan horizontal passant par le point de départ, déterminer l'angle de projection φ . L'angle de projection est donné par la formule suivante dans laquelle h est la hauteur due à la vitesse V

$$\sin 2\varphi = \frac{X}{2h} \psi_b(X, V).$$

Pour déterminer l'angle de projection, soient (Fig. 29) O le point de départ, OA l'horizontale, OB la verticale; du point O comme centre, avec un rayon OK = 1, tracez un arc de cercle, prenez OL = PS(x, V), OH = 2h, OD = X: tirez HL et par le point D menez une parallèle à HL. Par le point d'intersection C de cette parallèle avec la verticale, menez l'horizontale CM qui coupera en M le cercle du rayon 1,00; l'angle MON sera égal à 2p, et la ligne OP qui le divisera en deux parties égales sera la ligne de projection. En effet, on a

$$\frac{OH}{OD} = \frac{OL}{OC}$$
;

donc

OC ou
$$\sin MON = \frac{X}{2h} \psi_b(x, V)$$
, $MON = 2\tau$ et $POA = \varphi$.

La seconde intersection M' de l'horizontale GM et de l'arc de cercle donne pour sin OM et OP une seconde solution, mais elle appartient aux angles plus grands que 45°, et n'est pas applicable au cas que nous considérons.

Si dans la construction 2h est trop grand, prenez OII = h ou $OH = \frac{1}{2}h$, et par compensation prenez OK = 2,00 ou OK = 4,00; on augmentera ainsi l'exactitude dans la détermination de φ .

Si l'angle de projection devait être très-petit, on aurait plus de précision par le procédé suivant.

Partant de l'équation $2h \sin 2\phi = X \mathcal{L}(x, V)$, soit OA (Fig. 30) l'horizontale, OD = X, OH = 2h. Sur la verticale OB, prenez OK = 1 et $OL = \mathcal{L}(x, V)$, tracez KD et par le

point L menez à KD une parallèle qui coupera OA en F; OF sera égal à $X \oplus (x, V)$; menez à OA une parallèle à une distance égale à OF, et décrivez un arc de cercle du point O comme centre avec un rayon OH; joignez le point d'intersection M au point O et divisez l'arc MH en deux parties égales par la ligne OP; OP sera la ligne de projection; car $MO \times \sin 2POA$ a pour mesure MN qui est égal à $X \oplus (x, V)$.

164. Déterminer l'angle de projection du projectile qui doit passer par un point donné. Étant donnée la vitesse initiale V, on peut déterminer l'angle de projection d'un projectile qui doit passer par un point donné.

Si M (Fig. 31) est le point donné, h la hauteur due à la vitesse V, et que a soit la distance horizontale OC et b la distance verticale MC du point M au point de départ, l'angle cherché sera donné par les formules

$$\tan \varphi = \frac{2}{\tilde{a}} \left(h' \pm \sqrt{h'(h'-b) - \frac{a^2}{4}} \right)$$

ou

$$\frac{a}{2} \tan \varphi = h' \pm \sqrt{h'(h'-b) - \frac{1}{4}\alpha^2},$$

dans lesquelles on a fait $h' = \frac{h}{\text{VS}(a, V)}$.

Par le point M élevez la verticale CB = h, et par le point D milieu de OC la verticale DF. A partir du point C sur une ligne quelconque, prenez CK = 1,00 et $CL = \mathcal{N}(x, V)$, tirez LB et par le point K menez à cette ligne une parallèle; celle-ci coupera la verticale en G; CG sera égal à $\frac{CB}{CL}$ ou $\frac{h}{\mathcal{N}(x, V)}$ ou h'. Sur CG comme diamètre, décrivez un demi-cercle; puis, par le point G comme centre, avec CG pour rayon, tracez un arc de

cercle, il coupera DF en deux points I, I'; tirez OI et OI'; vous aurez les deux lignes de projection cherchées.

En effet, puisque GC = h', et que CM = b, on a GM = h' - b, et GH ou ses égales GI et GI' égales à $\sqrt{h'(h'-b)}$. Si du point G on abaisse sur DF la perpendiculaire GJ on aura $GJ = \frac{1}{2}a$, d'où $IJ = I'J = \sqrt{h(h-b) - \frac{1}{4}a^2}$, et comme DJ = h', on aura

$$\mathrm{DI} = h' - \sqrt{h'(h'-b) - \frac{1}{4}a^2},$$

et

$$DI' = h' + \sqrt{h'(h'-b) - \frac{1}{\lambda}a^2};$$

ce seront les deux valeurs de $\frac{1}{2}a\tan g\varphi$; or, AD est égal à $\frac{1}{2}a$; donc les deux lignes OI et OI'sont les deux lignes de projection cherchées.

Si le cercle tracé avec le rayon GH devenait tangent à CF il n'y aurait qu'une seule solution. Si le cercle ne coupait pas cette ligne, le problème serait impossible.

On remarquera que, comme dans le cas précédent (163), la ligne de projection la moins élevée doit être seule admise (93).

Lorsque le but sera peu élevé au-dessus de l'horizon, on pourra, pour plus de simplicité, et sans erreur appréciable (103), opérer relativement à la ligne qui va au but, comme si elle était horizontale (163).

165. Vitesse initiale. — Le but étant à hauteur du point de départ. La distance du but et la ligne de projection étant données, déterminer la vitesse initiale.

Si le but est à hauteur de la bouche à feu, on aura

$$2h = \frac{X}{\sin 2a} \mathfrak{V}_{\delta}(x, V).$$

On obtiendra 2h par le tracé qui est indiqué pour trouver

l'angle de projection (163), mais en opérant dans l'ordre inverse, ainsi qu'il suit.

Soient (Fig. 29) OD la portée X, et OP la ligne de projection; faites l'angle MOA double de POA; du point O comme centre avec un rayon égal à l'unité, décrivez un arc de cercle; par le point M où cet arc coupe la ligne OM, menez une horizontale; elle coupera la verticale OB en C; joignez CD; sur OB portez $OL = \mathfrak{B}(x, V)$; par le point L menez à CD une parallèle; elle coupera en H l'horizontale OA; OH sera égal à 2h; de là on déduira V.

On opérerait de même par le second procédé.

166. Le but n'étant pas à hauteur du point de départ. Si le but n'est pas à hauteur du point de départ O, soient M ce point (Fig. 32), OA l'horizontale, OB la verticale, OP la ligne de projection; tirez OM; appelons : l'angle MOA sous lequel est vu le but, a et b étant les coordonnées AN et MN du point M; on a tang a = $\frac{b}{a}$.

D'après l'équation de la trajectoire et la condition que le projectile passe par le point M, on aura

$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} \Re(x, V),$$

d'où l'on tire

$$h = \frac{a}{4(\tan \varphi - \tan \varphi \cdot)\cos^2\varphi} \mathcal{H}(x, V),$$

ou, par des transformations déjà indiquées (16 et 112),

$$h = \frac{a \operatorname{Nb}(x, \mathbf{V})}{4} \cdot \frac{\cos \epsilon}{\sin(\phi - \epsilon)} \cdot \frac{1}{\cos \phi}$$

Prenez OD = $\frac{1}{4}$ ON = $\frac{1}{4}a$, OK = 1,00, OL = $\mathfrak{G}(x, V)$; tirez KD, et par le point L menez à cette ligne une parallèle; celle-ci coupera OA en F; on aura OF = $\frac{a\mathfrak{G}(a, V)}{4}$; sur

OB prenez OG = OF, et par le point G menez à OM une parallèle qui coupera OP en I; par le point I élevez une perpendiculaire à OP, elle coupera OA en H; OH sera la valeur de h.

En effet, dans le triangle OGI, on aura

$$\frac{OG}{OI} = \frac{\sin OIG}{\sin OGI}.$$

Or, OIG = IOM =
$$(\varphi - \epsilon)$$
, et \sin OGI = \sin MOB = \cos MOA = $\cos \epsilon$; donc OI = $\frac{\text{OG }\cos \epsilon}{\sin(\varphi - \epsilon)}$, et comme OH = $\frac{\text{OI}}{\cos \varphi}$ et que OG = $\frac{a\psi_b(a, V)}{4}$, il s'ensuit que

$$OH = \frac{a \eta_b(x, V)}{4} \cdot \frac{\cos \epsilon}{\sin(\phi - \epsilon) \cdot \cos \phi},$$

et par conséquent que OH est la valeur cherchée de h.

Si le but est peu élevé au-dessus du point de départ, on pourra, sans erreur appréciable (103), opérer avec plus de facilité relativement à la ligne qui va au but comme si elle était horizontale (164).

167. Déterminer l'angle et la vitesse de projection d'un projectile qui doit passer par deux points donnés.

Soient (Fig. 33) O le point de départ, OA l'horizontale, OB la verticale, M et M' les deux points donnés, et dont les distances horizontales et verticales sont ON = a et MN = b pour le premier point, aN' = a' et M'N' = b' pour le second; l'angle de projection φ a pour expression (94, éq. 14)

$$\tan \varphi = \frac{a' \mathfrak{V}(a', V) \frac{b}{a} - a \mathfrak{V}(a, V) \frac{b'}{a'}}{a \mathfrak{V}(a, V) - a' \mathfrak{V}(a', V)};$$

la valeur de h est (94, éq. 15), en rappelant que $V^2 = 2gh$,

$$h = \frac{a' \mathfrak{V}_b(a', \mathbb{V}) - a \mathfrak{V}_b(a, \mathbb{V})}{4\left(\frac{b}{a} - \frac{b'}{a'}\right) \cos^2 \varphi}.$$

Pour déterminer tang φ , sur OB prenez OK = 1,00, OL = $\mathfrak{A}(a, V)$, OL' = $\mathfrak{A}(a', V)$; tirez KN, et, par le point L menez à cette ligne une parallèle qui coupera l'horizontale en n ét donnera $On = a\mathfrak{A}(a, V)$; opérant de même pour N' on aura $On' = a'\mathfrak{A}(a', V)$. Par le point n élevez une perpendiculaire jusqu'à la rencontre de OM' au point G, on aura $Gn = On\frac{b'}{a'} = a\mathfrak{A}(a, V)\frac{b'}{a'}$. Par le point n' menez une verticale jusqu'à la rencontre au point G' de OM prolongée, on aura $G'n' = On'\frac{b}{a} = a'\mathfrak{A}(a', V)\frac{b}{a}$, joignez GG' et par le point G' menez à cette ligne une parallèle, ce sera la ligne de projection cherchée.

En effet, si par le point G on mène l'horizontale GQ, on aura

$$tang G'GQ = \frac{G'Q}{GQ} = \frac{G'n' - Gn}{On' - On} = \frac{a' \mathfrak{VS}(a', \mathbb{V}) \frac{b}{a} - a \mathfrak{VS}(a, \mathbb{V}) \frac{b'}{a'}}{a' \mathfrak{VS}(a', \mathbb{V}) - a \mathfrak{VS}(a, \mathbb{V})}.$$

Pour déterminer h prenez $GR = \frac{1}{4}GQ$

$$=\frac{1}{4}[a'\mathfrak{V}(a', V) - a\mathfrak{V}(a, V)];$$

portez-le de G en S, sur le prolongement de nG, et par le point S menez une parallèle à OG jusqu'à sa rencontre avec OM en T; par le point T menez une verticale qui coupera OP en U, et par ce point menez une perpendiculaire à OP; elle coupera l'horizontale OA en H; OH sera la valeur cherchée de h.

En esset, la verticale TU coupant OM en T et OA en t,

on aura

$$Tt = Ot \frac{b}{a}$$
 et $T't = Ot \frac{b'}{a'}$;

retranchant membre à membre et observant que $Tt - T't = \frac{1}{4}GS = \frac{1}{4}(0n' - 0n)$, on aura

$$0t = \frac{a' \operatorname{Vb}(a', V) - a \operatorname{Vb}(a, V)}{4\left(\frac{b}{a} - \frac{b'}{a'}\right)}.$$

C'est la valeur de $h\cos^2\varphi$; et puisque POA = φ , on aura OU = $h\cos\varphi$ et OH = h.

Si GQ était petit, on opérerait avec GQ au lieu de prendre $\frac{1}{4}$ GQ, et on obtiendrait 4h dont on prendrait ensuite le quart.

Ayant trouvé l'angle de projection on pourra aussi opérer la construction comme on l'a indiqué (166) pour faire passer le projectile par le point M ou par le point M'.

168. Déterminer l'angle et la vitesse de projection d'un projectile qui doit passer par un point donné et sous une inclinaison déterminée.

Soient O (Fig. 34) le point de départ, OA l'horizontale, OB la verticale, M le point donné, et MC la direction du projectile. Si l'on nomme a la distance horizontale ON, l'angle MOA d'élévation du but, et θ l'inclinaison de MC, qui dans la figure 34 est au-dessous de l'horizontale et qui donnerait θ négatif, on aura l'angle cherché φ et la hauteur h due à la vitesse de projection V par les expressions suivantes (95, éq. 19 et 20):

$$\tan \varphi = \frac{2a\mathfrak{Z}(a, V)\tan \varphi \cdot - a \mathfrak{Z}(a, V)\tan \varphi}{2a\mathfrak{Z}(a, V) - a \mathfrak{Z}(a, V)},$$

$$h = \frac{2a\mathfrak{Z}(a, V) - a \mathfrak{Z}(a, V)}{4(\tan \varphi \cdot - \tan \varphi)\cos^2\varphi}.$$

Sur la verticale OB, prenez OK = 1,00, OL = 4 (a, V)

et OL' = s(a, V); par le point M menez la verticale MN; joignez KN; par les points L et L' menez deux parallèles à cette ligne, elles couperont l'horizontale OA en deux points n et n'; on aura On = a vs(a, V) et On' = a s(a, V); prenez n'N' = On', on aura ON' = 2s(a, V). Par le point n menez une verticale qui rencontre en n la ligne menée par le point n parallèlement à MC; par le point n élevez une verticale qui rencontre en n le prolongement de n contre n de n de

En effet, d'après la construction, on aura G'N' = 25(a, V) tang ϵ , nG = a + (a, V) tang ϵ . Si l'on remarque que l'inclinaison est au-dessous de l'horizon, dans la figure, que θ est négatif dans la valeur de tang θ , et que par conséquent le second terme du numérateur s'ajoute au premier, on verra que G'N' + Gn ou G'Q est le numérateur de la valeur de tang θ , et que GQ ou nN' qui est égal à 2as(a, V) - a + (a, V), en est le dénominateur; donc $\frac{G'Q}{GQ} = \tan \varphi$, $G'GQ = \varphi$, donc OP est la ligne de projection cherchée.

L'expression de la valeur de h est de même forme que dans le problème précédent (167); on l'obtiendra par une construction analogue. Pour cela, prenez $GR = \frac{1}{4}GQ = \frac{1}{4}[2as(a, V) - ass(a, V)]$; portez cette longueur de G en S sur le prolongement de Gn, et par le point S menez une parallèle à OG jusqu'à sa rencontre avec OM en T; par le point T menez une verticale qui coupera OP en U, et par ce point une perpendiculaire à OP, qui coupera l'horizontale OA en H, OH sera la valeur cherchée de h.

La démonstration étant la même que pour le problème précédent, nous ne la répétons pas.

On pourra, suivant les cas, prendre le rayon GR égal à GQ ou à sa moitié, et obtenir pour OH, 4h ou 2h, et en prendre alors le quart ou la moitié. On pourra aussi, après avoir déterminé l'angle de projection, continuer la construction comme pour faire passer la trajectoire par le point M.

169. Observations sur le rapport des échelles dans les tracés. Dans les deux derniers problèmes on peut obtenir plus de précision dans le tracé, particulièrement lorsque les angles de projection doivent être petits, en prenant les ordonnées à une échelle plus grande que les abscisses, et en déterminant les inclinaisons par des tangentes mesurées à l'échelle des hauteurs amplifiées. L'inspection des expressions qui donnent les valeurs de h et de tange fait voir que les relations ne sont pas changées. Il n'y a de différence qu'à partir de la verticale TU. Alors pour diviser le résultat par cos'e, le point U doit être pris sur la ligne de projection réelle, et la perpendiculaire UH élevée par ce point sur cette ligne. Cette double observation s'applique à plusieurs des problèmes précédents.

170. Portées, durées, vitesses. Lorsque l'on devra déterminer la portée d'un projectile sur une horizontale ou sur une ligne inclinée, on devra déterminer, au moyen de la vitesse initiale et de l'angle de projection et par les moyens qui ont été donnés (156 à 158), plusieurs points rapprochés, les uns au-dessus, les autres au-dessous de la ligne, puis faire passer une courbe par ces points; l'intersection de la courbe et de la ligne donnera la position et la distance du point cherché.

Dans les divers problèmes, on pourra déterminer l'inclinaison de la trajectoire, la durée du trajet ou la vitesse du projectile, par les procédés qui ont été indiqués.

SECTION VII.

LOIS DE LA PÉNÉTRATION DES PROJECTILES

DAWS LES MILIEUX RÉSISTANTS.

171. Considérations générales. La connaissance de l'action destructive des projectiles lancés par les bouches à feu est d'une très-grande importance. Les effets produits, et en particulier l'étendue des pénétrations, dépendent de la nature des projectiles, de leur forme et de leur poids, de leur vitesse initiale et de la distance du but. Il est donc nécessaire, pour les apprécier, de tenir compte de ces circonstances.

Cette question a dès longtemps attiré l'attention des savants les plus distingués, tels que Jean Bernouilli, Poleni, S'Gravesande, Musschenbrock, Robins, Euler, Camus. Mais, des faits épars ou des expériences peu étendues sur de petits projectiles, n'avaient pas jusqu'à ces derniers temps fourni les éléments nécessaires pour traiter la question d'une manière satisfaisante et pour arriver à des formules applicables aux divers cas de la pratique, lorsque, par les ordres de M. le Ministre de la guerre, des expériences nombreuses furent à cet effet exécutées à Metz, en 1834 et en 1835, par la Commission des principes du tir.

Nous nous occuperons particulièrement, dans ce qui va suivre, des lois du mouvement et de la profondeur des pénétrations des projectiles dans les milieux résistants dont on forme ordinairement les masses couvrantes à la

guerre, telles que les terres, les maçonneries et les bois, et nous en ferons précéder l'exposé de quelques considérations physiques qui nous conduiront à l'expression de la résistance '.

172. Considérations physiques. Lorsqu'un projectile sphérique pénètre dans un milieu résistant, comme de la terre, il pousse devant lui et déplace latéralement les molécules qui se trouvent sur son passage ou qui en sont voisines. Ces parties, après avoir été comprimées et entraînées d'abord, sont contraintes à glisser sur la surface arrondie du projectile; elles prennent ainsi une vitesse dont la composante latérale, prise perpendiculairement à la direction du mouvement du corps, dépend de la vitesse de ce corps et de l'inclinaison de la partie de sa surface contre laquelle elle glisse en surmontant le frottement.

Les molécules qui se trouvent en A (Fig. 35) à la partie antérieure, sur la direction BA suivie par le centre du projectile ou sur les parties voisines AC, ne pouvant surmonter le frottement qu'elles éprouvent, restent appliquées contre le corps; mais les parties plus éloignées, poussées par une surface inclinée comme la tangente en ce point, glissent et entraînent les molécules voisines. Les composantes de leurs vitesses prises perpendiculairement à la direction BA du projectile, vont en s'accroissant à mesure

Pour des considérations plus étendues et pour des résultats d'expériences plus complets, voir le rapport de M. le général Poncelet, sur un Mémoire de MM. les généraux Piobert et Morin, concernant la pénétration des projectiles, lu à l'Académie des sciences, le 12 octobre 1835, et inséré au Spectateur Militaire du mois de novembre suivant. Voir aussi le Mémoire sur la résistance des corps solides ou mous à la pénétration des projectiles, par MM. les généraux Piobert, Morin et Didion, inséré au Mémorial d'Artillerie, no 4; — Premier et deuxième rapport de la Commission des principes du tir; — Mémoire de M. le colonel Augoyat, inséré au Mémorial du Génie, no 7.

qu'elles s'éloignent du point C; et, lorsqu'elles sont arrivées à un point D, où le rapport de la composante DE à la vitesse du projectile est égal à la tangente trigonométrique de l'inclinaison EDG de la surface en ce point. elles échappent à l'action du projectile avec une vitesse qui dépend ainsi de celle du mobile. En vertu de cette vitesse, elles entraînent les molécules plus éloignées du projectile en leur communiquant une partie de la force vive qu'elles possèdent et s'arrêtent en H, lorsque cette force vive a été détruite par les résistances que présentent les parties du milieu de plus en plus comprimées. Lorsque le projectile se sera avancé jusqu'en A', A", A"... et que sa vitesse sera diminuée, les distances D'H', D"H", D"H"... que parcourront les molécules qui abandonnent le projectile aux points D', D", D"... seront de moins en moins grandes, et, le profil HH'H"H"... du vide se rapprochera de plus en plus de la direction BAA'... du mouvement: cela durera jusqu'à ce que la vitesse soit devenue assez faible pour que les molécules ne s'écartent pas sensiblement de la surface du projectile.

Le projectile éprouve ainsi dans son mouvement deux sortes de résistances qui doivent être distinguées l'une de l'autre. La première consiste dans la cohésion du milieu, dans l'effort à exercer pour en séparer les diverses parties, se frayer un passage et vaincre le frottement; elle peut être regardée comme indépendante de la vitesse. La seconde dépend de la force vive imprimée aux molécules qui s'éloignent du projectile avec une certaine vitesse proportionnelle à celle du mobile. La force vive de ces molécules, qui ne peut être acquise qu'aux dépens de celle du corps, est donc proportionnelle au carré de leur vitesse.

Cette résistance doit encore être proportionnelle à l'étendue de la surface suivant laquelle elle s'exerce, et celle-ci, d'après ce que nous avons dit, n'est pas néces-

sairement égale à l'étendue d'un hémisphère, elle peut même varier durant le mouvement, c'est-à-dire avec la vitesse du projectile. Mais alors, à mesure que l'étendue de la partie du projectile qui reste en contact avec le milieu résistant a plus d'étendue, la dernière zone de la surface est moins inclinée; il s'ensuit que la composante de la vitesse perpendiculaire à la direction du mouvement, laquelle varie dans le même rapport que cette inclinaison. est en raison inverse de l'étendue de la surface; il y a ainsi à peu près compensation, et le produit de ces deux quantités pourra être regardé comme constant. La force vive imprimée à chaque instant aux molécules du milieu résistant pourra donc être regardée comme proportionnelle à la force vive du mobile ou au carré de sa vitesse, et à une section déterminée du projectile. Celle-ci étant dans un rapport constant avec le grand cercle de la sphère, on peut la remplacer par ce dernier, et regarder les deux termes de l'expression de la résistance comme étant proportionnels à un grand cercle du projectile.

Il convient d'autant mieux de considérer la résistance comme proportionnelle à un grand cercle du mobile, que, vers la fin du mouvement, alors que le terme proportionnel au carré de la vitesse n'a plus qu'une influence trèsfaible, le vide produit par le projectile diffère très-peu d'un cylindre; la résistance s'exerce donc réellement suivant l'hémisphère antérieur, et, par suite, la résistance doit être proportionnelle à la section du cylindre ou au grand cercle de la sphère.

Des expériences directes ' ont prouvé d'ailleurs qu'aux petites vitesses la résistance éprouvée par le projectile était effectivement proportionnelle à la section du grand cercle du projectile.

^{&#}x27; Premier et deuxième rapport de la Commission des principes du tir.

173. Phénomènes observés. Les considérations qui précèdent, se trouvent confirmées par l'examen de la surface des projectiles après qu'ils ont pénétré dans les terres et par la forme du vide qu'ils y ont formé.

Lorsqu'un projectile est lancé avec une grande vitesse dans les terres, on reconnaît que des parties de la matière du milieu résistant sont restées adhérentes à la surface antérieure de ce projectile; elles offrent la forme d'un cône SCC' (Fig. 35) d'autant plus obtus que la vitesse de projection est plus grande; au delà de cette partie, le projectile est fortement sillonné suivant des plans méridiens passant par la direction du mouvement; ces traces ont été parfois assez profondes pour qu'un boulet de 24 perdît en pénétrant dans le sable plus de 15 grammes de son poids; les traces vont ensuite en diminuant et cessent d'être sensibles vers le grand cercle de l'hémisphère.

L'examen du vide produit dans le milieu confirme encore la justesse des considérations physiques qui précèdent. lorsque, comme cela a lieu avec les terres argileuses, le vide conserve assez bien la forme (Fig. 36) qu'il a prise au moment du passage du projectile. En effet, une section faite par un plan perpendiculaire à la direction du mouvement (Fig. 37) paraît fendillée sur une assez grande profondeur; les intervalles entre les fehtes sont lisses et portent des traces évidentes du frottement du projectile. Le développement de ces parties touchées a toujours été trouvé un peu moindre que la circonférence d'un grand cercle du projectile, excepté vers le fond du vide. Le diamètre des sections, qui seraient faites à différentes distances de l'orifice, vont en diminuant depuis l'entrée iusqu'au fond où l'on retrouve le projectile (Fig. 36). La section méridienne du vide est une courbe dont la convexité est tournée vers l'axe, et qui, vers le fond, diffère peu d'une ligne droite parallèle à la direction du mouvement; de sorte que le vide a la forme d'un cône évasé dont le fond diffère très-peu d'un cylindre qui aurait un diamètre égal à celui du projectile. Cette forme indique que la vitesse de projection des molécules du milieu diminue avec celle du projectile.

La réaction des terres comprimées au moment de la pénétration, altère bientôt la forme du vide et en diminue les diamètres.

Des phénomènes semblables à ceux que nous venons d'exposer se présentent également, quoique moins régulièrement, lors de la pénétration des projectiles dans d'autres milieux résistants que les terres argileuses, tels que dans la maçonnerie; dans celle-ci, la partie antérieure n'étant pas soutenue, se brise plus facilement et forme un entonnoir beaucoup plus évasé que celui de l'autre partie. L'entonnoir formé par le choc d'un boulet dans le plomb est dù aux mêmes causes que dans les terres argileuses et conserve une forme très-remarquable.

174. Résistance variable durant la pénétration. En supposant, comme on l'a fait, que la résistance ne dépend que de la vitesse du projectile à l'instant que l'on considère, et quelle est indépendante de la quantité dont le projectile a pénétré, on commet une petite erreur. En effet, au moment où le projectile pénètre avec une certaine vitesse, les parties du milieu résistant en contact avec lui n'étant pas encore comprimées comme elles le seraient si le proiectile avait déjà traversé des couches antérieures, celui-ci éprouve réellement une résistance moindre. De plus, en comptant les profondeurs de pénétration à partir de la partie antérieure du projectile, la surface de ce projectile en contact avec le milieu dans les premiers instants étant moindre que lorsque le projectile a pénétré d'un demidiamètre ou d'une plus grande quantité, la résistance est par là encore diminuée.

Cette différence dans les résistances pourra n'avoir qu'une très-faible influence quand on comparera entre elles des pénétrations considérables; mais elle ne sera plus négligeable dans la comparaison de faibles pénétrations provenant de vitesses peu considérables. La formule qui ne tiendra pas compte de cette influence donnera par cela même des pénétrations trop faibles; on voit facilement encore que cet effet sera d'autant plus prononcé que les projectiles seront d'un plus grand diamètre; tel est particulièrement le cas des obus de forts calibres animés de faibles vitesses.

175. Lois de la pénétration. D'après les considérations qui précèdent, l'expression de la résistance qu'éprouve un projectile à chaque instant de son mouvement, dans un milieu comme la terre, est proportionnelle à l'étendue d'un grand cercle de la sphère, et elle comprend deux termes dont l'un est constant et dont l'autre est proportionnel au carré de la vitesse; de sorte que, en appelant ρ cette résistance, R le rayon du projectile, v sa vitesse variable durant la pénétration, π le rapport de la circonférence au diamètre, on aura

(1)
$$\rho = \sigma R^2 (\alpha + \beta v^2),$$

a et β étant deux quantités qui dépendent de la nature des milieux et qui devront être déterminées par l'expérience pour chacun d'eux. De cette expression, nous allons déduire les profondeurs de pénétration des projectiles lancés avec diverses vitesses, et nous les comparerons ensuite aux profondeurs observées pour nous assurer du degré d'exactitude de l'expression de la résistance.

En conservant les notations ci-dessus, soit encore P le poids du projectile, D sa densité, V sa vitesse au moment où il pénètre dans le milieu, e la quantité dont il a pénétré au moment où cette vitesse est réduite à v, t le temps écoulé et g la pesanteur.

En égalant la résistance qu'éprouve le projectile à chaque instant à la quantité de mouvement qu'il perd, on aura pour l'équation du mouvement

$$-\frac{\mathrm{P}}{g}\cdot\frac{dv}{dt} = \sigma \mathrm{R}^2(\alpha + \beta v^2).$$

Or, $v = \frac{de}{dt}$, donc en multipliant membre à membre avec l'équation précédente, on aura

$$-\frac{P}{g}vdv = \sigma R^{2}(\alpha + \beta v^{2})de;$$

d'où

$$de = -\frac{P}{\alpha R^2 g} \cdot \frac{v dv}{\alpha + \beta v^2}.$$

Cette expression est facile à intégrer, et en observant qu'elle doit être prise depuis la valeur V, pour laquelle e = 0, jusqu'à v, on aura

$$e = \frac{P}{2\varpi R^2 g\beta} \log \frac{\alpha + \beta V^2}{\alpha + \beta v^2}.$$

Les logarithmes étant hyperboliques, si l'on veut avoir les logarithmes des tables dont la base est 10, l'on écrira

(2)
$$e = \frac{P}{2\pi R^2 g \beta} 2,3026 \operatorname{Log} \frac{\alpha + \beta V^2}{\alpha + \beta v^2}.$$

176. Pénétration totale. On aura la profondeur totale de pénétration due à la vitesse V en faisant v=0; appelant E cette pénétration et observant que pour un projectile sphérique $P=\frac{1}{3}\pi R^3D$, on aura

(3)
$$E = \frac{P}{2\pi R^2 g \beta} 2,3026 \operatorname{Log} \left(1 + \frac{\beta}{\alpha} V^2\right) = \frac{2RD}{3g\beta} 2,3026 \operatorname{Log} \left(1 + \frac{\beta}{\alpha} V^2\right).$$

Si un projectile dont le rayon est R^t et la densité D', atteint le milieu résistant avec la même vitesse V, la pro-

fondeur de pénétration représenté par E' sera

$$E' = \frac{2R'D'}{3g\beta} 2,3026 \operatorname{Log} \left(1 + \frac{\beta}{\alpha} V^{a}\right).$$

De ces deux équations on tire

$$\frac{E}{E'} = \frac{RD}{R'D'}$$

c'est-à-dire, que si deux projectiles sphériques pénètrent dans le même milieu résistant avec des vitesses égales, les profondeurs de pénétrations sont entre elles comme les produits des calibres par les densités. Si les projectiles sont des boulets sphériques de même métal, D et D' sont égaux et les profondeurs des pénétrations sont entre elles comme les diamètres; si les projectiles sont de diamètres égaux, mais de densités différentes, tels que des boulets et des obus de même calibre, les pénétrations sont entre elles comme les densités ou comme les poids de ces projectiles.

Dans le cas du tir des boulets sphériques de fonte, la densité peut être regardée comme constante et représentée par $D=7032^k$, poids du mètre cube de la matière de ces boulets; alors, en faisant

$$\frac{7032.2,3026}{3a\beta} = \frac{550,2}{\beta} = K$$
 et $\frac{\beta}{\alpha} = \frac{1}{u^2}$,

on aura l'expression

(4)
$$E = K.2R.Log \left[1 + \left(\frac{V}{u}\right)^{2}\right].$$

Dans cette expression K est un nombre et u est une vitesse comme V; E sera donné en mêmes unités que le diamètre 2R.

La pénétration d'un obus ou d'un projectile autre qu'un boulet de fonte, animé de la même vitesse que celui-ci, et du même diamètre, mais dont le poids serait P, et la densité D, se déduira de celle du boulet en la multipliant par le rapport des densités ou par celui des poids; en la désignant par E, on aura

$$E_i = K \cdot 2R \operatorname{Log} \left[1 + \left(\frac{V}{u} \right)^2 \right] \frac{P_i}{\overline{P}} \quad \text{ou} \quad K \cdot 2R \operatorname{Log} \left[1 + \left(\frac{V}{u} \right)^2 \right] \frac{D_i}{\overline{D}}.$$

La pénétration des projectiles sphériques de diamètres et de poids égaux, augmente avec les vitesses, mais moins rapidement que les secondes puissances de celles-ci; les vitesses étant V et V, le rapport des pénétrations E et E, sera

$$\frac{E}{E_1} = \frac{\log\left(1 + \frac{\beta}{\alpha} V^2\right)}{\log\left(1 + \frac{\beta}{\alpha} V_1^2\right)};$$

mais, lorsque les vitesses sont faibles ou lorsque β est extrêmement petit relativement à α , les pénétrations sont sensiblement proportionnelles aux carrés de ces vitesses. En effet, le rapport $\frac{\beta}{\alpha}$ étant toujours très-petit, comme on le verra plus loin, il en résulte qu'aux très-faibles vitesses $\frac{\beta}{\alpha}$ V est lui-même très-faible devant l'unité; or, d'après l'expression connue

$$\log(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \text{etc.},$$

on voit que les logarithmes des nombres qui différent peu de l'unité, sont sensiblement proportionnels à l'excès de ceux-ci sur cette unité; on aura donc sensiblement dans le cas des faibles vitesses

$$\frac{E}{E_1} = \frac{V^2}{V_1^2} \quad \text{et} \quad E = \frac{2RD}{3g\alpha}V^2,$$

c'est-à-dire que, quand les vitesses sont faibles, les profondeurs des pénétrations sont sensiblement proportionnelles aux carrés de ces vitesses. Cette supposition revient à négliger devant α les termes qui contiennent β comme facteurs, ou à écrire $\rho = \pi R^2 \alpha$, c'est-à-dire à supposer la résistance indépendante de la vitesse.

Dans cette hypothèse, longtemps admise, on arrive immédiatement par le principe des forces vives à l'expression de la pénétration. En effet, la quantité de travail due à la résistance $\rho = \pi R^* \alpha$ étant $E \pi R^* \alpha$, et la force vive perdue

par le projectile étant $\frac{P}{g}V^{2}$, on aura

$$2\mathrm{E}_{\sigma}\mathrm{R}^{2}\alpha=\frac{\mathrm{P}}{g}\mathrm{V}^{2},$$

d'où, en remplaçant P par $\frac{4}{3}\pi R^3D$, on tire

$$E = \frac{P}{2\alpha\sigma R^3 g} V^2 \quad \text{ou} \quad E = \frac{2}{3} \cdot \frac{RD}{g\alpha} V^2.$$

Cette formule, qui peut convenir lorsque les vitesses sont faibles, indique des pénétrations trop considérables lorsque les vitesses sont grandes.

177. Pénétration des projectiles oblongs dans les milieux résistants. Les considérations dans lesquelles on est entré sur la résistance qu'éprouvent les projectiles sphériques en pénétrant dans les divers milieux s'appliquent aux projectiles oblongs, tout en laissant à ceux-ci les avantages qui résultent de leur forme antérieure et de leur masse plus grande à égalité de diamètre.

L'avantage de la forme antérieure est reconnu par les expériences sur la résistance de l'air rapportées plus haut (art. 57); il peut être attribué aux projectiles oblongs pénétrant dans les autres milieux résistants.

Il résulte de ces expériences que, à égalité de diamètre,

la résistance éprouvée par les projectiles oblongs n'est que les $\frac{2}{3}$ de celle qu'éprouvent les projectiles sphériques.

Sans doute, ce rapport peut varier d'un projectile à l'autre; mais si l'on considère que les conditions de service ne permettent pas de faire varier beaucoup la forme antérieure ni la longueur des projectiles oblongs, on verra qu'on peut adopter un rapport constant. De plus, en attendant qu'il ait été fait des expériences spéciales sur les terres, on peut adopter le rapport trouvé pour l'air atmosphérique, lequel est égal à $\frac{2}{3}$.

On remarquera encore que par suite de l'acuité de la partie antérieure d'un projectile oblong comparativement à un hémisphère, le cône formé par la matière du milieu résistant sur les projectiles sphériques ne doit pas se rencontrer sur les projectiles oblongs; c'est ce que confirme l'expérience.

Il résulte aussi de la vitesse de projection latérale de la matière du milieu déplacé par le projectile, que la partie cylindrique, quelle que soit sa longueur, ne touchera pas cette matière. La résistance sera donc indépendante de la longueur de cette partie cylindrique; cela n'a pas lieu dans l'air par suite de la grande élasticité du milieu; on admet aussi que, durant son trajet dans le milieu résistant, le projectile conserve sa direction initiale, et que par suite le rapport de la résistance du projectile oblong à celle du projectile sphérique reste constant, lorsque les vitesses sont égales.

D'après ces considérations, l'expression de la résistance et les lois de la pénétration, qui se rapportent aux projectiles sphériques, seront applicables aux projectiles oblongs, à la condition de remplacer les valeurs de α et de β par $\frac{2}{3}\alpha$ et $\frac{2}{3}\beta$; le rapport $\frac{\beta}{\alpha}$ restant le même.

En conservant les lettres adoptées pour les projectiles

sphériques, mais en les affectant de l'indice ,, on aura:

1º Pour la résistance à chaque instant (art. 175, éq. 1),

$$\rho_1 = \frac{2}{3} \, \sigma R^2 (\alpha + \beta v^2);$$

2º Pour la pénétration partielle (art. 175, éq. 2),

$$e_{i} = \frac{3}{4} \frac{P}{\varpi R^{2}g\beta} \cdot 2,3026 \operatorname{Log} \frac{\alpha + \beta V^{2}}{\alpha + \beta v^{2}};$$

3º Pour la pénétration totale (art. 176, éq. 3),

$$E_{\iota} = \frac{3}{4} \frac{P}{\sigma R^2 g \beta} \cdot 2,3026 \operatorname{Log} \left(1 + \frac{\beta}{\alpha} V^2 \right).$$

Lorsque l'on compare entre elles les pénétrations de deux projectiles, l'un oblong, l'autre sphérique, ayant des diamètres égaux et des vitesses égales, la pénétration du premier projectile est plus grande par suite de la supériorité de son poids. Ainsi le boulet oblong du canon rayé de campagne de 4, récemment adopté en France, pesant environ 4 kilogrammes, tandis que le boulet sphérique pèse 2 kilogrammes, le rapport des pénétrations est $\frac{4}{2} \cdot \frac{3}{2}$ et égal à 3. Comme dans les deux cas, l'ouverture à l'entrée sera la même, vu qu'elle ne dépend que du diamètre et de la vitesse, l'entonnoir du projectile oblong paraîtra beaucoup plus allongé.

Mais, pour remplir les conditions de justesse avec les projectiles oblongs dans les bouches à feu rayécs, on emploie des charges moindres qu'avec les boulets sphériques, quoique le poids des projectiles oblongs soit plus grand, de sorte que la vitesse de ces derniers est notablement moindre que celle des autres.

Ainsi, avec le calibre de 4, la charge en usage avec le canon lisse était du tiers du poids du boulet sphérique et elle n'est que le septième environ du projectile oblong dans le canon rayé. Le décroissement est le même pour la balle creuse dans le fusil d'infanterie, modèle 1857; il descend au dixième dans la carabine des chasseurs à pied et au seizième dans le mousqueton d'artillerie.

Mais, comme on le verra plus loin, la force vive des projectiles, lorsqu'ils sont animés de grande vitesse, est en très-grande partie consommée à former l'évasement de l'entonnoir; il s'ensuit que les projectiles oblongs sont très-propres à produire des entonnoirs peu évasés à l'entrée, mais très-allongés.

178. Détermination des coefficients. L'expression de la pénétration totale des projectiles sphériques (176, éq. 3)

$$E = \frac{2}{3} \cdot \frac{RD}{g\beta} 2,3026 \operatorname{Log} \left(1 + \frac{\beta}{\alpha} V^2 \right),$$

contient, comme l'expression de la résistance, deux quantités qui dépendent de la nature du milieu; il faudra donc, pour les déterminer, au moins deux résultats d'expériences relatives au même milieu et à des projectiles animés de vitesses différentes; si les projectiles sont les mêmes, et qu'on nomme V et V les vitesses, E, E' les pénétrations observées, on aura

$$\frac{E}{E'} = \frac{\log\left(1 + \frac{\beta}{\alpha}V^2\right)}{\log\left(1 + \frac{\beta}{\alpha}V'^2\right)}.$$

De cette équation on pourra déduire la valeur de $\frac{\beta}{\alpha}$ par les méthodes d'approximation, et, en la substituant dans la valeur précédente de E, on en tirera celle de β :

$$\beta = \frac{2}{3} \cdot \frac{\text{RD}}{gE} 2,3026 \operatorname{Log} \left(1 + \frac{\beta}{\alpha} V^2 \right).$$

On aura ensuite la valeur de α qui est évidemment égale au quotient de β par $\frac{\beta}{\alpha}$.

Les pénétrations peuvent être notablement différentes d'un coup à l'autre par suite des inégalités qui se rencontrent dans les milieux qu'on regarde comme homogènes; il faut donc, pour déterminer les valeurs de α et de β , employer des moyennes prises sur un certain nombre de coups; si l'on avait déterminé les pénétrations pour plus de deux vitesses différentes, on aurait plusieurs séries de valeurs de α et de β , entre lesquelles on pourrait prendre des moyennes. Mais il est plus simple de déterminer d'abord graphiquement la relation des profondeurs de pénétrations aux vitesses, en prenant les vitesses pour abscisses et les pénétrations pour ordonnées, et de déterminer α et β au moyen de deux points convenablement choisis sur cette courbe.

Si l'on calcule ensuite, à l'aide de la formule, les profondeurs de pénétration pour les diverses vitesses, et qu'on les compare aux résultats directs de l'expérience, on reconnaîtra le degré d'exactitude que présentent la formule et la loi de la résistance qui lui sert de base.

179. Des expériences nombreuses ont été faites à Metz en 1835 sur des terres argileuses de Saint-Julien légèrement humides et maintenues dans un coffrage de 5^m de largeur, 5^m de profondeur et 2^m30 de hauteur; elles ont été exécutées avec des canons de 24 et de 12 et des obusiers de 0^m22, à des charges qui ont varié depuis ½ jusqu'à ½ du poids des boulets, tirés à des distances de 20^m à 40^m; elles vont servir à vérifier les formules données plus haut.

Le tableau suivant contient les pénétrations observées à chaque coup, les moyennes régulières déduites de l'ensemble des observations au moyen d'un tracé, et les pénétrations calculées au moyen des formules données ci-dessus.

TABLEAU des pénétrations des boulets sphériques de 24 et de 12 et des obus de 0m22, tirés dans les terres argileuses de Saint-Julien (près Metz) légèrement humides.

DÉSIGNAT ^{on} des bouches à feu.	POIDS des charges de poudre	VITESSE des projectiles au but.	PÉNÉTRATIONS observées à chaque coup.	résultant d'un tracé.	PROFOND ^{PS} de pénétrat ^{es} calculées.
24 de siége.	6,000 4,000 3,000	m:s 538 494 457	4,11 3,26-3,51 3,45-3,72	m 4,14 3,85 3,62	m 4,08 3,85 3,68
	2,000	402	2,83-3,20-3,30-3,29 3,02-3,45-3,72	3,27	3,87
	1,000	285	(2,90-2,52-2,55-2,65) (2,30-2,39-2,63-2,62)	2,42	2,58
	0,500	190	1,85-1,80-1,90-1,95	1,73	1,74
	0,250	121	1,15	1,12	1,00
	3,000	494	3,49-3,02	3,10	3,07
	2,000	482	3,67-2,96	3,02	3,02
12 de	1,000	400	2,47-2,34	2,58	2,66
campgne	0,500	285	1,96-1,93-1,24-1,94	1,94	2,04
	0,250	194	1,85-1,24-1,37	1,36	1,39
	0,125	120	0,89-0,74-0,87	0,89	0,80
Obusier	1,500	253	2,35-2,32	»	1,97
de 22c	1,000	218	2,02	»	1,71
de siége ; obus de	0,500	142	1,64		1,04
22k5	0,250	90	1,01	»	0,54
$\frac{\beta}{\alpha} = 0.00$)0 08 0 oi	 u == 11	 2 ^m , α = 345000 ^k , β=	 = 27,6, I	l ≤=19,9.

En comparant entre eux les résultats calculés et les profondeurs des pénétrations observées, on reconnaît que dans les limites des vitesses des boulets qu'il est utile de considérer, les pénétrations sont représentées d'une manière assez exacte. Mais aux très-faibles vitesses les pénétrations calculées sont moindres que les pénétrations observées. Cet effet est plus sensible pour les obus de 0^m22, animés de vitesses toujours plus faibles que celle des boulets, comme on avait pu le prévoir (174).

180. En opérant comme on vient de l'indiquer sur les résultats des expériences faites sur des terres de différentes natures, on a obtenu les coefficients de résistance consignés dans le tableau suivant :

Tableau des coefficients de la résistance à la pénétration des projectiles sphériques dans divers milieux $\rho = \varpi R^2 \alpha \left[1 + \frac{\beta}{\alpha} V^2\right]$ et des formules de la pénétration $E = K \cdot 2R \log \left[1 + \left(\frac{V}{u}\right)^2\right] \frac{P_1}{P}$.

DÉSIGNATION DES MILIEUX.	æ	<u>β</u> α	K	u
Sable mêlé de gravier	435 000	0,000200	5,6	m:s 71
Terre mêlée de sable et de gra- vier		0,000 200	7,5	71
Terre argileuse, moitié sable et moitié gravier	1045000	0,000 035	14,85	169
Terre végétale rassise d'ancien parapet, et terre rapportée mêlée de sable et d'argile	700 000	0,000060	13,05	129
Terre argileuse moitié sable et moitié argile (comme celle du polygone de Metz) rapportée.	461 000	0,000060	19,9	129
Terre argileuse de Saint-Julien		0,000080	19,9	112
Argile de potier, humide		0,000080	25,8	112
Même terre, mouillée		0,000080	37,5	112
Terre légère d'ancien parapet.	304000	0,000 200	8,2	71
Même terre, fraîchem ^t remuée	265 000	0,000200	10,4	71

Si l'on avait à chercher les prosondeurs de pénétration d'un projectile dans une espèce de terre, et qu'on n'eût pas assez d'éléments pour déterminer les deux termes de la résistance, comme dans les exemples précédents, on devrait déterminer d'abord le coefficient $\frac{\beta}{\alpha}$ ou u au moyen des valeurs qui se rapportent aux milieux précédents ou à ceux qui s'en rapprochent le plus et déterminer ensuite l'autre terme au moyen de la profondeur de pénétration observée et de la vitesse à laquelle elle est due.

181. Pénétration des boulets dans la maçonnerie. Les formules auxquelles on est arrivé pour exprimer les profondeurs de pénétration dans les terres, peuvent également servir pour exprimer les lois de la pénétration dans la maçonnerie; elles représentent avec exactitude les résultats moyens des expériences, dans les limites où l'on peut avoir à les considérer, lorsqu'on détermine les coefficients de la manière qui a été précédemment indiquée.

Voici les résultats de cette application pour des maçonneries de bonne qualité, celle des revêtements de Metz. Faute de résultats assez étendus sur les autres maçonneries, on y a appliqué le coefficient résultant des premiers $\frac{\beta}{\alpha} = 0,000015$, ou $u = 258^{\rm m}$, et l'on a déterminé la valeur de β relative aux autres.

TABLEAU des coefficients de la résistance de diverses maçonneries.

désignation des maçonneries.	α	K
Maçonnerie de bonne qualité, comme celle des revêtements de Metz, construits par Vauban	5520000 4400000 3160000	8,3 11,6

182. Pénétrations dans les bois. La profondeur de pénétration des projectiles dans les bois se déduit des considérations que nous avons exposées relativement à la pénétration dans les terres; seulement, comme par la nature des bois et leur contexture fibreuse, les particules frappées par le projectile ne peuvent acquérir une grande vitesse, la force vive que le projectile leur communique aux dépens de la sienne propre est proportionnellement plus faible que dans les terres. En opérant d'après les résultats de l'expérience sur le bois de chêne, comme on l'a fait précédemment, on trouve que les profondeurs de pénétration sont assez bien représentées par $\frac{\beta}{\alpha} = 0,00002$, $\beta = 41,7$, et par suite $\alpha = 2085000$, $\alpha = 224$, $\alpha = 224$, $\alpha = 224$, $\alpha = 234$.

D'après les expériences faites par la marine à Gavres, les pénétrations du boulet de 30 seraient représentées par la formule

$$E = 3^{m}15 Log \left(1 + \frac{V^2}{10^5}\right),$$

laquelle, en la mettant sous la forme que nous avons adoptée, deviendrait

$$E = 2R 18,56 Log(1 + 0,00001 V^2);$$

comparée à la précédente, elle donne les mêmes pénétrations pour les très-grandes vitesses, comme celles de 530^m à 540^m; elle donne des pénétrations moindres pour des vitesses plus faibles. Les vitesses qui ont servi à calculer les coefficients de cette dernière formule ayant été déterminées par des procédés imparfaits, nous nous en rapporterons de préférence aux formules qui résultent des vitesses que nous avons employées et qui ont été mesurées exacte-

[·] Expériences d'artillerie exécutées à Gavres de 1830 à 1840.

ment au moyen du pendule balistique. En conservant le même rapport pour $\frac{\beta}{\alpha}$ et en prenant pour les autres essences de bois les rapports adoptés par M. le général Piobert', on est arrivé aux nombres contenus dans le tableau suivant et pour lesquels on doit prendre $\frac{\beta}{\alpha} = 0,00002$ ou $u = 224^{m}$.

DÉSIGNATION DES BOIS.	α	K
Bois de chêne	2085000 1600000 1160000	13,1 13,1 17,0 23,5 26,2

183. Forme du vide produit par les projectiles. On a fait voir comment le mobile, en projetant dans des plans méridiens les molécules d'un milieu résistant, tel que la terre argileuse, formait un vide dont les diamètres dépendaient de la vitesse du mobile, allaient en diminuant avec elle et finissaient par devenir égaux à celui du projectile. On peut calculer ces diamètres aux diverses profondeurs.

Les nombreuses expériences faites sur plusieurs espèces de terre, avec des projectiles de tous calibres tirés aux diverses charges en usage, ont fait reconnaître que le volume du vide de l'entonnoir formé dans un certain milieu était, avec la force vive du projectile, dans un rapport qui ne dépendait que de la nature de ce milieu. Cette loi s'étend aux terres de diverses natures, aux maçonneries et même aux métaux, comme le plomb et le fer forgé. Elle peut donc être regardée comme une loi générale.

^{&#}x27; Traité d'artillerie, par M. le général Piobert, 1re partie.

En examinant la forme des entonnoirs produits par un même projectile animé de vitesses différentes, on remarque que la partie du fond de l'entonnoir est la même, quelles que soient les vitesses à l'orifice, de telle sorte que ces entonnoirs s'emboîteraient, pour ainsi dire, les uns dans les autres; cela indique d'ailleurs que le diamètre du vide en chaque point ne dépend que des dimensions et de la vitesse du projectile. Les volumes de chacune des parties de l'entonnoir représentent ainsi la force vive dont ces projectiles sont animés à l'orifice de chaque entonnoir; par suite, la différence entre les vides de deux d'entre eux représente la perte de force vive du projectile en passant de l'un à l'autre.

Cela posé, si r représente le rayon de l'entonnoir à une distance e de l'orifice, v étant la vitesse du projectile, le volume formé à cet instant est $\int \pi r^3 de$; la perte de force vive du projectile étant $\frac{P}{g}(V^2-v^2)$, et le rapport constant de la force vive du projectile au volume du vide dans le milieu que l'on considère étant représenté par 2K, on aura

$$\frac{\mathbf{P}}{g}(\mathbf{V}^{2}-v^{2})=2\mathbf{K}\int \boldsymbol{\sigma}r^{2}de,$$

d'où l'on tire par la différentiation

$$-\frac{P}{g}vdv = K \sigma r^2 ds.$$

En représentant, comme on l'a fait (art. 175, éq. 1), la résistance à chaque instant par $\rho = \pi R^2(\alpha + \beta v^2)$, on a trouvé

$$-\frac{P}{g}vdv = \sigma R^{2}(\alpha + \beta v^{2})de.$$

On tire donc des deux équations ci-dessus

$$K\sigma r^2 = \sigma R^2(\alpha + \beta v^2)$$
 et $\frac{r^2}{R^4} = \frac{\alpha + \beta v^2}{K}$.

A la fin de la pénétration, la vitesse devient nulle et en même temps le diamètre du vide est exactement celui du projectile, l'on a donc à la fois

$$v = 0$$
 et $r = R$ et par conséquent $K = \alpha$

Cette relation fait voir que le terme indépendant de la vitesse, dans l'expression de la résistance, est égal à la moitié du rapport de la force vive au volume de l'impression, et elle permettrait de déterminer directement cette quantité, si le volume mesuré était exactement celui qui est formé au moment du passage du projectile.

De l'équation précédente, $r' = R^2 \left(1 + \frac{\beta}{\alpha} v^2\right)$, on déduit

$$2\log r = 2\log R + \log\left(1 + \frac{\beta}{\alpha}v^2\right);$$

mais de l'équation déjà trouvée on tire

$$e^{\frac{2\pi R^2 g\beta}{P}} = \log\left(1 + \frac{\beta}{\alpha}V^2\right) - \log\left(1 + \frac{\beta}{\alpha}v^2\right).$$

En ajoutant cette équation membre à membre avec la précédente, on aura une relation indépendante de la vitesse variable du projectile, qui donnera le rayon de l'entonnoir à une distance quelconque et qui sera

$$\log r = \log R + \frac{1}{2} \log \left(1 + \frac{\beta}{\alpha} V^2 \right) - \frac{\varpi R^2 g \beta}{P} e,$$

ou, en représentant par ¿ la base des logarithmes népériens

(5)
$$r = R \left(1 + \frac{\beta}{\alpha} V^2\right)^{\frac{1}{2}} \times \varepsilon^{-\frac{\sigma R^2 g \beta e}{P}}.$$

Cette équation est celle de la courbe génératrice du vide de l'impression.

En y faisant e = 0, on obtient pour le rayon de l'orifice

$$r = R\sqrt{1 + \frac{\beta}{\alpha}V^2}.$$

Cette relation fait voir que, tout égal d'ailleurs, le diamètre à l'entrée sera d'autant plus grand que le coefficient β de la mobilité du milieu résistant sera plus grand relativement au coefficient α qui représente plus particulièrement la tenacité du milieu.

Les dimensions du vide que le projectile a produit ne pouvant être mesurées au moment même où ce vide se forme, et le milieu réagissant immédiatement, les diamètres observés sont nécessairement moindres que les diamètres réels; cette diminution augmente encore pendant un certain temps, de sorte que le volume mesuré est plus petit que celui qui résulte de la relation des diamètres aux pénétrations. Mais, si l'on connaît leur rapport pour un certain milieu, on pourra déterminer toutes les dimensions du vide. C'est ce qu'on a fait pour la terre argileuse dont il a été question (173), et l'expérience a montré un accord très-satisfaisant entre les résultats du calcul et ceux de l'observation '.

184. Durée des pénétrations. La durée de la pénétration dépend de la résistance que le projectile éprouve à chaque instant, et elle peut se déduire de la profondeur de la pénétration. Soit t la durée de la pénétration depuis le commencement jusqu'au moment où la vitesse du projectile est v, et T la durée totale, les autres notations restant les mêmes.

L'équation du mouvement est, comme on l'a vu (175),

$$-\frac{\mathrm{P}}{\sigma} \cdot \frac{dv}{dt} = \sigma \mathrm{R}^2 (\alpha + \beta v^2);$$

on en tire

$$dt = -\frac{P}{\varpi R^2 g} \cdot \frac{dv}{\alpha + \beta v^2}.$$

Mémoire cité (171).

En intégrant on trouve

$$t = \frac{P\sqrt{\frac{\beta}{\alpha}}}{\sigma R^3 q \beta} \cdot \arctan \sqrt{\frac{\beta}{\alpha}} v + \text{const.}$$

Or, lorsque t = 0, on a v = V; cette condition détermine la valeur de la constante, et l'on a

$$t = \frac{P\sqrt{\frac{\beta}{\alpha}}}{\sigma R^2 g \beta} \left(\arctan \sqrt{\frac{\beta}{\alpha}} V - \arctan \sqrt{\frac{\beta}{\alpha}} v \right).$$

On aura la durée de la pénétration totale en faisant v = 0, ce qui donnera

$$T = \frac{P\sqrt{\frac{\beta}{\alpha}}}{\varpi R^2 g \beta} \arctan \sqrt{\frac{\beta}{\alpha}} V.$$

La durée cherchée dépend, comme on le voit, des deux coefficients de la résistance qui doivent être connus pour le milieu résistant que l'on considère.

On peut exprimer cette durée au moyen de la profondeur E de la pénétration. Celle-ci ayant pour expression

$$E = \frac{P}{2\omega R^2 q \beta} \log \left(1 + \frac{\beta}{\alpha} V^2\right).$$

On aura, en éliminant β entre les deux équations ci-dessus et en se rappelant que l'on a fait $\sqrt{\frac{\alpha}{\beta}} = u$,

$$T = \frac{2E}{u} \cdot \frac{\arctan \frac{V}{u}}{\log \left[1 + \left(\frac{V}{u}\right)^{2}\right]}.$$

Dans l'application de cette formule, on devra se rappe-

ler que les logarithmes exprimés par log sont népériens, et qu'on peut les prendre dans la table VII que nous avons donnée, ou dans les tables de logarithmes ordinaires en les multipliant par 2,3026. Pour déterminer arc tang $\frac{V}{u}$, on devra chercher l'angle dont la tangente est $\frac{V}{u}$, cet angle étant représenté par un nombre a de degrés nonagésimaux, la valeur de l'arc sera $\frac{a}{480}\pi$.

Si l'on suppose que le coefficient du carré de la vitesse, ou $\frac{1}{u}$ est très-petit, c'est-à-dire que la résistance est sensiblement constante, l'arc $\frac{V}{u}$ étant proportionnel à sa tangente et le logarithme de $1 + \left(\frac{V}{u}\right)^2$ étant proportionnel à $\left(\frac{V}{u}\right)^2$ on aura simplement

$$T = \frac{2E}{u} \cdot \frac{\frac{V}{u}}{\frac{V^2}{u^2}} = \frac{E}{\frac{1}{2}V},$$

c'est-à-dire que la durée est égale à l'étendue de la pénétration divisée par la moitié de la vitesse initiale; résultat auquel on peut arriver directement.

On peut encore exprimer la durée en fonction des coefficients qui entrent dans l'expression de la pénétration.

En remarquant que $P = \frac{3}{4}\pi R^3D$ et $\sqrt{\frac{\beta}{\alpha}} = \frac{1}{u}$ l'on aura

$$T = \frac{4RD}{3g\beta u} \arctan \frac{V}{u}$$
.

Or (176), on a fait $K = \frac{2,3026 \cdot 7032}{3g\beta}$, on aura donc

$$T = \frac{2K}{u} \cdot \frac{2R}{2,3026} \cdot \frac{D}{7032} \arctan \frac{V}{u}.$$

S'il s'agit de boulets sphériques en fonte pour lesquels on a D = 7032k, il en résultera l'expression plus simple

$$T = \frac{K}{u} \cdot \frac{2R}{1,1513} \arctan \frac{V}{u}.$$

Les durées des pénétrations sont toujours très-faibles et d'autant plus faibles que le milieu est plus résistant et que les pénétrations sont moins grandes. Si l'on fait l'application de cette formule au tir des boulets sphériques de 24, animés à l'arrivée d'une vitesse égale à 494^m, on obtient les résultats ci-après:

1º Dans l'argile de Saint-Julien, pour laquelle K=19,9,

$$u = 112^{\text{m} \cdot \text{s}}$$
, $E = 3^{\text{m}}85$, on trouve $T = 0.0306 = \frac{1^{\text{s}}}{33}$.

2º Dans le sable mêlé de gravier, pour lequel K = 5,6,

$$u = 71^{\text{m} \cdot \text{s}}$$
, E = $1^{\text{m}}43$, on trouve T = $0^{\text{s}}0146 = \frac{1^{\text{s}}}{68}$.

La durée de la pénétration est donc toujours très-petite; il en résulte que, particulièrement dans le cas des milieux très-résistants, comme le sable mêlé de gravier, l'effet de la pesanteur ne peut produire qu'un abaissement égal à 0m001.

SECTION VIII.

MESURE DE LA VITESSE DES PROJECTILES.

185. Exposé. La vitesse des projectiles, d'après ce qu'on a vu dans les sections précédentes, est essentielle à connaître pour calculer le mouvement de ces mobiles dans l'air et leurs effets contre les corps résistants dont on se couvre ordinairement à la guerre. La détermination de ces vitesses est indispensable dans les applications qu'on peut avoir à faire de la balistique à l'art militaire. Aussi, depuis longtemps, s'est-on occupé de la recherche de la vitesse que possède un projectile au sortir de la bouche à feu, dans des circonstances données, et, réciproquement, du poids de la poudre à employer dans une bouche à feu, avec certains modes de chargement, pour obtenir une vitesse proposée.

186. Mesure des vitesses par les portées. La plus ancienne manière d'estimer les effets de la poudre et la puissance d'une bouche à feu, consistait à tirer celle-ci sous une certaine inclinaison, et à mesurer la portée du projectile sur un terrain horizontal.

Ce procédé présente de grands inconvénients; la mesure des portées nécessite un terrain d'une grande étendue; les portées des divers coups sont parsois très-différentes les unes des autres et l'on ne sait celle qu'on doit préférer pour obtenir la vitesse exacte.

Le procédé de la mesure des vitesses au moyen des portées sur un terrain horizontal a été perfectionné par Lombard' qui a cherché à mesurer l'angle de projection, angle qui diffère presque toujours de l'inclinaison de la bouche à feu.

Quoiqu'on ne tînt pas compte alors d'une manière suffisamment exacte de la résistance de l'air et des causes de déviations et qu'on n'ait pu arriver à l'exactitude désirable, il y avait néanmoins un progrès réel; les erreurs qu'on introduisait ainsi dans l'estimation des vitesses se retrouvant en sens inverse dans l'application au tir et il en résultait une sorte de compensation, au moins sur les portées, tant qu'on ne sortait pas de certaines limites. Lombard a mesuré, par ce procédé, la vitesse initiale des boulets lancés par les bouches à feu de l'artillerie française à diverses charges de poudre de guerre en usage.

187. Procédés à employer. La mesure des vitesses par les portées est susceptible de perfectionnements.

Il est important, en premier lieu, d'apprécier l'angle de projection avec exactitude; pour le faire, Lombard plaçait sur un piquet à 8^m ou 10^m du canon une planchette de bois mince que le boulet coupait. La trace circulaire de son passage servait à déterminer un point de la trajectoire.

Ce moyen ne réussit pas toujours et laisse de l'incertitude. On obtient une grande précision au moyen d'une feuille de plomb très-mince maintenue entre des lunettes en fer. Le projectile en la traversant forme un trou circulaire qui permet de déterminer le passage du centre du projectile et l'angle de projection; mais cela ne suffit pas encore si le projectile est soumis dans son trajet à d'autres

[·] Mouvement des projectiles, par Lombard, 1797.

résistances que celle de l'air, ou à d'autres forces que la pesanteur. Dans ce cas, la trajectoire réelle différera de celle qui serait calculée sans tenir compte de cette cause de déviation, et, comme son intensité est variable, les portées en seront affectées différemment à chaque coup; elles induiraient donc en erreur sur l'estimation de la vitesse.

On évitera une partie de ces inconvénients en prenant la moyenne arithmétique des portées d'un certain nombre de coups et on fera disparaître ainsi l'effet des variations d'un coup à l'autre, sans être assuré cependant qu'une influence prédominante n'altérera pas cette moyenne portée. Cette circonstance se présente avec les projectiles excentriques et avec les projectiles oblongs. Quand on sera assuré qu'il n'existe aucune influence permanente, on fera usage des formules qui ont été données (art. 84, éq. 5) pour le tir sous de grands angles de projection. Pour le tir des canons ou des obusiers sous de petits angles, on distinguera (97, éq. 24) le cas où le but est à hauteur de la bouche à feu de celui (92, éq. 9) où le point touché n'est pas à cette hauteur. Dans ce dernier cas, si a est la distance du but, e l'angle sous lequel ce but est vu de la bouche à feu, φ l'angle de projection. g la pesanteur et V la vitesse initiale cherchée, on aura la relation

$$\frac{V_o}{\sqrt{V_b(x,V)}} = \frac{1}{r} \sqrt{\frac{ga}{2(\tan \varphi - \tan \varphi)}}.$$

Connaissant la valeur du second membre, par les données de l'observation, on trouvera au moyen de la table XII la valeur $V_0 = \frac{V_1}{r}$ qui y satisfait, et par suite celle de $V = V_0 \frac{r}{\cos \theta}$. On obtiendra encore plus d'exactitude dans la mesure des vitesses, si l'on peut déterminer un où plusieurs autres points de la trajectoire, par les moyens qui seront indiqués plus loin (sect. IX) et en se servant des formules données pour ce cas (art. 94).

La détermination des vitesses par les portées est particulièrement applicable au cas des bombes, cas dans lequel la plupart des autres moyens sont inapplicables et où la résistance de l'air a moins d'importance, par suite de la faible vitesse du projectile et de son poids considérable. Il est important, en tout cas, d'apprécier l'angle de projection qui peut différer notablement de l'inclinaison de l'axe du mortier. Mais l'erreur qu'on peut commettre ainsi sera insensible si l'on opère sous un angle voisin de celui qui donne le maximum de portée, ou qui est compris entre ceux de 40° et 45° dans les cas les plus ordinaires; une petite différence, alors, dans l'angle de projection n'en produit presque pas dans la portée et par conséquent n'introduit pas d'erreur sensible dans le calcul de la vitesse. On calculera cette vitesse en considérant la trajectoire comme un seul arc, pour le cas des portées et des angles de projection les plus habituels, et au moyen des formules qui ont été données (art. 84).

188. Mesure des vitesses par la hauteur et la durée de l'ascension verticale. La mesure des élévations verticales auxquelles peut atteindre un projectile dont s'est servi Bernouilli pour calculer les vitesses initiales, présente beaucoup moins de chances d'erreurs; mais l'application en est très-difficile dès que les vitesses sont considérables et que, par suite, l'élévation du projectile dépasse celle que l'on peut facilement observer. Ce procédé est praticable dans le cas d'une épreuve, en employant une charge de

^{&#}x27; Hydrodynamique, Strasbourg, 1738.

poudre d'un poids suffisamment faible relativement à celui du projectile, mais il ne l'est pas quand il s'agit de mesurer les effets ordinairement si puissants des projectiles de l'artillerie.

La durée totale de l'ascension d'un projectile, c'est-àdire celle de son ascension et de sa chute réunies, présenterait un peu moins de difficultés et pourrait donner la vitesse initiale; mais cette durée n'est que d'un petit nombre de secondes et l'erreur de l'observation, devant être ainsi une fraction notable de la durée totale, entraînerait à une erreur ordinairement trop considérable dans la mesure de la vitesse.

189. Mesure des vitesses par la durée du trajet. On a essayé à plusieurs reprises de mesurer la vitesse d'un projectile par la durée du trajet. L'erreur que l'on peut commettre dans l'observation de la durée étant une fraction d'autant plus grande de la durée totale que celle-ci est moindre, il en résulte qu'il y aura d'autant plus d'incertitude sur la détermination de la vitesse que celle-ci sera plus grande et que le trajet sera plus court. Ce procédé est applicable à la mesure de la vitesse des bombes, pourvu toutefois qu'on connaisse avec assez d'exactitude l'angle de projection et la loi de la résistance de l'air. Mais il est difficile de l'appliquer, par les moyens ordinaires d'observation, à la mesure de la vitesse des boulets, lancés avec les grandes vitesses qu'on leur imprime ordinairement. En effet, une différence d'un cinquième de seconde seulement, sur la durée du trajet d'un boulet de campagne, par exemple, tiré avec la charge ordinaire de guerre, à la distance de 500m, produirait une différence de 40^{m:s} environ dans l'estimation de la vitesse. Dans ces procédés, d'ailleurs, la résistance de l'air faisant varier notablement la durée du trajet, elle doit être connue à l'avance, et toute incertitude sur la loi de cette

résistance entraîne à une erreur sensible sur l'estimation de la vitesse. On verra plus loin comment on est arrivé à rendre ce procédé très-précis.

190. Machine de rotation de Mathey. Afin d'obtenir avec plus de précision la durée d'un trajet assez court et durant lequel le mouvement puisse être regardé comme uniforme et indépendant de la résistance de l'air, on a essayé d'imprimer un mouvement rapide et régulier à des corps minces, rendus solidaires entre eux par certains dispositifs et dont les faces divisées par des lignes convenablement tracées étaient traversées par le projectile; la position relative des deux traces indiquait le temps

employé.

La machine de Mathey, citée par d'Antony', était un cylindre vertical, en papier ou en carton mince, animé d'une certaine vitesse de rotation et sur lequel on tirait des balles de fusil dans une direction perpendiculaire à l'axe du cylindre. La différence entre l'écartement des trous que la balle avait faits réellement et ceux qu'elle aurait produits si le cylindre fût resté en repos, donnait la durée du trajet comparativement à celle d'une révolution entière du cylindre; comme, d'ailleurs, au moyen d'écrans placés dans la direction de la balle, on connaissait la direction du trajet et par conséquent la longueur parcourue dans le cylindre, on pouvait déterminer la vitesse de la balle dans son mouvement au travers de l'appareil. La précision de ce moyen dépendait de la grandeur du diamètre du cylindre et de la rapidité du mouvement de rotation.

191. Machine de Grobert. Le colonel Grobert, en France, a modifié ce procédé. Son appareil se compose

^{&#}x27; Examen de la poudre, par d'Antony, traduit de l'italien par de Flavigny, 1773.

d'un arbre AB d'environ 4^m de longueur (Fig. 38) portant à chacune de ses extrémités un disque CD de carton trèsmince de 2^m de diamètre. Ces deux disques, solidaires l'un de l'autre, sont divisés en 360 degrés par des rayons qui se correspondent dans les mêmes plans méridiens, et qui portent la même graduation. Une chaîne sans fin embrasse une poulie F fixée sur l'arbre et la roue d'un treuil établi au niveau de l'axe des disques et garni d'un volant à palettes. Un cordon est enroulé sur l'arbre du treuil et passe sur une poulie de renvoi élevée de 12 à 13^m audessus du sol; il porte à son extrémité le poids moteur qui imprime ainsi aux disques un mouvement rapide de rotation.

Le mouvement étant devenu uniforme, la durée d'un certain nombre de tours et par suite la vitesse de rotation étant mesurées par les moyens ordinaires, on tire l'arme à feu parallèlement à l'axe de rotation. Si l'appareil était en repos, la balle percerait les deux disques suivant le même plan méridien et par conséquent suivant deux rayons de même graduation; mais comme l'appareil est en mouvement pendant que la balle en parcourt la longueur, le second disque est percé en un point situé en arrière relativement au sens du mouvement de rotation. La différence entre les degrés des rayons indique l'angle parcouru et l'on en conclut la durée du trajet d'un disque à l'autre. Ainsi, si a est en degrés l'angle de deux rayons touchés, T la durée d'une révolution des disques, a leur intervalle,

 $\frac{\alpha}{360}$ T sera le temps que le projectile a mis à parcourir la

distance a et $\frac{a.360}{T.a}$ sera la vitesse de la balle.

Le procédé du colonel Grobert a sur celui de Mathey l'avantage de se baser sur la durée d'un plus grand trajet de la balle; cependant, d'après les expériences exécutées devant des commissaires de l'Institut', l'appareil ne saisant qu'environ un tour par seconde, la durée n'était mesurée qu'à ½0 ou ½0 de seconde près; on pouvait ainsi commettre sur la vitesse de la balle une erreur de ½0 ou de ½0 de cette quantité. Aussi, dans ces expériences avec la balle du susil d'insanterie et du mousqueton, aux charges ordinaires de guerre et à des charges moitié moindres, les dissérences d'un coup à l'autre dépassaient les dissérences qu'on sait réellement exister dans les vitesses. Cela tenait principalement, sans aucun doute, à l'incertitude sur la vitesse des disques. On s'est assuré d'ailleurs, au moyen d'écrans, que la direction de la balle n'était pas modisiée par le mouvement des disques; cet avantage serait précieux dans des expériences où l'on aurait à comparer les vitesses initiales et les portées.

En Angleterre, on a cherché à rendre ce procédé plus précis; on est parvenu au moyen d'engrenages à imprimer aux disques, espacés de 8^m l'un de l'autre, une vitesse de huit révolutions par seconde. Cependant il est facile de voir qu'une erreur de 0^m001 seulement sur la position du centre du trou fait par le projectile dans chaque disque, sur une circonférence de 0m80 environ de rayon, peut donner encore une erreur de 150 sur la vitesse; les procédés actuellement employés donnent beaucoup plus d'exactitude. Il est très-difficile d'ailleurs d'empêcher que dans les mouvements rapides avec ces appareils de rotation, l'arbre n'éprouve une torsion notable et ne laisse pas les divisions des disques dans les mêmes plans méridiens, ce qui entraîne à des erreurs sur l'estimation de la vitesse. Ce procédé ne donnerait pas dans l'application une précision qui compenserait les difficultés d'exécution.

[·] Rapport à l'Institut, classe des sciences mathématiques, 2 germinal an XII.

192. Procédé du colonel Debooz. Un autre procédé dû à M. le colonel d'artillerie Debooz a été essayé en 1834 à l'école d'artillerie de Rennes. Il consiste essentiellement dans la mesure de la durée d'un trajet AB (Fig. 39) de 50^m de longueur, par la hauteur de chute d'une planchette C située à 55^m de la bouche à feu D et maintenue par une ficelle qui, au moyen de deux poulies de renvoi F, G, passe à 5^m de cette bouche à feu en H; le projectile coupe la ficelle en passant et produit la chute de la planchette. En arrière de cette planchette C est un écran qui est percé en même temps que celle-ci et qui sert, au moyen de repères, à mesurer la hauteur de cette chute.

De cette hauteur, au moyen de la formule connue, $h = \frac{1}{2}gt^2$, dans laquelle h est la hauteur observée, on aura pour la durée t

$$t = \sqrt{\frac{2h}{g}},$$

et de là, la vitesse moyenne $\frac{50^{m}}{t}$ du projectile.

On connaît aussi par ce procédé la position et la direction du projectile à une petite distance et un second point de la trajectoire.

En conservant les notations adoptées pour représenter les lois du mouvement, et appelant V la vitesse du projectile au moment où il coupe la ficelle, on aura la relation déjà donnée (art. 64, éq. 11) et dans laquelle on pourra regarder l'angle de projection comme étant sensiblement égal à zéro,

$$t = \frac{x}{\bar{V}} \mathfrak{D}(x, V),$$

d'où l'on tirera la valeur de V.

La vitesse, comme on le voit, dépend de la valeur de h, mais cette dernière n'a pu être déterminée avec la préci-

sion nécessaire. En prenant pour exemple le tir d'un boulet sphérique de campagne, à la charge ordinaire de guerre, c'est-à-dire avec une vitesse initiale d'environ 480^m par seconde, la durée du trajet serait d'environ ½ de seconde; la hauteur de chute de la planchette, en faisant abstraction de toute résistance, serait d'environ 0^m060; et comme on ne pouvait estimer cette hauteur à plus de 0^m005 près, on ne pouvait obtenir les vitesses qu'à ½ près, ce qui ne présente pas assez de précision.

On a lieu de croire d'ailleurs que par suite de la tension et de l'inertie du cordon, le commencement de la chute ne coïncide pas exactement avec l'instant où le boulet coupe la ficelle et qu'ainsi les hauteurs de chute et les durées sont trop faibles. Aussi le petit nombre d'expériences qu'on a faites par ce procédé ont été loin de présenter entre elles la concordance désirable.

On verra qu'en employant l'électricité pour indiquer l'instant où le projectile coupe le fil et celui où il traverse la cible et pour en déduire ainsi la durée du trajet, on a obtenu dans ces derniers temps toute la précision désirable.

193. Mesure de la vitesse d'un projectile par celle qu'il imprime à une masse plus grande. Pour éviter la difficulté que présente la mesure de la durée du trajet d'un mobile dans un mouvement rapide, on a pensé à amoindrir cette vitesse; pour cela, on a dirigé le projectile contre un corps beaucoup plus pesant, auquel il communique la quantité de mouvement qu'il perd; la vitesse est alors réduite dans le rapport du poids du corps et du projectile réunis à celui du projectile seul; la vitesse devient ainsi plus facile à mesurer.

Cassini fils paraît avoir le premier employé ce moven'

[·] Histoire de l'Académie des sciences de Paris, année 1770.

pour vérifier quelques expériences sur les armes à feu;

- « il fit une espèce de machine, où il y avait une pièce de
- » bois armée à l'une de ses extrémités d'une plaque de
- tôle assez épaisse, qui devait recevoir tous les coups
- d'un même fusil tiré toujours de même distance. Cette
- » pièce était mobile et devait céder au coup plus ou
- moins, selon qu'il avait plus ou moins de force, et en
- » même temps marquer par la construction de la ma-
- chine, combien elle avait cédé. » On a ainsi reconnu l'influence de la bourre et de la disposition des charges, sans qu'on paraisse avoir mesuré la vitesse des balles.
- 194. Pendule balistique de Robins. Benjamin Robins, pour mesurer la vitesse des balles de fusil, imagina de les tirer contre un madrier du poids de 22k suspendu par une verge rigide et pouvant tourner autour d'un axe perpendiculaire à la direction du mouvement du projectile; de cette manière, en mesurant la hauteur à laquelle s'élevait le madrier, dans le mouvement circulaire qu'il prenait par suite du choc du projectile, on obtenait la vitesse due à cette hauteur: du rapport des masses on déduisait ensuite la vitesse du projectile à l'instant du choc. Cet appareil. connu sous le nom de pendule balistique et dont le procédé employé en 1707 par Cassini fils, pouvait donner l'idée, a été mis en usage pour la première fois en 1740. Il servit à mesurer la vitesse des balles de fusil et la résistance de l'air. Hutton fit de nouvelles expériences en Angleterre, de 1775 à 1789, avec un pendule dont le massif, formé de plusieurs pièces de bois assemblées par des ferrures, a été porté successivement de 400k à 1000k et a pu recevoir des boulets de 1th, 3th et 6th.

On a construit en Angleterre un pendule balistique beaucoup plus pesant et propre à recevoir les boulets de 12, et on en sit usage en 1811 et de 1815 à 1818. Le massif, composé de pièces de bois réunies au moyen de ferrures, pesait près de 4000k; on essaya de tirer des boulets de très-forts calibres, mais dès qu'on avait lancé deux boulets de 24 il fallait démonter l'appareil et le remonter de nouveau.

195. Nouveaux pendules balistiques. Le pendule balistique reçut bientôt en France des perfectionnements considérables, et il devint un instrument d'épreuves habituelles pour la mesure des vitesses initiales dans la réception des poudres, tant pour les balles de fusil que pour le tir des boulets. Au lieu d'un massif en bois, qui dans les pendules anglais recevait successivement plusieurs projectiles, mais qu'il fallait démonter après un petit nombre de coups, on adopta une masse de matière pénétrable renfermée dans une âme en métal, et on la remplaçait par une masse nouvelle après chaque coup tiré.

En 1820, on construisit des pendules en fer dans lesquels une masse de fonte recevait le choc de la balle, ce qui les rapprochait du procédé de Cassini fils (193); ensuite, à la fonte on substitua une masse de plomb dans une âme en fer et on la remplaçait à chaque coup. M. Maguin, commissaire des poudres, employa l'argile desséchée et placée dans une âme en métal, pour le tir des boulets de petits calibres.

En 1836, MM. Piobert et Morin apportèrent de nouveaux perfectionnements dans le pendule balistique qui fut construit à l'arsenal de Metz et qui était destiné au tir des boulets des plus forts calibres. On employa le sable fortement tassé dans plusieurs sacs en cuir et renfermés dans une âme en fonte consolidée par des cercles en fer forgé.

Ces pendules ont reçu depuis cette époque plusieurs

Voyage dans la Grande-Bretagne, par Ch. Dupin, et Annales de physique et de chimie, tome IX.

perfectionnements; aux sacs en cuir on a subtitué des barils tronc coniques qui présentent plus d'économie; puis même un seul baril. Ils sont actuellement d'un usage habituel et facile. Les canons sont suspendus d'une manière analogue, ce qui permet de mesurer la vitesse de recul.

Un autre pendule destiné au tir des plus gros projectiles à diverses distances pour mesurer la résistance de l'air, ainsi que les instruments nécessaires, ont été construits à Metz d'après les dessins de MM. les généraux Morin et Didion; ce pendule rempli de sable pèse environ 6000k.

196. Description du pendule balistique destiné au tir des boulets. Le pendule balistique destiné au tir des boulets est formé d'un vase conique en fonte de fer A (Fig. 40) nommé récepteur balistique et suspendu à un arbre C à 5m au-dessous de cet arbre et dans une direction perpendiculaire, par quatre tiges B, B', B,..... Deux de ces tiges, B et B,, embrassent le récepteur dans la partie antérieure et deux dans la partie postérieure B'. Les deux tiges B, B' situées d'un même côté du récepteur se rapprochent dans la partie supérieure en s'écartant du plan vertical de l'axe de ce récepteur; il en est de même des deux tiges qui sont du côté opposé.

Les quatre tiges sont reliées entre elles dans leur partie supérieure par quatre traverses D, D', E, E' et par trois entre-toises F, F', G, qui donnent au système une trèsgrande rigidité. Dans leur partie inférieure, les tiges sont reliées entre elles par deux entre-toises antérieures H, K et par une entre-toise postérieure K'. Celle-ci et l'entre-toise K sont reliées par un boulon fileté L; un autre boulon M à tête percée relie les quatre tiges au-dessus du récepteur. Sur le boulon fileté est un poids curseur, composé de plusieurs disques en plomb N, maintenus dans une position déterminée sur le boulon fileté par deux écrous de pression O à branches. Ce poids, dont la grandeur et la

position peuvent être variées à volonté, sert à abaisser le centre de gravité et le centre d'oscillation et à rendre l'axe du récepteur horizontal.

Les extrémités P de l'arbre C en fer sont taillées en couteaux, l'arête de ceux-ci est arrondie suivant un petit rayon, de 0m0025 environ; elles reposent sur des coussinets Q, Q en acier, dont la face supérieure présente deux plans raccordés par un arrondissement d'un rayon double du premier et assez peu inclinés pour que dans les oscillations du pendule le frottement empêche les couteaux de glisser et que par conséquent ceux-ci ne fassent que rouler. Par suite du rapport des deux rayons, le centre de l'arrondissement des couteaux ne prend aucun mouvement latéral dans les oscillations du pendule.

Les coussinets Q, Q reposent sur des plaques de fonte R, R, fixées au moyen de grandes chevilles en fer sur la partie supérieure de deux piles en pierre de taille avec fondation en maconnerie.

L'âme du récepteur a intérieurement la forme S, S, S d'un tronc de cône dont le fond est arrondi et dont la longueur est assez grande pour que les projectiles ne puissent traverser entièrement le sable dont elle est remplie. Le récepteur, en fonte de fer, est fortement serré par des cercles en fer forgé.

Avant de faire une expérience, on place dans le récepteur un baril tronc conique rempli de sable sec et fortement tassé; ensuite on ferme la partie antérieure au moyen d'une feuille de plomb, d'un demi-millimètre environ d'épaisseur, serrée par quatre vis entre deux lunettes en fer, fixées elles-mêmes contre le récepteur au moyen de quatre autres vis; deux traits tracés sur cette feuille, l'un horizontal, l'autre vertical, indiquent par leur intersection un point de l'axe du récepteur; ils servent à mesurer la distance à l'arête des couteaux au centre du trou

fait par le projectile, et par conséquent de la ligne parcourue par le centre de ce projectile. Ce point est nommé point d'impact. Cette feuille de plomb a aussi pour objet d'empêcher que quelques parties du sable ou des fragments de barils ne s'échappent du récepteur et n'induisent en erreur sur la mesure de la vitesse du projectile.

Un arc en cuivre T, divisé de minute en minute et sur lequel glisse, à frottement doux, un curseur en cuivre portant un vernier, est fixé à la partie inférieure sur un arc en bois U maintenu dans un plan perpendiculaire aux couteaux, au moyen de montants V et d'une semelle X; ils servent à indiquer l'amplitude du mouvement du récepteur par les arcs que l'aiguille en fer Y, fixée au pendule, fait parcourir au curseur dans chaque expérience.

197. Suspension des canons. Le canon est suspendu en face du récepteur, à peu près de la même manière que l'est celui-ci, et il est maintenu par ses tourillons; ceux-ci entrent dans les encastrements de deux flasques en fer forgé A (Fig. 41) qui prennent appuis sur les tiges de suspension B, B; un collier C, C, en deux parties à la culasse, et en deux parties D, D à la volée, remplissent l'intervalle entre les tiges et le canon, et permettent aux premières d'embrasser celui-ci aussi solidement que l'est le récepteur. Les parties inférieures des colliers ont un poids plus grand que les parties supérieures, afin d'abaisser le centre de gravité et le centre d'oscillation.

Les autres parties de la suspension sont les mêmes que celles du pendule balistique.

Les piles en pierre qui supportent le canon-pendule sont à 12^m de celles qui supportent le pendule balistique; de cette manière, la tranche de la bouche du canon est à environ 10^m de celle du récepteur.

Pour atténuer autant que possible l'action des produits

gazeux de la poudre contre la face du récepteur, et pour intercepter les parties du chargement autres que le boulet, on place dans la direction du canon et à 2^m du récepteur, un écran solide en bois de 1^m20 de côté percé d'un trou circulaire de 0^m50 de diamètre.

198. Pendule balistique pour le tir des balles de fusil. Le pendule balistique pour le tir des balles de fusil (Fig. 42) est formé d'un récepteur tronc conique A, supporté par deux tiges de suspension B, B, fixées par leur partie supérieure à un arbre en fer C, dont les extrémités D taillées en couteau reposent sur des coussinets fixés à une poutre E; une aiguille F qui se meut le long d'un arc gradué G, sert à mesurer les arcs de recul; une réglette H divisée, sert aussi à mesurer les cordes de ces mêmes arcs.

Pour faire une expérience, on place dans le récepteur G qui est tronc conique et dont le fond est percé, un morceau de plomb, ou tampon, de forme tronc conique qui s'emboîte exactement dans l'intérieur. On place devant l'ouverture une planchette K. La planchette et le tampon en plomb réunis ont constamment le même poids; de cette manière, le moment statique et le moment d'inertie du pendule restent les mêmes à chaque coup.

La planchette sert à déterminer le point d'impact de la balle et à en rapporter la position à l'arête des couteaux, au moyen de deux lignes tracées à chaque coup sur la face antérieure de cette planchette.

La suspension du canon est analogue à celle du récepteur. Le canon de fusil peut être facilement enlevé et remplacé par un autre. Les axes de rotation des pendules sont à 3^m l'un de l'autre, de sorte qu'il y a environ 2^m de la bouche du canon à celle du récepteur.

Depuis peu de temps on a construit pour le tir des balles de fusil de nouveaux pendules balistiques et des pendules à canon, dans lesquels on a introduit les perfectionnements qui ont été apportés aux pendules destinés au tir à boulet. Leur centre de gravité et leur centre de percussion sont très-rapprochés de l'axe, ce qui n'a pas lieu dans les pendules qu'on vient de décrire; ils sont supportés par des supports en fonte de fer reliés par des traverses, de sorte qu'ils présentent plus de rigidité et de commodité, et qu'ils donnent plus de précision dans la mesure des vitesses '.

199. Pendule en bois pour le tir à grande distance. Le récepteur du pendule de Metz destiné au tir des boulets à de grandes distances pour la mesure de la résistance de l'air, a dû, en prévision de plus grands écarts, avoir de plus grandes dimensions; néanmoins il laisse encore à craindre que le boulet ne frappe les parois de l'àme, c'est pourquoi il a été fait en bois. Il est (Fig. 43) de forme cylindrique; il a 2m35 de longueur et de 1m51 de diamètre extérieur; il est composé de douves en bois A, fortement serrées par des cercles en fer B et reliées au moyen de quatre pièces de bois C, C et de plusieurs traverses à un arbre D, aussi en bois, dans lequel sont solidement fixés les couteaux F en fer et acier. Les tiges sont reliées entre elles par des entre-toises et par des boulons. Le récepteur AA, de 1^m35 de diamètre intérieur, est doublé en tôle de fer épaisse, clouée contre les parois intérieures. Le fond postérieur H est en bois solidement assemblé: l'ouverture est fermée par un fond K en planches de 0m02 d'épaisseur et maintenu par deux cercles en bois. L'intervalle entre les deux fonds est de 1m48 de longueur, son diamètre est de 1^m34; il est rempli de sable, introduit par deux ouvertures supérieures fermées par des portes ferrées L, L,

Voir l'Aide-Mémoire d'artillerie, deuxième édition, planche 89, et troisième édition, 1856, planche 108, les détails de ces pendules. Voir aussi le réglement sur les épreuves des poudres du 10 mars 1857.

et fortement tassé au moyen de dames d'abord et ensuite par l'effet de la pénétration des projectiles qu'on a tirés.

Le récepteur contient généralement de 3100^k à 3300^k de sable, et ainsi rempli il pèse moyennement 6000^k.

La position du point d'impact des projectiles est déterminée au moyen d'une feuille de plomb mince contenue entre deux lunettes en fer de 1^m05 de diamètre intérieur.

Le pendule est porté par des coussinets en acier, sur des supports de coussinets en fonte et sur une charpente en bois M, M, M.

Deux arcs en fer N divisés, munis de curseurs et placés de chaque côté du pendule, servent à mesurer l'amplitude des arcs.

Avant le tir, on mesure la durée des oscillations; on mesure ensuite le moment statique au moyen de la balance à moments dont il sera parlé plus loin (203). On répète l'opération, après trois ou quatre coups tirés, en laissant les projectiles qui ont pénétré et on tient compte, dans le calcul des vitesses, de la variation des moments, d'après le poids du sable ajouté, le poids et la position du boulet à chaque coup. Mais, avec les perfectionnements apportés récemment à la balance à moments, on pourrait facilement mesurer le moment statique avant chaque coup.

Dans les épreuves de 1839 et 1840, le canon n'était pas suspendu, il était placé sur affût à hauteur de l'axe du récepteur et transporté à diverses distances depuis 15^m jusqu'à 115^m.

200. Formule pour le calcul de la vitesse des projectiles. Établissons les formules qui donnent la vitesse d'un projectile au moyen du pendule balistique.

Soit P le poids du pendule, b celui du projectile, v la vitesse de ce projectile au moment où il frappe le pendule en D (Fig. 44), i la distance OD du point frappé, ou point d'impact, à l'arête inférieure O des couteaux, D la

distance OA du centre de gravité A du pendule à cette même arête O, K la longueur du pendule simple synchrone, α l'angle de recul du pendule par l'effet du projectile, et g la pesanteur. Les masses M et m du pendule et du projectile auront respectivement pour valeur $\mathbf{M} = \frac{\mathbf{P}}{g}$ et $m = \frac{b}{g}$. On suppose que la masse du projectile est concentrée à son centre de figure.

Rappelons que pendant la pénétration il se développe aux points de contact du projectile et du récepteur des efforts d'action et de réaction égaux et directement opposés; l'action exercée sur le récepteur accélère son mouvement, tandis que la réaction diminue la vitesse du projectile; et, il y a égalité à chaque instant entre les moments des quantités de mouvement perdues par le projectile et les moments des quantités de mouvement gagnées par les diverses parties du récepteur et prises relativement à l'axe de rotation O.

Cette égalité ayant lieu à tout instant de la durée de la pénétration, il s'ensuit qu'à la fin de ce phénomène, alors que le projectile n'a plus de vitesse relative au pendule et qu'il se meut comme les points correspondants de la partie du milieu qu'il a déplacée, le moment de la quantité de mouvement perdue par le projectile est égal à la somme des quantités de mouvement gagnées par les diverses parties du pendule.

Nous négligerons ici l'étendue du trajet du projectile dans le récepteur; cela est permis sans erreur appréciable, vu les faibles dimensions du projectile relativement à celles du pendule; nous supposerons aussi que ce projectile ne s'éloigne pas beaucoup du plan vertical passant par l'arête des couteaux. En conséquence, nous négligerons la faible durée du trajet dans le récepteur, laquelle est moindre qu'un centième de seconde.

Cela posé, en nommant ω la vitesse angulaire acquise par le pendule, c'est-à-dire la vitesse propre d'un point situé à l'unité de distance de l'axe de rotation, la vitesse du point d'impact sera $i\omega$; la vitesse perdue par le projectile, dont la masse est censée concentrée à son centre de gravité, sera $v - i\omega$ et le moment de la quantité de mouvement perdue sera $mi(v-i\omega)$.

Quant au pendule, en considérant un élément dM de la masse totale situé à la distance r de l'axe de rotation, la vitesse acquise par cet élément sera $r\omega$, la quantité de mouvement qu'elle gagne sera $r\omega dM$ et son moment $\omega r^2 dM$. La somme de tous les moments sera $\int \omega r^2 dM$, ou, en considérant que ω est indépendant de r, $\omega f r^2 dM$; on devra donc avoir, en vertu du principe de mécanique qu'on vient de rappeler,

$$mi(v-vi)=vfr^2dM.$$

La quantité fr'dM qui entre dans cette expression est le moment d'inertie du corps et pourrait être déterminée d'après la forme et la densité de ses diverses parties; mais il est beaucoup plus simple et plus exact de le déterminer directement par l'expérience. En effet, puisque K est la longueur du pendule simple qui ferait ses oscillations dans le même temps que le pendule balistique, on devra avoir, comme on sait,

$$\int r^2 d\mathbf{M} = \mathbf{M} \mathbf{D} \mathbf{K}$$
.

La relation précédente deviendra donc

$$mi(v - \circ i) = \alpha MDK$$

de laquelle on tire

(1)
$$v = \alpha \frac{\text{MDK} + mi^2}{mi}.$$

Quant à la valeur de K, soit T la durée d'une oscillation du pendule, et π le rapport de la circonférence au dia-

mètre, on aura, comme on sait,

$$K = g \frac{T'}{\pi^2}.$$

Dans les expériences, et d'après la construction des pendules, la valeur de wi est toujours une petite quantité qui ne s'élève qu'à quelques mêtres par seconde au plus; il serait donc difficile de la déterminer directement; il est plus facile de la déduire de la hauteur à laquelle peut s'élever le centre de gravité du pendule, en vertu de la vitesse que ce corps a acquise à la fin de la pénétration; l'application du principe des forces vives en donne le moyen lorsqu'on a observé l'arc de recul qui mesure l'amplitude du mouvement de rotation du pendule autour de l'axe de rotation; soit a cet angle.

A étant la position du centre de gravité du pendule au repos (Fig. 45), ce point sera arrivé en B lorsque le pendule aura décrit l'angle AOB égal à a; et, si l'on mène BC perpendiculaire à la verticale OA, on verra que le centre de gravité se sera élevé de CA qui est égal à D—Dcosa.

Le projectile qui a pénétré dans la direction ED supposée horizontale et qui peut être considéré comme s'étant arrêté en D sur la verticale passant par l'axe de rotation et à une distance OD = i de cette arête, arrivera en F lorsque le pendule aura décrit l'angle α ; si l'on mène FG perpendiculairement à OD, on verra que le projectile se sera élevé de DG qui est égal à $i-i\cos\alpha$.

La quantité de travail développée par la pesanteur sur le pendule et sur le projectile, laquelle est égale au produit du poids par la hauteur, sera donc

$$PD(1-\cos\alpha)+bi(1-\cos\alpha)$$

ou

$$2(PD + bi)\sin^{2}\frac{1}{2}\alpha,$$

puisque $1 - \cos \alpha = 2 \sin^2 \frac{1}{2} \sigma$.

Mais la force vive possédée par le pendule qui est animé de la vitesse de rotation » à la fin de la pénétration, a pour expression

$$\int \omega^2 r^2 dM = \omega^2 / r^2 dM = \omega^2 MDK;$$

d'autre part, la force vive du projectile est &'i'm; par conséquent, en vertu du principe cité, la force vive possédée par ces deux masses, au moment où commence leur mouvement, devant être égale au double de la quantité de travail développée par la pesanteur au moment où ces masses cessent de s'élever, on aura la relation

$$\omega^{2}(\text{MDK} + mi^{2}) = 4(\text{PD} + bi)\sin^{2}\frac{1}{2}\alpha$$
,

ďoù

$$\bullet = \frac{\sqrt{PD + bi}}{\sqrt{MDK + mi^2}} 2\sin\frac{1}{2}\alpha;$$

substituant cette valeur dans celle de v obtenue plus haut, on aura

$$v = \frac{\sqrt{\text{PD} + bi}}{\sqrt{\text{MDK} + mi^2}} \cdot \frac{\text{MDK} + mi^2}{mi} 2 \sin \frac{1}{2} \alpha,$$

et, en remplaçant M et m respectivement par $\frac{P}{g}$ et $\frac{b}{g}$, on aura

(2)
$$\mathbf{v} = \frac{\sqrt{(PDK + bi^2)(PD + bi)g}}{bi} 2\sin\frac{1}{2}\alpha,$$

c'est la formule généralement connue'.

Si l'amplitude du mouvement du pendule est mesurée par la grandeur C de la corde sur un arc de rayon R, il suffira de substituer le rapport $\frac{C}{R}$ à $2\sin\frac{1}{2}a$.

^{&#}x27; Aide-Mémoire d'artillerie, à l'usage des officiers d'artillerie, deuxième édition, page 652.

201. Moyen de tenir compte des variations du poids du récepteur d'un coup à l'autre. La formule que l'on vient de donner, convient bien au cas où l'on a à faire des expériences avec des balles de fusil et où le massif en plomb qui remplit l'âme et reçoit le choc de la balle, est remplacé à chaque coup par un massif de même forme et exactement de même poids, et où de plus, les balles peuvent être choisies ou préparées de telle sorte qu'elles soient de poids égaux. Alors, les quantités qui sont sous le radical de la formule restent les mêmes à chaque coup et la vitesse cherchée ne dépend plus que de l'arc a et de la distance i; celle-ci encore peut souvent être gardée comme moyennement égale à la distance de l'axe du récepteur à celui des couteaux.

Mais, dans le tir des boulets, le poids total du baril ou des barils de sable dont on remplit le récepteur ne peut pas toujours être ramené à l'uniformité, même au moyen de poids supplémentaires, et les différences sont souvent très-notables; cette variation fait changer P, D et K; or, il serait long de mesurer avant chaque coup soit D, soit PD, et presqu'impraticable de mesurer la durée des oscillations du pendule pour avoir la valeur de K.

La variation du poids du sable dont on remplit l'âme peut être regardée comme uniformément répartie sur toute la masse, ou, plus simplement, comme un poids additionnel p, placé sur l'axe du récepteur, c'est-à-dire à une distance a de l'arête des couteaux; l'accroissement du moment statique PD sera alors égal à pa, et, l'accroissement du moment d'inertie PDK sera pa², de sorte que la formule de la vitesse devient

$$v = \frac{\sqrt{(\text{PDK} + pa^2 + bi^2)(\text{PD} + pa + bi)g}}{bi} \cdot \sin \frac{1}{2} \alpha.$$

Au moyen de cette formule, on sera dispensé de mesu-

rer D et K avant chaque expérience, et l'on n'aura qu'à faire entrer dans le calcul les quantités pa et pa^{*} qui se trouvent sous le radical. Mais l'on peut encore éviter le calcul du radical pour chaque coup.

Remarquons, en effet, que la variation du poids p est toujours très-petite relativement à P, et qu'en faisant sortir cette quantité du radical, on peut écrire

$$v = \frac{\sqrt{(\text{PDK} + bi^2)(\text{PD} + bi)g}}{bi} \left[\left(1 + \frac{pa^2}{\text{PDK} + bi^2} \right) \left(1 + \frac{pa}{\text{PD} + bi} \right) \right]^{\frac{1}{2}} \sin \frac{1}{2} a.$$

Dans le second facteur du second membre, les quantités ajoutées à l'unité sont très-petites, et, quand p est égal à 10^k , par exemple, elles ne sont guère que $\frac{1}{400}$ environ avec les pendules en usage. On voit par là que leur produit, et les puissances supérieures à la première, sont tout à fait négligeables; en effectuant le produit, en extrayant la racine carrée, et en remplaçant i et b, qui varient peu d'un coup à l'autre, par leur valeur moyenne a et b, le facteur devient sensiblement

$$1 + \frac{1}{2} \left(\frac{a^2}{PDK + b_1 a^2} + \frac{a}{PD + b_1 a} \right) p.$$

Le facteur de p ne dépend ainsi que de quantités constantes, et, dans les pendules en usage, il est d'environ $\frac{1}{400}$; D et K peuvent être calculés une fois pour toutes, et en faisant $\frac{1}{2} \left(\frac{a^2}{\text{PDK} + b_1 a^2} + \frac{a}{\text{PD} + b_1 a} \right) = \gamma$. La formule de la vitesse sera simplement

$$v = \frac{\sqrt{(\text{PDK} + bi^2)(\text{PD} + bi)}g}{bi}(1 + \gamma p)2\sin\frac{1}{2}\alpha.$$

En remarquant que dans une série d'expériences, le poids b du projectile ne varie que dans de très-étroites limites, on pourra, mais sous le radical seulement, le

remplacer par sa valeur moyenne b, ou par une valeur prise en nombre rond peu différente, et ajouter à p la très-faible variation b' qu'il éprouve d'un coup à l'autre, de façon qu'on ait $b=b_1+b'$; par ce moyen, en calculant une fois pour toutes le radical et en faisant $2\sqrt{(PDK+b_1i')}$ $(PD+b_1i)g=\beta$, on aura la formule très-simple

(3)
$$v = \frac{\beta}{bi} [1 + \gamma (p + b')] \sin \frac{1}{2} \alpha.$$

Le calcul de cette formule se réduira à des opérations très-simples au moyen des logarithmes. La simplification qu'elle apporte est importante maintenant que le pendule balistique est devenu un instrument d'épreuves habituelles. On s'est assuré que l'exactitude qu'elle donne est plus grande que celle qu'on obtiendrait par la mesure directe de la durée d'une oscillation, prise même à moins de $\frac{1}{2000}$ de sa valeur, ce qui est une opération très-longue.

Voici le type d'un calcul qui se rapporte au tir du canon de campagne de 12 et qui est fait avec des tables de logarithmes à cinq décimales, qui donnent en général suffisamment d'exactitude.

P, D, K, g et b_i , ayant été déterminé à l'avance, on a eu pour les constantes :

$$\log \beta = 5,51697 \text{ et } \log \gamma = \overline{4},32755.$$

- anni	1er COUP.	2º COUP.	3 COUP.
DONNÉES. 1/2 α · · · · · · · · · · · · · · · · · ·	2°37'48"	2°40′2″	2•38′6″
<i>b</i>	6k115	6±050	6k099
	N.	L	t I
i	4m943	4m935	4m950
p+b'	10k715	—4×860	—23×521
CALCUL DES VITESSES.			
$Log \beta$ (constant)	5,51697	5,51697	5,51697
$\operatorname{Log} \sin \frac{1}{2} \alpha \dots$	$\bar{2},66168$	$\bar{2},66778$	$\bar{2},66250$
$\operatorname{Log}\beta \cdot \sin \frac{1}{2}\alpha \cdot \dots \cdot (somme)$	4,17865	4,18475	4,17947
$\operatorname{Log} b \dots \dots$	0,78640	0,781 76	0,78526
Logi	0,69399	0,69329	0,69460
ŭ			
Log bi (somme)	1,48039	1,47505	1,47986
Log. de la vitesse approch.			
V ₁ (diff. des sommes)	2,698 26	2,70970	2,69961
-	1,02999	0,68664	1,371 46
Log(p+b')	$\bar{4},327.55$	$\frac{0.08004}{4.32755}$	$\frac{1}{4}$,32755
Log γ (constant)	4,52755	4,32733	4,52755
Log. de la correction (somme)	0,05580	1,72389	0,39862
Log. de la correction (somme)			0,00002
\$7'	400-40	NAO NA	P00-75
Vitesse approch. V	499m18	512 ^m 51	500 ^m 73
Correction	1 ^m 14	—0 [∞] 53	2 ^m 50
Vitesse V	500 ^m 32	511 ^m 98	498 m23
	·	1	

202. Mesure des divers éléments qui entrent dans la formule des vitesses. Les pendules destinés au tir des boulets ont des poids et des dimensions trop considérables pour qu'il soit facile de les peser et de rechercher leur centre de gravité lorsqu'ils sont montés; on prend ces mesures

sur les diverses parties; on la prend particulièrement pour la suspension du récepteur, en plaçant celle-ci sur l'arête aiguë d'un barreau d'acier horizontal et parallèle à l'axe du récepteur, et en faisant varier sa position jusqu'à ce que le plan qui passerait par cette ligne et qui serait perpendiculaire à l'arête des couteaux soit horizontal; la distance horizontale de cette arête à celle des couteaux sera la distance cherchée du centre de gravité de la suspension; multipliée par le poids de la suspension, elle donnera le moment statique de celle-ci. En opérant de même pour le récepteur et au besoin pour les autres parties, et en faisant la somme des moments on aura le moment total PD. On peut aussi, comme on va l'indiquer (art. 203), obtenir ce moment PD par une seule opération.

La valeur de K s'obtient, comme on l'a déjà dit, au moyen de la durée d'une oscillation du pendule et par la formule connue

$$K = g \frac{T^{\lambda}}{\sigma \sigma^2}$$

La durée T doit être mesurée avec beaucoup de soins en comptant celle d'au moins 300 oscillations, à un cinquième ou à un dixième de seconde près, et en répétant cette opération trois fois pour avoir une exactitude égale à celle que donnent les autres mesures. L'oscillation du pendule doit commencer sous les angles d'environ cinq degrés. Avec les petites amplitudes, comme celles d'un degré, le moment du passage du pendule à la position qu'il a au repos est difficile à observer avec précision.

La pesanteur ou la quantité g qui entre dans les formules, c'est-à-dire la vitesse que la pesanteur imprime aux corps dans la première seconde de leur chute, varie d'un point à l'autre d'une même contrée et dépend de la latitude du lieu et de son élévation au-dessus du niveau de la mer. En nommant λ la latitude, h l'élévation, r le rayon

moyen du méridien qui est' $r = 6366200^{m}$, on aura

$$g = \frac{9^{\text{m}}80570(1-0,002588\cos 2\lambda)}{1+\frac{5h}{4r}}.$$

Le tableau ci-après, calculé par M. le lieutenant-colonel Virlet, et ensuite complété, donne la valeur de g pour toutes les latitudes de 40° à 51° et pour les élévations de 0^m à 500^m au-dessus du niveau de la mer.

TABLEAU des valeurs de g, suivant les latitudes et les élévations au-dessus du niveau de la mer.

LATITUDE.	VALEURS DE g, pour des élévations au-dessus du niveau de la mer de									
	Om.	100m,	200m.	300m.	400m,	500m.	DIFFÉRENCE relat. à la lalitude			
dégrés. 40	m 9,80129	m 9,80109	m 9,80090	m 9,80071	m 9,80052	ni 9,80032				
41	9,80217	9,80197	9,80178	9,80159	9,80140	9,80120	88			
42	9,80305	9,80285	9,80266	9,80247	9,80228	9,80208	88			
43	9,80393	9,80373	9,80354	9,80335	9,80316	9,80296	88			
41	9,80481	9,80461	9,80442	9,80423	9,80404	9,80384	88			
45	9,80570	9,80550	9,80531	9,80512	9,80493	9,80473	89			
46	9,80659	9,80639	9,80620	9,80601	9,90582	9,80562	89			
47	9,80747	9,80727	9,80708	9,80689	9,80670	9,80650	88			
48	9,80835	9,80815	9,80796	9,80777	9,80758	9,80738	88			
49	9,80923	9,80903	9,80884	9,80865	9,80846	9,80826	88			
50	9,81011	9,80991	9,80972	9,80953	9,80934	9,80914	88			
51	9,81098	9,81078	9,81059	9,81040	9,81021	9,81001	87			

Les angles a doivent être mesurés à moins d'un dixième de minute près et les longueurs à un millimètre près; avec ces précautions, on peut obtenir la mesure des vitesses

^{&#}x27; Rayon dont la circonférence est de 40000000m et qui a été adopté par Poisson.

des projectiles à un ou deux dixièmes de mêtre près par seconde.

203. Mesure directe du moment statique. Dans les pendules semblables à ceux qui ont servi à Metz au tir dés projectiles à de grandes distances et où le sable n'est pas tassé uniformément par couches perpendiculaires à l'axe, on ne peut pas employer la méthode qui a été indiquée plus haut (202); il est nécessaire de mesurer directement le moment statique, si ce n'est à chaque coup, au moins au commencement et à la fin de chaque série de 4 ou 5 coups.

Pour mesurer le moment statique d'un pendule dont l'arbre serait muni de tourillons, on pourrait', comme l'indique Hutton pour les pendules en bois, lui faire faire un quart de révolution (Fig. 45), de manière que G étant le centre de gravité et O la projection de l'axe de rotation, la ligne OG fût horizontale; alors, si un cordon vertical attaché en A passe sur une poulie de renvoi C, et qu'un poids Q fixé à son autre extrémité fasse équilibre au pendule, dont le poids est P, on verra que Q × OA doit être égal au produit OG × P, c'est-à-dire, égal au moment statique de ce pendule.

Cette opération n'est plus possible lorsque le pendule est supporté par des arêtes de couteaux; mais on peut mesurer ce moment sous une faible inclinaison, par exemple, sous un angle dont le sinus est \(\frac{1}{10}\), c'est-à-dire sous 50 44' 21". Soit 0 (Fig. 46) la projection de l'arête des couteaux d'un pendule, G son centre de gravité, A un point d'attache pris sur la verticale OG; supposons que l'on amène le pendule dans une position inclinée telle que la direction OGA devienne OG'A', faisant avec la première un angle \(\alpha\). Supposons de plus que, le pendule étant

^{&#}x27;Nouvelles expériences d'Artillerie, par Hutton, traduites par O. Terquem.

dans cette position, l'on dirige un cordon ou une tige métallique dans la direction A'B, perpendiculaire à OA', c'est-à-dire faisant un angle « avec l'horizontale; supposons enfin qu'on ait disposé une balance à bras égaux BC et CD dont l'un CD soit horizontal et dont l'autre CB soit perpendiculaire à A'B, c'est-à-dire fasse avec CB un angle droit augmenté de «, et que l'action d'un poids Q suspendu en D tienne le pendule en équilibre sous l'inclinaison «; on aura

$$OA' \times Q = P \times G'F = P \times OG \sin \alpha$$
;

et, si l'on représente OG par D et OA par a, on aura le moment statique P.D du pendule

$$P.D = \frac{Q \times a}{\sin \alpha}.$$

Connaissant ainsi le moment P.D, si l'on a le poids P du pendule, on aura la distauce D du centre de gravité aux couteaux, et si l'on détermine K, on aura le moment d'inertie PDK qui entre dans la formule des vitesses.

L'angle a se mesure au moyen des arcs mêmes du pendule.

Ce procédé, lorsqu'on emploie comme on l'a fait d'abord une poulie au lieu de fléaux, ne présente pas la précision désirable, à cause du frottement des tourillons et de la raideur des cordons; il laisse toujours de l'incertitude sur la valeur de l'angle sous lequel le pendule est tenu en équilibre. Mais, au moyen de la balance à moments qui a été exécutée d'après nos dessins en 1839 (Fig. 47) et dans laquelle les diverses articulations sont des couteaux, un pendule pesant plus de 6000k oscille par l'action d'une différence de poids de 50 grammes et donne le moment du pendule à $\frac{1}{10000}$ près. De nouveaux perfectionnements l'ont rendue sensible à un poids de 10 grammes.

On prend le point d'appui A sur la ligne OA, parce

qu'alors une petite erreur sur la direction A'B du cordon n'altère pas sensiblement le moment du poids Q. Si l'on prenait le point d'attache éloigné de la verticale OA, il faudrait s'assurer de la direction du cordon avec d'autant plus de soin que l'éloignement serait plus grand.

La balance à moments a été adoptée pour les épreuves des poudres dans les poudreries. Elle est établie pour l'angle dont le sinus est un dixième, c'est-à-dire pour a = 5° 44′ 21″; les deux bras (Fig. 47) ont chacun 0^m200 de longueur. L'arête du couteau à l'extrémité du bras horizontal porte un plateau en ser chargé de poids; le bras incliné, par l'intermédiaire d'une tige filetée, susceptible d'allongement, et de deux chapes, soutient le pendule qui est incliné sous l'angle de 5° 44′ 21″, mesure prise relativement à sa position de repos.

Dans le poids du plateau, on comprend tout ce que supporte l'arête du couteau du bras horizontal. D'une part, on y ajoute l'effort qui, appliqué à l'arête du couteau, serait nécessaire pour soutenir le bras horizontal, et qui agit ainsi comme un poids dans le plateau. Cet effort est égal au dixième du poids qu'il faut suspendre à l'aiguille pendante du bras incliné pour établir l'équilibre; cette aiguille est située dans la verticale de l'arête du couteau. D'autre part, on doit retrancher du poids du plateau l'effort qu'exerce sur le couteau du bras incliné la tige inclinée, compris les diverses pièces qui la relient au pendule, et qui n'appartiennent pas à celui-ci; cet effort est égal au dixième du poids de la tige. On reconnaîtra cette relation en remarquant que dans les petites oscillations de l'appareil, la tige se meut suivant sa longueur et comme sur un plan incliné au dixième.

^{&#}x27;Voir le réglement sur les épreuves des poudres, du 10 mars 4857 (impr. imp.), et l'instruction du 17 août 1857, sur la mesure des moments.

On arrive facilement à rendre à la fois l'un des bras horizontal et à donner à la tige l'inclinaison du dixième, en agissant successivement aux deux vis du support. Celles-ci font mouvoir le couteau principal parallèlement ou perpendiculairement à la tige inclinée; on s'assure de la régularité de leur position, d'une part au moyen du niveau placé sous la tige, de l'autre au moyen de l'aiguille pendante sous le couteau du bras incliné, ou au moyen d'un niveau appliqué contre les arêtes du couteau du bras horizontal à l'aide d'une règle.

Si les deux bras n'étaient pas de longueurs égales (mesures prises entre les arêtes des couteaux), il en résulterait des erreurs notables; car, une dissérence d'un dixième de millimètre entre les longueurs produirait une erreur de $\frac{1}{2000}$ sur la mesure du moment. Pour s'assurer de l'égalité des bras, on prend le moment d'un pendule, en donnant successivement au même bras la position horizontale et la position inclinée; si les poids nécessaires à l'équilibre n'étaient pas égaux et qu'ils suscessivement Q' et Q'', le véritable poids serait $\sqrt{Q' \cdot Q''}$.

204. Choc sur les couteaux. On sait que si la direction du choc passe par le centre de percussion, c'est-à-dire par un point situé sur la ligne qui serait menée par le centre de gravité perpendiculairement à l'axe de rotation et à une distance de cet axe égale à la longueur K du pendule synchrone, et si cette direction est perpendiculaire au plan passant par le centre de gravité et l'axe de rotation, il n'y a aucune percussion sur les couteaux. Lorsque cette condition n'est pas absolument remplie et que la différence n'est pas grande, la percussion sur les couteaux est trop faible pour les faire glisser sur les coussinets et l'effet du choc est sans inconvénient; c'est ce qui a lieu dans les pendules balistiques à canons, construits comme l'indique la figure 40 et dont on fait actuellement usage.

205. Examen des diverses suppositions. Dans le calcul des vitesses au moyen du pendule, on a fait plusieurs suppositions; il est utile de connaître leur degré d'exactitude ou le peu d'importance de l'erreur qui peut en résulter.

On a supposé que pendant la durée de la pénétration du projectile dans le sable, le pendule restait sensiblement dans la même position; cela est évidemment permis par suite de la courte durée de cette pénétration. Car, d'après ce qui a été dit (184) pour un boulet de 24 animé d'une vitesse d'environ $500^{m:s}$ et dans le cas où la profondeur de pénétration dans la matière qui remplit le récepteur serait aussi grande qu'elle peut l'être, la durée de cette pénétration serait d'environ $\frac{1}{70}$ de seconde; or, pendant cette durée, la vitesse acquise par le point frappé d'un pendule, comme ceux dont on fait actuellement usage, serait d'environ 1^m60 à la fin de la pénétration, et l'espace effectivement parcouru par ce point d'environ 0^m01 .

Le centre de gravité du pendule ne s'est donc élevé que d'une quantité tout à fait inappréciable et on a pu, sans erreur sensible, compter la hauteur d'ascension le long de l'arc, à partir de la position du repos.

Pendant le même temps, le projectile soumis à l'action de la pesanteur ne pourra s'abaisser que de moins d'un millimètre. On a donc pu aussi supposer que la direction restait constante et calculer, comme on l'a fait, le moment de la résistance qu'il éprouve en pénétrant dans le milieu résistant.

206. Correction relative à la direction du choc. On a supposé que la bouche à feu étant placée à hauteur du centre du récepteur, le projectile frappait le pendule suivant une direction horizontale. Cette condition n'est pas absolument remplie, parce que le projectile dans son trajet est soumis à l'influence de la pesanteur et s'abaisse d'une petite quantité; de plus, comme il ne part pas toujours

suivant la direction de l'axe de la bouche à feu, il frappe le récepteur suivant des directions et en des points un peu différents à chaque coup.

Dans les expériences qui ont pour objet la mesure des vitesses à une distance qui est faible et toujours la même, les petites différences d'un coup à l'autre n'ont pas d'influence sensible, et on peut les négliger entièrement comme on le fait. Mais, lorsqu'on tire à diverses distances, comme quand il s'agit de mesurer la résistance de l'air sur les projectiles, et que cette influence a pour effet d'induire en erreur sur l'estimation de la perte de vitesse dans le trajet, il est utile de tenir compte de cette influence, quelque faible qu'elle soit, parce qu'elle varie avec la grandeur des distances et des vitesses.

Pour le faire, on doit, dans le moment des quantités de mouvement du projectile, remplacer la hauteur verticale *i* que donne l'observation par la distance variable du point de rotation à la direction du choc, calculée d'après la position du point de départ et du point d'impact, à chaque coup.

Soient C (Fig. 48) la projection de l'axe de rotation du pendule, A le point d'impact du projectile, i et a les distances verticale et horizontale de ce point au point C, O le point de départ du projectile, h et X les distances verticale et horizontale de ce point au point d'impact A; soit de plus AB la direction du projectile au moment du choc faisant un angle θ avec l'horizontale et CD la perpendiculaire abaissée du point C sur cette ligne. Il est facile de voir que dans le dénominateur de la formule de la vitesse (art. 201,

ėq. 3) $v = \frac{\beta}{bi}[1 + \gamma(p + b')]\sin\frac{1}{2}\alpha$, il faut mettre CD au lieu de i, c'est-à-dire que la vitesse calculée doit être divisée par $\frac{CD}{i}$. Or, l'on a $CD = (i + a \tan \beta) \cos \beta$,

d'où $\frac{\text{CD}}{i} = (1 + \frac{\alpha}{i} \tan \theta) \cos \theta$; la vitesse corrigée sera donc

$$\frac{v}{\left(1+\frac{a}{i}\tan\theta\right)\cos\theta}.$$

Mais, θ étant toujours très-petit, $\cos\theta$ ou $\frac{1}{\sqrt{1+\tan^2\theta}}$ sera sensiblement égal à $1-\frac{1}{2}\tan^2\theta$ et l'on aura pour la vitesse corrigée

$$\frac{v}{\left(1+\frac{a}{i}\tan \theta\right)\left(1-\frac{1}{2}\tan \theta^2\right)}$$

ou sensiblement

$$v - v \left(\frac{a}{i} \tan \theta - \frac{1}{2} \tan \theta^2 \theta\right).$$

Cette quantité, vu la faible grandeur de fatang's, se réduit presque toujours simplement à

$$v - v \frac{a}{i} \tan \theta$$
.

L'angle θ ou BAF est la somme des deux angles BAO, ou θ' , et OAF. On a tang OAF $=\frac{h}{X}$; tang BAO sera donné par les formules (art. 101, éq. 28) du mouvement des projectiles, pourvu qu'on connaisse approximativement la vitesse du projectile et la résistance de l'air; alors, en conservant les notations adoptées, sauf le signe de θ , on aura, en tenant compte de la très-faible inclinaison de OA,

$$\tan \theta' = \frac{\frac{1}{2}gX}{V.^2}[2\mathfrak{J}(X, V) - \mathfrak{VL}(X, V)];$$

mais on pourra, ce qui est permis vu la faible distance parcourue, regarder l'angle d'arrivée comme égal à l'angle de départ relativement à OA; on aura alors

$$tang\theta' = \frac{1}{2}g\frac{X}{V^2} \mathfrak{V}(X, V),$$

de plus, en remplaçant la tangente de la somme des deux angles par la somme de leurs tangentes, on obtiendra très-simplement

$$\tan \theta = \tan \theta' + \frac{h}{\bar{X}}.$$

De sorte que la vitesse v, calculée en supposant comme on le fait ordinairement que la direction du choc est horizontale, devra être diminuée de

$$v\frac{a}{i}\left(\tan\theta'+\frac{h}{X}\right).$$

207. Résistances passives de l'appareil. Dans le calcul des vitesses au moyen du pendule balistique on a fait abstraction des résistances passives de l'appareil, qui sont: le frottement des couteaux sur les coussinets, celui des curseurs sur les arcs en fer et la résistance de l'air sur les parties du pendule en mouvement. Au lieu de calculer ces résistances, ce qui laisserait beaucoup d'incertitude, on peut les déterminer par l'observation du mouvement du pendule.

Pour cela, on fait osciller le pendule librement, c'est-àdire sans faire entraîner les curseurs et en partant de la plus grande amplitude qui est produite par le tir. On observe le décroissement de l'amplitude après chaque dix doubles oscillations, par exemple; pour cela, au moyen du curseur que l'on approche de l'aiguille du pendule sans le laisser entraîner, on observe le décroissement de l'amplitude, lequel est toujours très-faible. On opérera de cette manière, sauf des interruptions pour rendre l'opération moins longue, jusqu'à ce qu'on arrive aux plus petites amplitudes dont on ait besoin de tenir compte; on obtient ainsi le décroissement de l'amplitude qui est due, à la fois, à la résistance des couteaux sur les coussinets et à celle de l'air sur le pendule, dans une double oscillation ascendante et descendante. On représente cette relation par une courbe dont les amplitudes sont les abscisses et les décroissements les ordonnées. On reprend la même expérience en présentant le curseur au zéro de la division à chaque demi-oscillation ascendante, le long de l'arc divisé. On obtient ainsi le décroissement dû à dix doubles oscillations; le dixième de cette quantité représente le décroissement dù à une double oscillation. Ce décroissement provient : 1º du frottement des couteaux et de la résistance de l'air dans une double oscillation: 2º du frottement des couteaux dans une oscillation ascendante; on trace comme dans le premier cas la courbe qui représente cette relation. La différence entre les ordonnées de cette courbe et celles de la courbe précédente donne, par conséquent, le décroissement dù au frottement des curseurs seuls. Si on y ajoute le quart de l'ordonnée de la première courbe, on aura le décroissement dû à la somme des résistances qu'éprouve le pendule dans une demi-oscillation ascendante, tant de la part des couteaux que de celle de l'air et du frottement du curseur. Cette quantité, toujours trèsfaible, devra être ajoutée à l'angle observé à chaque coup pour corriger le dernier de l'effet de ces résistances qui la diminuent.

On pourrait objecter que dans ce mode de procéder les circonstances ne sont pas absolument les mêmes quant à ce qui concerne la résistance de l'air; que, dans le cas du tir, lorsque le pendule quitte la position verticale, il a acquis très-brusquement la vitesse de départ et commence son ascension en poussant un fluide en repos, tandis que dans la mesure de la résistance, lorsque le pendule arrive

à la position verticale pour aller au delà, il est déjà animé d'une certaine vitesse; qu'ainsi le fluide qui l'environne a acquis une vitesse dans le même sens et par suite la résistance qu'il éprouve de la part du fluide est moindre. Mais on devra observer que dans cette épreuve, lorsque le pendule commence une demi-oscillation descendante, le fluide atmosphérique, par l'oscillation qui se termine, est animé d'une vitesse en sens contraire de celle qu'il commence à prendre, et qu'ainsi la résistance est plus grande que dans un fluide en repos; il y a donc à trèspeu près compensation dans cette partie de la résistance: les autres résistances étant d'ailleurs les mêmes dans les deux cas, on peut prendre le décroissement qu'on mesure de cette manière comme une expression suffisamment exacte de la mesure d'une résistance que, d'ailleurs, on cherche toujours à rendre très-petite.

208. Effet de l'explosion des gaz. Le récepteur, dans le tir, est frappé par les gaz qui proviennent de l'explosion de la poudre en même temps qu'il l'est par le projectile; ceuxci contribuent donc au mouvement du récepteur. Cet effet s'ajoute à celui qu'on veut mesurer, et, si l'on n'en tient pas compte, l'arc de recul mesuré indique une vitesse trop grande. L'effet du choc croît rapidement avec le poids des charges; il varie en sens inverse de la distance de la bouche à feu au pendule et il diminue avec l'ouverture de l'écran qu'on place entre eux. Il est difficile d'estimer avec précision l'effet dû au choc des gaz; mais on peut comparer la quantité de mouvement qu'ils produisent à celle qui résulte du tir d'une charge de poudre de même poids sans projectile, et la retrancher de celle qui résulte du tir avec projectile; c'est-à-dire qu'on calcule la vitesse qu'un boulet de même calibre devrait avoir pour produire le même effet de recul que le choc des gaz de la charge sans projectile, et qu'on retranche cette quantité de la vitesse calculée pour chaque coup.

Dans les épreuves ordinaires on ne tient pas compte de ces dernières corrections, parce qu'elles sont en général assez faibles et parce que, quand on compare entre elles les vitesses données par des poids égaux de différentes poudres, les corrections restent les mêmes; qu'alors, les différences entre ces vitesses deviennent indépendantes de ces effets et que les corrections peuvent être négligées sans inconvénient. Les deux dernières étant en sens contraire se compensent sensiblement dans quelques cas.

Il n'en est plus de même lorsque l'on a besoin de connaître exactement la vitesse du projectile. Dans tous les cas, il est utile d'apprécier la grandeur des erreurs qu'on pourrait connaître.

209. Vitesse initiale proprement dite. La vitesse qu'on obtient par les moyens qu'on vient d'exposer se rapporte au projectile, au point où il frappe le récepteur; la vitesse qu'on doit supposer au point de départ dans les applications à la balistique, c'est-à-dire la vitesse initiale proprement dite, en dissère nécessairement. Pour obtenir celle-ci, il n'est pas besoin de rechercher quelle variation de vitesse subit réellement le projectile depuis la bouche à seu jusqu'au récepteur, soumis encore pendant une partie de ce trajet à l'action des gaz de la poudre, et ensuite à des résistances plus ou moins variables; il sussit de chercher celle qu'il devrait avoir dans une atmosphère parsaitement tranquille et dans l'état ordinaire, pour qu'à une distance égale à l'intervalle du canon au pendule il conservât celle qu'on a réellement observée.

D'après la relation que nous avons donnée (art. 102, éq. 30) entre ces deux vitesses, si v est la vitesse mesurée au pendule, V la vitesse à une distance x en arrière, c'est-à-dire au point de départ, c et r étant les coefficients qui résultent des lois de la résistance de l'air (art. 46, éq. 5, et art. 56), on aura, en remarquant que la distance x

est peu considérable,

$$_{\mathrm{I}}\mathrm{V}=v\left[1+rac{x}{2c}\left(1+rac{v}{r}
ight)
ight],$$

et, pour la quantité à ajouter à la vitesse mesurée au pendule,

$$\frac{x}{2c}\left(1+\frac{v}{r}\right)v.$$

210. Canon-pendule. Le canon est suspendu en face et à hauteur du récepteur; l'amplitude du recul sert à déterminer la quantité de mouvement du recul et la vitesse qu'aurait la bouche à feu, soit seule, soit montée sur affût, si ce recul avait lieu librement. Cette vitesse est due, comme on sait, à la pression que les gaz enflammés de la poudre exercent sur le fond de l'âme; ces mêmes gaz agissent en sens opposé sur le boulet pendant la durée de son trajet dans l'âme et même après sa sortie. La première pression s'exerce d'une manière variable pendant toute cette durée; elle imprime à la bouche à feu une certaine quantité de mouvement, et une certaine vitesse de rotation autour des couteaux. C'est en vertu de cette vitesse que le pendule s'élève d'un mouvement circulaire jusqu'à ce que la force vive qu'il possède soit détruite par l'effet de la pesanteur. La vitesse du canon est ainsi liée à celle du projectile, au poids et à la nature de la poudre et à d'autres circonstances. Lorsqu'on la détermine, elle est un indicateur des variations de la vitesse du projectile sans en être cependant une mesure certaine.

Désignons les quantités qui entrent dans la mesure des vitesses du canon par les mêmes lettres que dans le récepteur balistique en les accentuant, c'est-à-dire appelons P le poids du canon-pendule, a' la distance de l'axe de rotation à la direction suivant laquelle s'exerce l'action des gaz de la poudre, c'est-à-dire la distance à l'axe de la

bouche à feu, D' la distance du centre de gravité à l'arête des couteaux, K' la longueur du pendule simple synchrone, α' l'angle de recul, et g la pesanteur; la masse M' du pendule sera M' $=\frac{P'}{g}$.

Soient ω' la vitesse de rotation acquise par le canonpendule au moment où a cessé l'action des gaz de la poudre, r la distance à l'axe de rotation et dM' la masse d'un élément quelconque du pendule; sa vitesse sera $r\omega'$, sa quantité de mouvement $r\omega'dM'$ et son moment $r^2\omega'dM'$; leur somme, pour le pendule entier, sera

$$\omega' \int r^2 dM'$$
 ou $\omega' M' D' K'$.

La force vive acquise sera

$$\int r^2 \omega'^2 dM' = \omega'^2 \int r^2 dM' = \omega'^2 M' D' K'.$$

Cette quantité devant être égale au double de la quantité de travail de la pesanteur pendant le recul, recul durant lequel le centre de gravité du poids P' s'élève de $D'(1-\cos\alpha')$ ou de $2D'\sin^2\frac{1}{2}\alpha'$, on aura

$$\omega_4'^2 M' D' K' = 2P' D' (1 - \cos \alpha') = 4M' g D' \sin^2 \frac{1}{2} \alpha'.$$

En tirant de cette équation la valeur de ω' et la substituant dans l'expression ci-dessus du moment de la quantité de mouvement totale, celle-ci sera

$$\mathbf{M'}\mathbf{D'}\sqrt{g\mathbf{K'}}\sin\frac{1}{2}\alpha'$$
.

En divisant ce moment par la distance a' de l'axe de la bouche à feu ou de la direction moyenne de l'action des gaz, on aura la quantité de mouvement produite par ceux-ci, laquelle est ainsi

$$\frac{\mathrm{M'D'}}{a'}\sqrt{g\mathrm{K'}}2\sin\frac{1}{2}\alpha'.$$

On peut arriver plus simplement à ce résultat en se fondant sur ceux qui se rapportent au récepteur; pour cela, on considérera que lorsque les gaz enflammés de la poudre ont cessé d'agir sur le canon-pendule, celui-ci a acquis une certaine quantité de mouvement en vertu de laquelle il s'élève d'un mouvement circulaire, et que cet effet est le même que celui qui a lieu dans le récepteur par l'action du projectile; il y a toutefois cette exception, que la masse de l'appareil n'est pas augmentée par celle du projectile. On peut donc établir les mêmes relations entre les arcs de recul et les quantités de mouvement possédées dans les deux cas (100), par le canon-pendule et par le récepteur balistique ou par le projectile, laquelle était $\frac{b}{g}v$, et on aura

$$P'V' = \frac{\sqrt{P'D'K' \cdot P'D'g}}{a'} \cdot 2\sin\frac{1}{2}\alpha' = \frac{P'D'}{a'} \sqrt{K'g} \cdot 2\sin\frac{1}{2}\alpha',$$

ou, en substituant les masses aux poids,

$$M'V' = \frac{M'D'}{a'} \sqrt{gK'} \cdot 2\sin\frac{1}{2}\alpha'.$$

Si la masse M' eût été assujettie à se mouvoir dans la direction de l'axe, en appelant V' la vitesse qu'elle prendrait, M'V' serait la quantité de mouvement égale à la précédente, ce qui donnerait également,

$$M'V' = \frac{M'D'}{\alpha'} \sqrt{gK'} \cdot 2\sin\frac{1}{\alpha}\alpha'.$$

Cette quantité de mouvement peut être comparée à celle d'une autre masse dont la vitesse serait différente, par exemple, à celle de la bouche à feu seule représentée par m'; sa vitesse serait

$$\frac{\mathbf{M'}}{m'} \cdot \frac{\mathbf{D'}}{a'} \sqrt{g\mathbf{K'}} \cdot 2\sin\frac{1}{2}\alpha'$$
.

La vitesse que devrait avoir le boulet dont la masse serait m, pour posséder la même quantité de mouvement, aurait pour expression

$$\frac{\mathbf{M'}}{m} \cdot \frac{\mathbf{D'}}{a'} \sqrt{g\mathbf{K'}} \cdot 2\sin\frac{1}{2}a'$$
.

Dans cette expression, au rapport des masses, on peut substituer celui des poids, et à $2\sin\frac{1}{2}\alpha'$, le rapport de la corde C' au rayon R' de l'arc sur lequel celle-ci est comptée; on aura alors la formule

$$\frac{C'}{R'}$$
. $\frac{P'}{b}$. $\frac{D'}{a'}$ $\sqrt{gK'}$

donnée par l'Aide-Mémoire d'Artillerie.

212. Application de l'électricité à la mesure de la vitesse des projectiles. L'idée de l'application de l'électricité à la mesure de la vitesse des projectiles est généralement attribuée à M. Wheatstone, vers 1840.

Les procédés proposés pour mesurer avec une trèsgrande précision la durée d'un certain trajet d'un projectile et en conclure la vitesse moyenne durant ce trajet, sont basés, soit sur l'emploi des électro-aimants qui fixent ou abandonnent certains corps à un instant correspondant au passage du projectile, soit sur la propriété graphique des étincelles électriques dans la même circonstance.

Pour mesurer le temps, on a d'abord cherché à employer un appareil d'horlogerie comme MM. Wheatstone, le baron de Wrèdes, Bréguet; ou, comme l'a proposé le premier M. le général Konstantinoff, à faire mouvoir uniformément un cylindre ou un disque plan, d'un assez grand diamètre; on a aussi essayé d'éviter l'emploi d'un mouvement d'horlogerie en prenant un corps tombant librement dans l'air par l'action de la pesanteur, comme dans le procédé Debooz (192), ou glissant sur un plan incliné; on a enfin essayé un pendule oscillant autour

d'un axe de rotation, comme M. le capitaine Navez, de l'artillerie belge.

Pour relier ensemble le commencement et la fin de l'intervalle de temps à mesurer, on a eu recours à l'emploi de deux cadres en bois placés aux extrémités du trajet correspondant, et sur chacun desquels est placé un fil métallique continu. Ce fil est replié un assez grand nombre de fois sur lui-même pour ne laisser entre deux parties voisines qu'un intervalle notablement moindre que le diamètre du projectile dont on veut mesurer la vitesse; de cette façon, le projectile en passant à travers les cadres rompt nécessairement le fil, et, si ce fil fait partie d'un courant électrique, ce courant sera interrompu; par suite les phénomènes d'aimantation temporaire de certains électro-aimants cessant, certaines pièces maintenues jusqu'alors seront mises en liberté à l'instant précis du passage à travers les cadres: c'est cette propriété d'être indépendante de la longueur du fil, laquelle est due à l'extrême vitesse du courant électrique, qui constitue l'avantage du procédé.

Les appareils à cylindre ou à disques tournants par le moyen d'un mouvement d'horlogerie exigeant, comme accessoires, l'emploi d'un chronomètre, n'ont pu encore donner que des approximations grossières. Tous ceux qui, en outre, sont fondés sur le mouvement de certaines pièces laissent de l'incertitude dans les résultats, par suite de l'inégalité de la durée de ce mouvement, quelque petit qu'il soit, cette durée dépendant de l'énergie des courants.

213. Pendule électro-balistique. M. le capitaine Navez, dans son pendule électro-balistique, a fait disparaître les inconvénients qui viennent d'être signalés.

^{&#}x27; Application de l'électricité à la mesure de la vitesse des projectiles. — Paris, Corréard. 1853.

L'instrument est un pendule composé; son mouvement suit les lois mathématiques connues, et l'on peut obtenir à l'avance les vitesses variables suivant les degrés qu'il parcourt et le temps employé depuis le départ. Dans cet appareil, un électro-aimant est placé de façon qu'il fixe le pendule, muni d'une armature en fer doux, sous une inclinaison de 75° avec la verticale; c'est de cette position que part la graduation. Le courant voltaïque qui passe dans le fil de cet aimant circule dans le premier cadrecible. Quand le projectile traversera ce premier cadre, il en brisera le fil et interrompera le courant, l'activité de l'électro-aimant cessera et le pendule abandonné à luimême commencera une oscillation.

Le pendule porte une aiguille indicatrice très-légère, montée sur une rondelle en fer doux et reliée à ce pendule par un ressort bifurqué. Cette rondelle est placée au centre du limbe, très-près et en face d'un gros électroaimant à deux branches; celui-ci, lorsqu'il est activé, attire avec violence la rondelle et fixe invariablement l'aiguille indicatrice. Ce phénomène doit avoir lieu lorsque le projectile traverse la deuxième cible. On y arrive au moyen d'une pièce particulière nommé conjoncteur.

214. Conjoncteur et disjoncteur. — Conjoncteur. Le conjoncteur se compose essentiellement d'un électro-aimant vertical dont on met le fil en communication avec le fil du deuxième cadre-cible. Quand les circuits sont fermés, la tige de l'aimant maintient suspendu un poids en plomb muni d'une tête en fer doux.

Dans la verticale qui passe par le point de suspension

Nous ne décrivons que sommairement et sans figures les appareils électro-balistiques. Pour l'étude plus complète et pour l'emploi de ces appareils, il faudra recourir aux ouvrages spéciaux que nous indiquons.

du poids et sur la planchette de l'instrument, est placé un cylindre creux en fer renfermant du mercure; une pointe d'acier, portée par une lame faisant ressort, est maintenue au-dessus et très-près de la surface du mercure. Cette lame, la pointe et le bain de mercure, font partie d'un même circuit voltaïque comprenant en outre le gros électro-aimant. Ce circuit n'est pas fermé tant que la pointe n'arrive pas au contact du mercure.

Lorsque le projectile coupe le fil du second cadre, il fait cesser l'action magnétique de l'électro-aimant vertical du conjoncteur; le poids en plomb tombe, enfonce la pointe dans le mercure et rend ainsi le gros électro-aimant actif; alors l'aiguille est attirée, s'arrête et l'arc parcouru, depuis le zéro de la graduation, correspond à une durée que nous désignerons par t'.

Cette durée t' observée n'est pas égale à la durée cherchée que nous désignerons par T.

En effet; d'une part l'électro-aimant met un certain temps avant de perdre son activité et d'abandonner le pendule; soit θ ce temps, compté à partir de la rupture du fil du premier cadre; d'autre part, le second fil ne sera coupé qu'après un temps T; mais ce ne sera qu'après un temps désigné par θ' que le poids du conjoncteur abandonnera le repos, et après un nouveau temps θ'' , qu'il atteindra la lame d'acier et fera plonger la pointe dans le mercure, et enfin, qu'après un nouvel intervalle θ''' , que le gros électro-aimant aura agi sur l'aiguille et l'aura fixée sur le limbe; de cette façon, le temps t' compris entre le départ du pendule et l'arrêt de l'aiguille est égal à $T + \theta' + \theta'' + \theta''' - \theta$.

Pour déterminer le temps $\theta' + \theta'' + \theta''' - \theta$ que nous désignerons par t, M, le capitaine Navez a employé une pièce nommée disjoncteur qui est la partie caractéristique de son appareil.

Disjoncteur. Le disjoncteur a pour but de produire simultanément la rupture de chacun des circuits, tout comme le ferait un boulet s'il était animé d'une vitesse infinie, ou mieux si les deux cadres étaient appliqués l'un contre l'autre. La durée indiquée par le pendule se composera donc des quatre quantités $\theta' + \theta'' + \theta''' - \theta = t$, énoncées plus haut, de façon que t' - t sera la durée cherchée T.

215. Mode d'opération. Pour opérer, les cadres étant placés à une distance convenable, le canon chargé situé à quelques mètres du premier cadre et sous une très-faible inclinaison, et, de plus, les cadres étant dans la position qui convient pour que le projectile les atteigne vers leur centre, les courants voltaïques en activité et le poids du conjoncteur étant fixé, l'observateur fait marcher le disjoncteur. Le pendule part et l'aiguille s'arrête et donne a pour l'arc parcouru.

L'observateur fixe de nouveau le pendule au zéro de la graduation et relève le poids du conjoncteur, puis donne le signal du tir; le pendule retombe et l'aiguille s'arrête après avoir parcouru un arc α' plus grand que le premier; on cherche, d'après le tableau des arcs, les temps t et t' correspondants aux arcs respectifs observés, α et α' , et l'on obtient T = t' - t pour la durée cherchée du trajet.

On prend le quotient $\frac{a}{T}$ pour la vitesse du projectile et on la regarde comme correspondant au milieu de l'intervalle des deux cibles.

La vitesse en ce point n'est pas tout à fait égale au quotient $\frac{a}{T}$, mais elle n'en diffère que d'une quantité négligeable et que l'on peut calculer.

En conservant les notations admises (63), c étant le coefficient qui se rapporte au projectile, V sa vitesse

quand celui-ci traverse le premier cadre, et T la durée du trajet a entre les deux cadres, on aura

$$T = \frac{a}{\overline{V}} \mathfrak{D}(a, V),$$

et, par conséquent, pour la vitesse moyenne v

$$v = \frac{V}{\mathbb{Q}(a, V)}$$
.

D'un autre côté, la vitesse v' au milieu du trajet a, c'est-àdire après un trajet $\frac{a}{2}$, sera

$$v' = \frac{v}{v\left(\frac{a}{2}, v\right)}.$$

Le rapport des deux vitesses v' et v sera

$$\frac{v'}{v} = \frac{\mathfrak{Q}(a, V)}{\mathfrak{V}\left(\frac{a}{2}, V\right)}.$$

Ce rapport n'excède l'unité que d'une très-faible quantité; ainsi pour le cas très-défavorable d'un trajet de $a=50^{\rm m}$ d'un petit projectile de faible densité et tel qu'on ait $c=750^{\rm m}$ (correspondant à un obus de $12^{\rm cm}$), $V=r=435^{\rm m}$, $\frac{a}{2c}=\frac{1}{30}$, on aura, d'après la table XI, et en tenant compte de l'indécision qui règne sur la quatrième décimale, un rapport compris entre 1,0001 et 1,0002; ce qui, pour la vitesse à $435^{\rm m}$, indique une correction additive de $0^{\rm m:s}04$ à $0^{\rm m:s}08$; elle est effectivement négligeable.

On peut obtenir plus exactement cette correction, toujours très-petite, en substituant à $\varpi(a, V)$ et à $\varpi(\frac{a}{2}, V)$ leurs développements; puis en effectuant la division algé-

brique, et en négligeant les termes où $\frac{a}{2c}$ entre à des puissances supérieures à la troisième; en représentant par n le rapport de $\frac{V}{r}$ à $1 + \frac{V}{r}$, toujours plus petit que l'unité, on aura

$$v' = v + \frac{v}{24} \frac{\left(\frac{a}{2c}\right)^2}{1 - n + \frac{1}{2}\frac{a}{2c}} \left(1 + \frac{1}{2}\frac{a}{2c}\right).$$

En prenant pour exemple, comme précédemment, $v=435^{\text{m:s}},\ c=750^{\text{m}},\ a=50^{\text{m}}$, on aura $n=\frac{1}{2},\ \frac{a}{2c}=\frac{1}{30}$ et par suite

 $v' = v + \frac{v}{11160} \Big(1 + \frac{1}{60} \Big).$

La correction additive n'est ainsi, pour $v = 435^{\text{m}}$, que de $0^{\text{m}:\text{s}}04$, quantité négligeable.

Avec des précautions et des soins, avec l'attention de faire partir le projectile très-peu de temps après l'observation au disjoncteur, afin que les courants aient sensiblement la même énergie, et, en plaçant les cadres à 50^m d'intervalle environ pour les grandes vitesses des boulets et à 30^m pour les vitesses plus petites, le pendule électrobalistique donne la vitesse des projectiles avec une approximation suffisante et à peu près comparable à celle que donne le pendule balistique. Il a de plus l'avantage de ne pas modifier la vitesse ni la direction du projectile, et de permettre, par conséquent, l'observation de la trajectoire ou de l'effet du choc.

Il permet aussi d'évaluer la vitesse des projectiles, telle que celle des bombes tirées sous des angles élevés audessus de l'horizon. Il permet encore d'obtenir la vitesse du même projectile en deux points de la trajectoire, et par conséquent de mesurer la perte de vitesse dans un trajet donné et d'en déduire la grandeur de la résistance éprouvée dans l'air. Il suffit pour cela d'employer deux appareils complets. On pourrait même mesurer la vitesse en plus de deux points.

Le temps nécessaire à une expérience n'est pas beaucoup plus long que celui qu'il faut pour charger et diriger la bouche à feu; on peut donc faire un grand nombre d'expériences en peu de temps et inscrire jusqu'à 40 vitesses en deux heures.

- 216. Emploi de l'étincelle électrique. M. Siémens, en Prusse, a cherché le premier à utiliser les étincelles que fournit l'électricité de tension, par des bouteilles de Leyde, pour obtenir, sur un cylindre en acier poli, l'indication du passage d'un projectile à travers des cadrescibles disposés en nombre quelconque le long de la trajectoire. Ce procédé, outre les inconvénients des appareils à cylindre tournant et les difficultés ou impossibilités qui résultent de certaines circonstances atmosphériques, présentait une cause d'erreur assez grave dans les déviations des étincelles électriques.
- M. le capitaine Martin de Brettes, en France, a proposé, en 1858, de remplacer l'arrêt de l'aiguille dans l'appareil Navez, par l'étincelle d'induction, et pour cela d'appliquer au pendule une pointe métallique se mouvant trèsprès du limbe vertical gradué, et de faire éclater, à propos, au moyen des bobines de Ruhmkorff, entre la pointe et ce limbe, des étincelles d'induction marquant des taches sur un papier préparé.

Un an plus tard, M. le capitaine Vignotti adoptant ces dernières données, l'emploi du pendule armé d'une

Comptes rendus de l'Académie des sciences, janvier 1856, et Recherches relatives à la mise en service des chronoscopes électrobalistiques, par A. Vignotti, capitaine d'Artillerie, 1859.

pointe et des bobines de Ruhmkorff, a fait construire un appareil qui a reçu des dispositions nouvelles, faisant disparaître diverses causes d'inexactitude et s'opposant aux déviations de l'étincelle; cet appareil, au moyen d'une méthode d'expérimentation nouvelle, dispense de l'emploi des disjoncteurs et conjoncteurs et permet d'observer un projectile pendant une longue partie de son trajet. Les premiers essais faits avec cet appareil, à Metz en 1859, paraissent donner l'assurance du succès.

215. Vitesse du projectile déduite de celle du recul. On a cherché à établir entre le recul du pendule et la vitesse du projectile, une relation qui permît de déduire celle-ci de la première; cette relation dépendant de la balistique intérieure, c'est-à-dire des lois du mouvement du projectile dans la bouche à feu, nous ne nous en occuperons pas autrement qu'en rapportant la formule qui a été proposée par M. le général Piobert; elle est encore en usage dans les épreuves de poudre au fusil pendule, comme une indication utile et qui classe les poudres dans le même ordre que les vitesses de la balle, quoiqu'on sache qu'elle ne donne pas toujours des vitesses égales; cette formule est la suivante:

$$V = \frac{\frac{P'D'}{\alpha'} \sqrt{gK'} \cdot 2\sin\frac{1}{2}\alpha' - 420^{m}\mu}{B\frac{C'^{2}}{C''^{2}} + \frac{\mu}{2}},$$

dans laquelle μ est le poids de la charge de poudre, B celui du projectile et du chargement (non compris la poudre), $\frac{C'}{C''}$ le rapport du diamètre de l'âme à celui du projectile, V la vitesse cherchée.

SECTION IX.

DÉVIATIONS DES PROJECTILES.

§ I.

Comparaison entre les résultats des observations et eeux des formules.

216. Exposé. Si un projectile n'était soumis dans son trajet qu'à l'action de la pesanteur et à celle de la résistance de l'air, tangentiellement à la direction du mouvement, et qu'il suivît exactement la trajectoire qui résulterait de la composition de ces deux forces, la question du tir des armes à feu et des bouches à feu serait bien simple; il deviendrait facile de déterminer, pour chaque cas particulier, l'angle et la vitesse de projection qui permettraient d'atteindre le but proposé. Il n'en est pas toujours ainsi.

En considérant comme trajectoire normale, celle qui résulte de l'action verticale et constante de la pesanteur et de la résistance de l'air, tangentiellement à la trajectoire et fonction de la vitesse, nous pourrons regarder les autres comme des causes déviatrices, et les écarts comme des déviations.

Il existe cependant des forces autres que les deux premières, agissant d'une manière régulière et constamment dans le même sens, et que l'on peut faire entrer dans le calcul. Tel est le mouvement régulier de l'atmosphère ou le vent et le mouvement de rotation du projectile : on nomme ces causes forces dérivatrices, et on nomme dérivation le déplacement qui en résulte.

Examinons d'abord avec quel degré d'exactitude les formules anciennes ont représenté les résultats de l'observation.

217. Résultats des expériences anciennes. Les premières expériences étendues qu'on ait faites pour vérifier l'exactitude des formules de balistique, sont celles de Lafère, exécutées en 1771, avec des bombes et des boulets de forts calibres tirés avec les mortiers et les canons en usage'.

Le mortier du calibre de 0^m32 a été tiré à la charge de 1^k834, sous des inclinaisons qui ont varié depuis 10^o jusqu'à 75^o, au-dessus de l'horizon, quatre ou cinq coups sous chacune d'elles. Au moyen de ses formules (145) et des portées observées sous 30^o, Besout détermina la vitesse initiale de la bombe; il calcula ensuite les portées qu'on aurait dù obtenir avec cette vitesse, sous les autres inclinaisons.

En les comparant aux résultats d'observations, on reconnaît que, jusque sous l'angle de 40°, les portées sont plus petites (à l'exception de la portée sous 30°, qui sert de point de départ), et qu'au delà, elles sont toutes plus grandes. Sous l'angle de 45°, le plus en usage, ou sous les angles voisins, l'erreur serait moyennement de ½ de ces portées; elle serait de ½ sous 60°.

Le canon de 24 fut tiré à la charge de 4k141, sous différents angles de projection; Besout a déduit des portées sous 5° et 10°, la hauteur due à la vitesse; de leur moyenne et à l'aide de ses formules, il a déduit les por-

^{&#}x27; Cours de mathématiques à l'usage de l'Artillerie, tome 4º.

tées sous les autres inclinaisons. De 5° à 35°, les différences sont tantôt en plus, et tantôt en moins, ce qui résulte de ce que le nombre des coups n'est pas assez grand et empêche de rien conclure. A partir des angles de 40° et jusqu'à 70°, les portées calculées sont toutes trop petites; les différences sous 45° ou sous les angles voisins ne sont pas moindres que ½ des portées.

LeGendre reconnaît également le peu d'accord qu'il y aurait entre les formules qu'il a données et le résultat des mêmes épreuves.

Tempelhof a compare également avec ces résultats d'expérience les formules auxquelles il est arrivé. Pour obtenir plus d'accord, il attribue au boulet de 24 une vitesse de 429^{m.:s} sous les inclinaisons de 5° à 40°, et une vitesse de 552^{m:s} sous les inclinaisons de 43° à 75°. Cette méthode, dans laquelle on fait varier aussi arbitrairement la vitesse avec les angles de projection, ne saurait être admise. Nous avons déjà fait voir (114) qu'on était amené à des vitesses différentes, lorsqu'on exprimait la résistance de l'air par un seul terme.

En l'an XI, il a été fait, près de Strasbourg, des expériences sur les portées de canons de 24 et de 16, de longueurs d'âme différentes, et sous des angles qui ont varié depuis 0° jusqu'à 10°, pour reconnaître la relation entre les longueurs d'âme et les portées ou les vitesses initiales. La relation entre les angles de projection et les portées n'a pu être représentée par les formules balistiques alors en usage, et on a été amené à admettre soit une augmentation des vitesses avec les angles de projection, soit, ce qui produit un effet analogue, une cause de relè-

¹ Dissertation sur la Balistique.

² Mémoire sur le problème balistique. — Mémoires de l'Açadémie de Berlin, 1788 et 1789.

vement des projectiles sous les petits angles de projection.

Dans des expériences faites à Toulouse en 1834', on n'obtint pas plus d'accord dans des trajectoires dont les hauteurs furent observées de 100^m en 100^m; les différences avec les hauteurs calculées ont été-considérables, même aux faibles charges, quoiqu'on déterminât, pour chacune d'elles, et la vitesse initiale et le coefficient de la résistance de l'air. Ainsi, les hauteurs d'un boulet de 12 tiré à la charge de 0^k300, donnèrent comparativement avec la trajectoire calculée, les différences ci-après, savoir:

Distances... 0^m , 100^m , 200^m , 300^m , 400^m , 500^m , 560^m . Differences. 0, 0.01, -0.26, -0.63, -0.51, -0.20, -0.06.

Des expériences faites en Belgique², au moyen de filets tendus de distance en distance, pour déterminer le point de passage du projectile, ont conduit à des résultats analogues.

Dans ces circonstances et dans beaucoup d'autres, on a cherché en vain à déterminer par l'observation des trajectoires la valeur du coefficient de la résistance de l'air; on n'a pu parvenir à rien de précis; parfois, on arrivait à des valeurs tout à fait inadmissibles.

218. Expériences de Metz, en 1846. Considérons maintenant l'accord que peuvent présenter les formules fondées sur une loi beaucoup plus exacte de la résistance de l'air. De crainte que les inégalités qui peuvent résulter du tir d'un petit nombre de coups, ne laissent de l'incertitude sur les résultats de la comparaison, nous ne les

[·] Archives du dépôt central de l'Artillerie. — Rapport de la Commission de l'école de Toulouse, pour dresser des tables de tir, en 1834.

² Balistique, par Scheer de Lionastre; Gand, 1825.

appliquerons d'abord qu'à des résultats moyens déduits d'un très-grand nombre de coups; nous les appliquerons ensuite à des résultats particuliers; à cet effet, nous prendrons ceux des expériences de Metz, faites en 1844 et en 1846, pour dresser des tables de tir des obusiers et des canons employés dans le service des siéges. Les tables relatives aux obusiers, ont été vérifiées par des expériences spéciales.

La série d'expériences la plus propre à vérifier ces formules, résulte du tir de 100 coups de canon de 16, à la charge de du poids du boulet, tirés sous une inclinaison constante, à travers trois réseaux en ficelle, placés respectivement à 200m, à 400m et à 600m de la bouche du canon; on observait en outre la position du point de chute sur le sol et enfin la position, par rapport à l'axe du canon, du centre du projectile à la distance de 7m75 de la bouche du canon, en prenant avec beaucoup de soin la hauteur verticale et l'écart latéral '. Les résultats sont donnés ci-après. Les résultats moyens sur les 100 coups, aux distances de 200m, 400m et 600m, sont exacts à un centimètre près.

^{&#}x27; Rapport de la Commission des principes du tir de Metz, adressé à M, le Ministre de la guerre le 3 février 1847.

GOORDONNÉES des trajectoires de 100 boulets de 16, tirés dans un canon de siég à la charge de 1\(^1\)333, sous l'inclinaison constante de 0,02593 aux distances c 200\(^m\), 400\(^m\), 600\(^m\) et sur le sol, rapportées aux plans de la plate-forme située 1\(^m\)38 au-dessous du centre de la bouche du canon.

Observations. — Les distances sont comptées à partir de la tranche de la bouche du canon et les hauteu le sont à partir du plan de la plate-forme qui est à 1^m38 au-dessous du centre de la bouche du canon. Les écarts de l'axe, à 7^m75 de la bouche, sont comptés relativement au prolongement de l'axe du canon. La position d'un nombre à droite ou à gauche du signe (:) indique que le sens de la déviation est à droite d à gauche de l'observateur placé derrière la bouche à feu.

res.	ÉC	ÉCART DE L'AXE à 7m75 de la bouche.		COORDONNÉES DES TRAJECTOIRES									
numénos trajectoires.	å 7 de la l			à 200m.		å 400m.		à 600m.		SUR LE SOL.			
des	Hauteur	Déviat.	Hauteur	Déviat.	Hauteur	Déviat.	Hauteur	Déviat.	Distance	Hauteur	Déviat		
1	mm +46	: 11	m 5,29	m 0,05:	m 5,15	m 0,00	m 0,50	: 0,26	641,0	, m	m : 0,30		
2	7.40	D	4,79	: 0.02	4,00	:0,22	-1,19	:0,36	594,0	100000	:0,55		
3	+ 2	: 12	4,14	0,25:		0,89:		1,55	629,4		1,60		
4	, »	n	4,19	0,60:		1,90:	400.55	3,30:	667,5		5,90		
5	+ 7	: 4	4,89	0,08:	4,82	0,52		1,22:	645,5		1,40		
6	D	20	5,59	0,10:	The second second second	0,57 :		1,63		-1,19	2,55		
7	+ 2	: 6	4,79	:0,10	4,20	: 0,54	-0,95	:1,00	607,2		:1,10		
8	,	n	5,74	:0,60	7,31	:1,40	4,18	:2,20	750,0		: 2,80		
9	+14	6:	5,59	0,15:	6,77	0,15:		:0,05	735,8		:0,10		
10	W	n	5,81	0,35:	6,82	1,25:		1,87:	726,5		2,55		
Моу	+14,2	: 5,4	5,08	0,08:	5,62	0,51:	5,51	0,57:	670,5	-1,28	0,74		
11	+18	: 5	4,97	0,10:	4,62	0,00	-0,35	:0,26	602,8	-1,21	:0,40		
12	w	»	5,44	0,50:	5,85	0,84:	1,75	1,00:	674,5	-1,17	1,00		
13	+20	: 24	5,99	0,00	8,07	0,50:	5,53	0,85:	783,0	-1,48	1,60		
14	D	D	4,74	0,10:	4,60	0,06:	-0,17	0,00	627,0	-1,20	0,00		
15	+26	: 44	5,56	:1,08	6,32	: 2,45	2,23	: 4,75	695,5	-1,45	:4,90		
16	20	»	5,24	0,02:	5,80	0,034	1,75	0,00	697,6	-1,12	0,00		
17	+14	: 8	5,34	0,25:	5,52	0,90:	1,00	1,35:	650,7	-1,05	1,60		
18	33	3)	5,24	0,52:	5,57	1,07:	1,25	1,55:	661,0	-1,15	1,85		
19	+50	: 8	5,29	0,20:	5,50	0,50:	1,25	0,67:	661,8	-1,19	0,60		
20	»	D	5,04	0,20:	5,15	0,56:	0,90	0,77:	651,0	-1,06	0,75		
Moy	21,6	: 17,8	5,29	0,06:	5,70	0,48.	1,51	0,12:	670,5	1,18	0,21		

ires.	ÉCART DE L'AXE		COORDONNÉES DES TRAJECTOIRES									
NUMÉROS trajectoires.	å 7	å 7™75 de la bouche.		à 200m.		å 400m.		å 600m.		SUR LE SOL.		
des	Hauteur	Déviat.	Hauteur	Déviat.	Hauteur	Déviat.	Hauteur	Déviat.	Distance	Hauteur	Déviat	
21	+21	: 18	5,27	: 0,47	5,63	: 1,15	0,97	: 2,28	- Contract	-1,26	. 2,40	
22	D	n	5,67	0,49 :	6,53	0,75:	2,45	1,75:	688,0	-1,20	2,00	
23	+7	2:	5,47	: 0,45	5,73	:0,70	1,17	: 0,78	100	-4,50	: 0,95	
24	30		5,70	:0,50	6,63	: 0,70	2,97	: 1,12		-1,48	: 1,70	
25	+8	17:	5,57	0,10:	6,70	0,39:	3,12	0,70:	709,0	-1,27	1,10	
26	n	v	4,17	0,15:	2,82	0,35 :	-2,87	0,70	550,5	-1,59	0,65	
27	+22	: 5	5,50	. 0,52	6,10	: 1,02	2,07	: 1,77	686,3	-1,35	: 2,20	
28	D	n	5,62	0,65:	6,22	1,50:	2,17	2,20:	685,8	-1,45	5,00	
29	+7	:8	5,17	: 0,42	5,27	: 4,60	0,57	: 2,94	643,0	-1,20	: 3,60	
30		»	5,08	: 0,25	5,40	: 0,67	1,27	: 1,22	663,5	-1,50	: 1,40	
Moy	15,0	: 2,4	5,52	: 0,08	5,70	: 0,28	1,39	:0,48	665,4	-1,29	: 0,55	
31	+17	12:	5,82	0,27	6,93	0,08:	5,22	0,05	712,0	The second second	0,30	
52	20	»	5,24	0,56:	5,58	0,92:	1,40	1,20:	B	-1,25	1,25	
53	+8	: 12	4,83	: 0,30	4,35	: 0,57	-0,69	: 0,90	618,8	-1,31	: 1,05	
34	w	»	6,20	: 0,12	8,45	: 0,30	5,99	0,00	791,0	-0,69	1,40	
35	+24	: 18	5,23	: 0,15	5,25	: 0,10	0,81	0,25:	648,5	-1,13	0,40	
56	»	D	5,05	0,00	4,85	0,42:	0,01	1,20:	631,0	-1,18	1,50	
57	+4	: 5	4,98	: 0,48	4,60	: 1,61	-0,49	: 2,75	619,0	-1,26	: 2,90	
38	»))	5,58	: 0,52	6,40	: 1,25	2,81	: 1,85	705,6	-1,27	: 2,00	
59	-20	: 5	4,48	: 0,50	5,70	: 0,96	-1,82	: 0,90	590,5	-1,44	: 0,90	
40	»	n	5,43	: 0,20	6,00	: 0,38	2,16	: 0,35	689,5	-1,30	: 0,40	
Moy	6,6	: 5,6	5,38	: 0,12	5,50	: 0,57	1,52	: 0,40	666,9	-1,12	: 0,26	
41	+25	26:	4,82	0,29:	4,62	0,78:	-1,56	1,00:	595,0	-1,37	1,40	
42	»	3)	5,20	0,10:	5,48	0,03:	0,87	0,00		-1,16	: 0,15	
45	- 6	10:	4,98	0,20:	4,98	0,15:	-0,08	0,20:	628,5	-1,26	0,15	
44	w	D	5,53	: 0,02	6,73	: 0,54	2,87	: 1,23	703,8	-1,25	: 1,50	
45	+14	0	5,33	0,20:	6,28	: 0,07	2,48	: 0,23		-1,21	: 0,30	
46	,	n	5,80	0,58:	6,80	1,53:	3,07	2,90:	712,6	-1,40	3,85	
47	+ 6	: 15	5,25	0,55:	5,67	1,22:	1,52	2,51:		-1,23	3,00	
48	»	3	4,83	: 0,29	4,80	: 0,82	0,18	: 1,71		-1,21	: 1,58	
49	+ 5	0	5,08	: 0,08	5,18	: 0,02	0,27	0,40:	655,0	-1,18	0,45	
50	×	×	5,27	0,23:	5,70	0,84	1,25	1,81	663,0	-1,23	2,20	
Moy	8,8	4,2:	5,21	0,16:	5,62	0,31 :	1,06	0,61	657,2	-1,25	0,77	

.

.

s ires.	ÉCART DE L'AXE à 7m75 de la bouche.		COORDONNÉES DES TRAJECTOIRES									
runéros trajectoires.			à 200m.		à 400 ^m .		à 600m.		SUR LE SOL.			
des	Hauteur	Déviat.	Hauteur	Déviat.	Hauteur	Déviat.	Hauteur	Déviat.	Distanc.	Hauteur	Dévia	
51	-14	: 15	5,97	. 0,32	7,40	; 0,82	4,07	: 1,58	m 757,2	m -1,54	m: 1,50	
52	30	20	5,77	0,00	6,88	: 0,24	5,22	: 0,34		-1,56	: 0,30	
53	+ 6	7:	5,17	0,23:	4,97	0,17:		0,00		-1,25	: 0,20	
54	30	»	4,82	0,12:	4,42	0,85:		1,64:		-1,26	1,60	
55	+20	10:	5,47	0,40:	5,63	0,16:	0,82	0,03:		-1,17	0,10	
56	»	»	5,52	0,00	6,15	0,19:	2,07	0,20:		-1,26	0,45	
57	+22	: 5	5,57	0,00	5,85	0,30:	1,22	0,72		-1,26	1,00	
58	» .	29	5,12	0,03:	5,45	: 0,21	0,82	: 0,41		-1,27	:0,90	
59	+24	:7	5,87	0,10:	7,53	:0,23	4,62	:0,78		-1,72	: 1,80	
60	D	n	4,72	0,54:	4,08	1,02	-1,63	: 1,58		-1,34	: 1,58	
Моу	17,2	:2,0	5,40	0,08	5,81	0,42	1,49	: 0,17	669,8	-1,54	: 0,29	
61	-34	7:	4,75	0,34	4,98	0,66	0,27	1,49	635,7	-1,20	1,2	
62	n	30	4,88	:0,13	4,55	: 0,40	-0,75	: 0,52		-1,37	: 0,6	
63	+18	: 25	5,60	0,12	100	0,50		4,50		-1,54	1,50	
64	30	39	5,25	0,47		1,18:		2,21	649,5	-1,15	2,40	
65	+27	9:	5,58	0,24	6,02	0,94 :		1,82		-1,22	2,00	
66	20	n	4,97	0,00	4,59	0,01 :		0,27		-1,51	0,5	
67	+ 6	: 22	5,82	0,17	7,44	0,20	4,52	0,30	755,0	-1,41	0,50	
68	»	»	5,67	0,04	6,54	: 0,39	2,52	: 0,85		-1,21	: 1,20	
69	-13	12:	4,95	0,74	4,84	1,52		2,26	627,5	-1,23	2,30	
70	D	D	5,07	0,03	5,54	: 0,69	0,92	: 1,56	655,0	-1,25	: 1,90	
Moy	0,8	: 5,8	5,25	0,20	5,59	0,35	0,96	0,64	667,5	-1,27	0,66	
74	+ 5	: 13	5,27	:0,16	5,63	: 0,52	1,18	: 0,55	660.0	-1,28	: 0,60	
72	20	D	5,07	:0,64	4,82	: 1,85	0,22	: 3,45		-1,20	: 5,20	
73	+4	0	5,55	0,48:	5,75	1,45	0,83	2,93:		-1,18	5,30	
74		»	5,87	: 0,44	7,55	: 4,51	4,68	: 2,27		-1,69	: 2,80	
75	+11	: 19	5,57	0,80:		1,53	2,07	2,42		-1,29	2,88	
76	,,	D	5,02	: 0,45	5,42	:1,08	0,52	: 1,55		-1,15	: 1.50	
77	+30	: 13	5,55	0,56:		0,82	1,22	2,80		-1,25	1,70	
78	>	»	5,27	0,41:	6,02	0,20	2,07	0,25		-1,50	0,50	
79	+18	0	5,27	0,06:	5,62	0,06	1,18	0,00		-1,53	0,00	
80	v	n	5,52	: 0,22	6,35,	:1,11	2,18	: 1,95		-1,35	: 2,40	
Moy	13,6	:9,0	5,40	: 0,01	5,80	:0,48	1,62	: 0,09	674,6	-1,30	: 0,24	

SECTION IX.

DÉVIATIONS DES PROJECTILES.

§ I.

Gomparaison entre les résultats des observations et eeux des formules.

216. Exposé. Si un projectile n'était soumis dans son trajet qu'à l'action de la pesanteur et à celle de la résistance de l'air, tangentiellement à la direction du mouvement, et qu'il suivit exactement la trajectoire qui résulterait de la composition de ces deux forces, la question du tir des armes à feu et des bouches à feu serait bien simple; il deviendrait facile de déterminer, pour chaque cas particulier, l'angle et la vitesse de projection qui permettraient d'atteindre le but proposé. Il n'en est pas toujours ainsi.

En considérant comme trajectoire normale, celle qui résulte de l'action verticale et constante de la pesanteur et de la résistance de l'air, tangentiellement à la trajectoire et fonction de la vitesse, nous pourrons regarder les autres comme des causes déviatrices, et les écarts comme des déviations.

Il existe cependant des forces autres que les deux premières, agissant d'une manière régulière et constamment La densité de l'air était déterminée d'après l'observation de la hauteur du baromètre, de la température et de l'état hygrométrique de l'air.

La direction du vent était donnée par un anémomètre particulier, dans lequel une boule très-légère s'écartait de la verticale sous l'action du vent; de l'angle d'écart de cette verticale on concluait la pression exercée par l'air et par suite la vitesse du vent. La direction est indiquée en partant du vent debout, et marchant vers la gauche de façon que 90° correspond à un vent latéral de gauche, pour le pointeur, 180° à un vent arrière, 270° à un vent de droite.

MOYENNES par séries	DENSITÉ de	VENT.		PROJECTILE.		
de 10 coups.	l'air.	Direct.	Vitesse.	Poids.	Diamètre.	
Du 1er au 10e coup	k:m ³	deg.	m:s	kil.	mm	
	1,1876	215	0,80	8,054	128,03	
Du 11º au 20º	1,1876	215	0,80	8,060	128,01	
Du 21º au 30º	1,1954	168	1,80	8,062	127,71	
Du 31° au 40°	1,1804	199	4,10	8,063	127,86	
Du 41° au 50°	1,1959	197	2,34	8,061	127,71	
Du 51° au 60°	1,1954	238	3,28	0,066	127,79	
Du 61° au 70°	1,1862	125	2,11	8,030	127,70	
Du 71° au 80°	1,1959	238	2,52	8,045	127,76	
Du 81° au 90°	1,1776	52	1,85	8,036	127,89	
Du 91° au 100° Moyennes sur 100	1,1766	<u>"</u>	1,70	$\frac{8,038}{8,052}$	127,81	

Pour rendre les résultats indépendants des différences dans la densité de l'air durant les divers jours employés au tir, on a réduit toutes les hauteurs observées sur 10 coups à ce qu'elles eussent été si la densité de l'air eût été constante et égale à 1,2083, comme on l'indi-

quera plus loin (§ 2. Variations dans les portées et les élévations dues à la variation dans la densité de l'air), et l'on a obtenu pour les hauteurs moyennes, sur 100 coups, rapportées au point de départ, respectivement 3^m917, 4^m305, — 0^m056, — 2^m759 aux distances respectives de 200^m, 400^m, 600^m et 666^m8 (sur le sol).

Au moyen des formules données (94), on a déterminé la vitesse initiale et l'angle de projection de la trajectoire assujettie à la condition de passer aux hauteurs moyennes observées à 200^m et à 600^m; et ensuite on a calculé les ordonnées de la trajectoire à 400^m et à 666^m8.

En comparant les ordonnées aux hauteurs observées, on a obtenu les résultats contenus dans le tableau suivant:

TABLEAU de la comparaison des trajectoires calculées et des trajectoires observées, moyennes sur 100 coups, d'un boulet de 16 à la charge de 1\(^1\)333, et sous l'angle dont la tangente est 0,02593.

Distances	m 200	400	m 600	m 666,8
Ordonnées observées	3,917*	4,305	-0,056*	-2,759
Ordonnées calculées	3,917	4,297	-0,056	-2,810
Différences	0,000	-0,008	0,000	-0,051

[•] La vitesse et l'inclinaison qui résultent de ces deux hauteurs, sont respectivement 390m: 80 et 0,02678.

Les différences entre les résultats de l'observation et ceux des formules sont tout à fait négligeables; elles sont dans les limites de l'exactitude qu'on peut désirer. La différence à $400^{\rm m}$ n'est que le seizième du diamètre du boulet et elle pourrait être seize fois plus grande sans que le projectile qui suivrait la trajectoire calculée, manquât de toucher le but, celui-ci ne fût-il pas plus étendu que le boulet

lui-même. Quant à la différence de hauteurs à la distance moyenne des points de chute sur le sol, laquelle n'est que de 0^m051, elle serait moindre, sans doute, si l'observation avait pu se faire sur un but vertical, comme aux autres distances, parce qu'ici la moyenne distance ne correspond pas nécessairement à la trajectoire moyenne.

Dans une autre expérience de 48 coups tirés à la même charge, sous l'inclinaison de 0,01853, on a obtenu des résultats analogues renfermés dans le tableau suivant :

Distances	100 m	200	100 400				
Ordonnées observées	1,617	2,412*	1,437*				
Ordonnées calculées	1,569	2,412	1,437				
Différence	-0,048	0	0				
* La vitesse et l'angle de projection qui résultent des hauteurs à 200 ^m et à 400 ^m , sont respectivement 400 ^m 6 et 0,01892.							

Les différences entre les résultats de l'observation et ceux du calcul sont encore très-faibles, un peu moins faibles cependant que dans le cas précédent, parce qu'elles résultent de moyennes prises sur un moins grand nombre de coups. Mais cette précision ne laisse encore rien à désirer pour la construction des tables de tir.

On doit remarquer cependant que dans ces deux cas les angles de projection sont un peu plus grands que les angles d'inclinaison du canon, comme on l'a d'ailleurs observé directement; seulement, la dernière différence était un peu plus grande. De plus, les vitesses déterminées dans chaque cas diffèrent entre elles et paraissent toutes deux inférieures, mais de quelques mètres seulement, à la vitesse qu'on obtiendrait directement au moyen du pendule balistique, laquelle était sans doute comprise entre 404^{m:s} et 406^{m:s}.

Si l'on admettait cette vitesse et qu'on voulût obtenir un accord aussi grand, il faudrait, soit supposer la résistance tangentielle de l'air plus grande, soit admettre l'existence d'une force déviatrice agissant de haut en bas.

Les trajectoires moyennes des balles sphériques de fusil ne sont pas moins exactement représentées par les formules qui ont été données plus haut.

Dans des expériences faites à Vincennes en 1849, avec des balles sphériques, le fusil tiré à l'épaule sur des cibles de 4^m de hauteur sur 4^m de largeur, à diverses distances, les moyennes des hauteurs observées et rapportées à la ligne de mire, sur un très-grand nombre de coups, ont donné · les résultats ci-après indiqués:

Distances...... 25th 50th 75th 100th 135th 150th 175th 200th 250th 300th 400th Ordonnées..... 0,05 0,09 0,12 -0,01 -0,18 -0,42 -0,74 -1,00 -2,78 -4,87 -11,85

En traçant une courbe régulière, qui représente le mieux l'ensemble de ces points, on trouve qu'elle coupe l'axe des abscisses à 100^m de l'origine et qu'à la distance de 200^m, elle est de 1^m15 au-dessous de ce même axe.

Le diamètre moyen de la balle était 0^m0167, son poids 0^k0268; tirée à la charge de 0^k009, la vitesse initiale, mesurée au pendule balistique, a été 446^{m:s}.

En prenant, pour le second coefficient de la résistance de l'air, $\frac{1}{r} = 0,0023$; puis, pour le premier, $\Lambda = 0,0275$, et en faisant passer la trajectoire aux deux hauteurs moyennes rectifiées à $100^{\rm m}$ et à $200^{\rm m}$, on trouve $446^{\rm m:s}$ pour vitesse initiale, exactement comme au pendule balistique; en prenant successivement A = 0,027 et A = 0,028, on obtient respectivement les vitesses $442^{\rm m:s}0$ et $449^{\rm m:s}6$, et, pour inclinaisons des lignes de projection, 0,00338 et

¹ Mémorial d'Artillerie; nº VII, 1852, page 329.

0,00331, enfin, pour ordonnées aux diverses distances, les résultats comparatifs ci-après:

DISTANCES.	ORDONNÉES observées	ordonnées calculées avec			
		$\Lambda = 0.027.$	$\Lambda = 0,028.$		
m 25	0,05	0,07	0,07		
50	0,09	0,09	0,09		
75	0,12	0,08	0,08		
100	0,02	0,00	0,00		
125	-0,18	-0,15	-0,15		
150	-0,42	-0,38	-0,37		
175	-0,73	-0,71	-0,70		
200	-1,00	-1,15	-1,15		
250	-2,76	-2,48	-2,49		
300	-4,87	-4,56	-4,67		
400	-11,85	-12,11	-12,40		

Ces deux trajectoires calculées représentent assez exactement l'une et l'autre les hauteurs observées; les différences qu'on observe tiennent aux grandes déviations des balles aux grandes distances, d'où résulte que la moyenne sur le nombre limité des hauteurs observées, peut différer de la hauteur véritable.

219. Trajectoires particulières. Les trajectoires des projectiles prises isolément ne peuvent pas toujours être représentées aussi exactement que les trajectoires moyennes prises sur un grand nombre de coups.

Pour le reconnaître, on a choisi cinq trajectoires qui ne présentaient que de faibles déviations latérales; l'une s'écartait peu de la trajectoire moyenne; deux autres s'en écartaient moyennement, et deux autres beaucoup, soit en dessus, soit en-dessous. Les hauteurs sont exactes à 3 ou 4 centimètres près; les inclinaisons à 0,0001 environ. Les résultats de la comparaison sont contenus dans le tableau suivant:

Tableau des trajectoires des boulets de 16 tirés dans un canon de siège sous l'inclinaison de 0,02593 (1° 29' 7") à la charge de 1×333.

s oires.	NATURE	TANGENTES	ORDONNÉES DE LA TRAJECTOIRE					VITESSE
nunéros trajectoires.	des	de l'angle	aux distances de			au point de chute.		initiale
des t	résultats.	de projection	200m	400m	600m	DISTCS.	ORD.	calculée.
1	Observés	0,02479	m 3,37	m 3,58	-1,20	636	m -2,68	m:8
	Calculés	0,02370	id.	3,58	id.	id.	-2,62	401,5
2	Observés. Calculés	0,02539 0,02501	3,60 id.	3,59 3,53	-1,52 id.	629 id.	-2,71 -2,74	383,1
3	Observés Calculés	0,02797 0,02624	3,94 id.	4,89 4,68	1,04 id.	692 id.	-2 66 -2,48	1
4	(Observés	0,02874	4,61	6,67	4,06	783	-2,99	
	(Calculés . (Observés	0,02894	id. 3,91	6,33	l	id. 641	$\begin{bmatrix} -2,64 \\ -2,74 \end{bmatrix}$	1 ′
5	(Calculés 	0,02725	id.	4,02	1 ′	id.	-2,76	

Les ordonnées de la première trajectoire sont exactement représentées par la formule; celles de la seconde le seraient aussi avec de légères modifications dans les hauteurs des points choisis, ou resteraient dans les limites de l'exactitude des observations. Les autres en diffèrent notablement, particulièrement la quatrième.

Dans la première trajectoire et dans la troisième, les vitesses initiales calculées s'écartent peu de la véritable; mais dans les deux dernières, elles diffèrent trop pour être admissibles. Dans presque tous l'angle de projection calculé présente une différence notable avec l'angle de projection observé.

Les différences signalées ne peuvent pas tenir à la grandeur des coefficients de la résistance de l'air, puisque ceux-ci conviennent pour les trajectoires 1 et 2, et que les trajectoires 4 et 5 présentent des différences en sens inverse. Cette opinion se trouvera encore confirmée plus loin. D'ailleurs les déviations latérales qu'on remarque habituellement ne peuvent pas tenir à une pareille cause.

En remarquant que dans l'équation de la trajectoire (art.

63, eq. 7), où
$$V' = 2gh$$
, $y = x \tan g \varphi - \frac{g}{2} \frac{x^2}{V^2 \cos^2 \varphi} \psi_0(x, V)$

la hauteur de l'ordonnée dépend du rapport $\frac{g}{v^2}$, on reconnaîtra qu'en faisant varier g, et V' dans la même proportion, on ne changera pas les hauteurs des ordonnées autrement que par la valeur de la fonction $\mathfrak{B}(x, V)$. Donc, pour ramener les vitesses à être représentées avec exactitude, il suffira de faire varier q dans le numérateur; ce résultat est important, puisqu'alors les vitesses et les durées ne sont plus altérées pour faire concorder les hauteurs. Ainsi, en se reportant aux hauteurs moyennes des 100 coups (218), les ordonnées seront aussi exactement représentées en supposant la valeur de g augmentée de ±, et la valeur de V' augmentée à très-peu près dans le même rapport, et, de plus, on aurait une vitesse initiale égale à celle qui est mesurée au moyen du pendule balistique, laquelle doit être comprise entre 404m:s et 408m:s. Cette modification revient à admettre l'existence d'une force accélératrice égale au 1/2 de la pesanteur qui correspond ici à une pression de 0^k400, agissant de haut en bas.

On ramenerait de même les vitesses calculées des trajectoires particulières (219) à se rapprocher des valeurs n'est qu'un peu plus grande que dans le cas précèdent; la vitesse initiale et les durées ne sont pas altérées pour faire concorder les ordonnées, ce qui est un grand avantage.

221. Les différences entre les trajectoires ne tiennent pas au coefficient de la résistance de l'air. On n'aurait pas plus d'exactitude en faisant varier le coefficient de la résistance de l'air; car, en augmentant cette résistance, pour faire courber davantage la trajectoire et donner moins de différence à la distance de 400^m, il en résulte des différences plus grandes au point de chute, et en même temps des angles de projection qui s'éloignent des angles observés, comme le montre le tableau suivant, établi pour des valeurs égales à é et de la résistance admise, lesquelles dépassent de beaucoup les augmentations qu'il serait possible de supposer.

TABLEAU du calcul des trajectoires pour diverses grandeurs de la résistance de l'air, sur un boulet de 16, animé de la vitesse initiale de 410m:s.

RÉSISTANCE de l'air.			INCLINAISONS.	ordonnées de la trajectoire				
		G.		200m.	400m.	600m.	783m.	
Ordonnées et inclinai- sons observées.		0,02874	m 4,61	m 6,67	m 4,06	-2,99		
ES	8,913 و ا ع		0,02918	4,65	6,34	4,02	-2,73	
CALCULÉES avec	<u>€</u> ₽	8,177	0,02883	4,65	6,41	4,02	-3,17	
CAL	7 9	6,455	0,02794	4,65	6,56	4,02	-4,31	

La supposition d'une force déviatrice constante, même en prenant arbitrairement le coefficient de la résistance de l'air, ne permet pas de représenter exactement et dans tous les cas la trajectoire d'un projectile. Elle suffit pour un résultat moyen pris sur un assez grand nombre de Divisant et soustrayant membre à membre pour obtenir successivement ϕ et G, on aura

$$\tan g \varphi = \frac{\frac{b}{a} a' \text{N}(a', V) - \frac{b'}{a'} a \text{N}(a, V)}{a' \text{N}(a', V) - a \text{N}(a, V)},$$

et

(1)
$$\frac{G}{2} = V_1^2 \frac{\frac{b}{a} - \frac{b'}{a'}}{a' \sqrt{b} \langle a', V \rangle - a \sqrt{b} \langle a, V \rangle}.$$

On pourra aussi déterminer G par la condition que le projectile projeté sous l'angle φ passe par le second point, et on aura

$$\frac{G}{2} = \frac{\tan \varphi - \frac{b'}{a'}}{\vartheta_b(a', V)} \cdot \frac{V_{a'}^2}{a'}.$$

La valeur de V, qui entre dans $\mathfrak{A}(a, V)$ et $\mathfrak{A}(a', V)$ sera calculée au moyen de l'inclinaison de la bouche à feu qui est connue et qui diffère trop peu de la véritable valeur de φ pour donner lieu à une erreur appréciable.

Appliquons ces formules à la recherche de la force déviatrice dans celle des trajectoires qui présente les plus grandes différences, c'est-à-dire la quatrième, et dans des circonstances favorables; en conséquence nous admettrons aux distances de $200^{\rm m}$ et $600^{\rm m}$ des différences de $0^{\rm m}04$, égales aux limites des erreurs possibles d'observations, en prenant $V=410^{\rm m}$, qui est à peu près la plus grande vitesse qu'on a dû avoir. On trouve alors que l'inclinaison est +0.02918 et G=8.913; on a pour différences dans les hauteurs, savoir : $-0^{\rm m}33$ à $400^{\rm m}$, et $+0^{\rm m}26$ au point de chute; ces différences sont un peu moindres que quand on prend la valeur de G=g; la différence sur l'angle de projection est de 0.0004, qui

opposé à la pesanteur. Au moyen du calcul, on trouve que la courbe qui, sans offrir d'inflexion, présenterait les moindres différences, aurait au départ une inclinaison de 0,0029, et la force déviatrice exprimée comme la pesanteur, serait ainsi qu'il suit: 1,95 de 0^m à 200^m; 0,80 de 200^m à 400^m; 0,15 de 400^m à 600^m; et 0,10 de 600^m à 783^m. La courbe ainsi tracée présenterait encore des différences de 0^m10 et 0^m12, alternativement dans un sens et dans l'autre. Ges quantités dépassent les erreurs possibles d'observations; il en est de même de l'inclinaison.

En cherchant à représenter plus exactement la trajectoire réelle, et en partant de l'angle de projection observé, on est amené à reconnaître que la force déviatrice agit alternativement dans un sens et dans l'autre; ce n'est qu'ainsi que l'on obtient la courbe ondulée qui résulte de l'observation.

Si l'on remarque en même temps que des ondulations dans le plan vertical concourent avec des ondulations dans la projection horizontale, on est conduit à admettre l'existence d'une force déviatrice agissant suivant des directions qui varient d'une manière continue et qui peuvent faire des oscillations ou plusieurs révolutions autour de la trajectoire qu'eût décrite le projectile sans cette force déviatrice.

Le tracé de ces cinq trajectoires en projection horizontale et en projection verticale, fait voir plus clairement la nature des déviations.

223. Résumé. En résumé, nous avons distingué le cas des trajectoires moyennes de celui des trajectoires particulières, et nous avons reconnu ce qui suit : 1º les trajectoires moyennes des projectiles sphériques peuvent être représentées par des formules balistiques, avec toute l'exactitude désirable; on en déduit une vitesse initiale qui peut déférer de la véritable d'une très-petite quantité; 2º que pour représenter plus exactement la vitesse initiale,

et par suite la vitesse du projectile et la durée du trajet, on est conduit à admettre une force déviatrice verticale, agissant à la manière de la pesanteur; 3º qu'en faisant varier les coefficients de la résistance de l'air, même au delà des limites qu'on peut raisonnablement admettre, on ne rendrait pas compte des trajectoires particulières des projectiles; 4º que pour représenter la trajectoire particulière d'un projectile ordinaire, on est forcé d'admettre dans la plupart des cas une force déviatrice variable dans la longueur du trajet!

D'après cela, nous sommes naturellement conduit à étudier les causes déviatrices des projectiles.

M. le colonel Mayevsky, de l'artillerie russe, a recherché les lois de la résistance de l'air d'après l'observation des trajectoires de boulets de 24, aussi concentriques que possible, tirés dans des canons neufs en bronze; l'observation a été suivie sur des charges fournissant des vitesses variées, de manière à correspondre à des arcs successifs d'une trajectoire unique qu'il eût été impossible d'observer dans toute son étendue, à cause de son élévation.

Ce savant officier, d'un esprit consciencieux, a cherché l'expression de la résistance de l'air qui représentait le mieux les diverses parties de la trajectoire, et, par des calculs précis, en conservant les notations ordinaires, le mètre et le kilogramme étant pris pour unités, il a trouvé la formule ci-après:

$$\rho = 0.012 \, \text{m} \, \mathrm{R}^2 \frac{\delta}{\delta_1} \, v^3 \, \Big(1 + \frac{v}{200} \Big)^2.$$

Il a ainsi deux termes respectivement proportionnels à la seconde et à la quatrième puissance de la vitesse. (Bulletin de la classe physico-mathématique, de l'Académie de Saint-Pétersbourg; tom. XVII, 1858.)

Cette formule, comparée à celle que nous avons déduite des pertes de vitesse observées dans l'air (art. 52), donne des résistances plus faibles pour les petites vitesses, jusqu'à 350m: Les résistances croissent de plus en plus à mesure que les vitesses augmentent, jusqu'à être doubles vers 600m: .

Malgré le soin qu'on a eu de choisir des boulets aussi concentriques que possible, on n'a pas pu éviter que le boulet n'ait subi,

§ II.

Causes des déviations des projectiles.

224. Exposé. En comparant les trajectoires que suivent les projectiles sphériques à celles qui résultent des formules dans lesquelles on tient compte exactement de l'action verticale de la pesanteur et de la résistance de l'air suivant la direction du mouvement, nous avons été conduit à reconnaître l'existence d'autres causes qui agissaient sur les projectiles et qui étaient variables en grandeur et en direction d'un projectile à l'autre et même dans l'étendue du trajet d'un même projectile.

Les causes de déviations sont de deux sortes; les unes agissent sur le projectile dans l'arme et ont pour résultat de modifier la direction et la vitesse initiale. Elles produisent aussi le mouvement de rotation du projectile qui devient la cause d'autres déviations dans le trajet. Les autres causes déviatrices agissent sur le projectile pendant tout le temps de son trajet dans l'air.

Les premières éloignent le projectile de la direction de l'axe de l'âme proportionnellement aux distances; les

de la part des gaz enflammés de la poudre, une forte compression à son départ du fond de l'âme, et qu'il ne soit résulté de là un mouvement de rotation du projectile constamment dans le même sens. Par suite, il y a eu durant le trajet dans l'air une cause de dérivation dans un sens déterminé. Celle-ci modifiant la trajectoire a dû conduire à une modification de la loi de la résistance de l'air, puisqu'on a laissé à celle-ci seule à représenter la trajectoire observée.

Malgré tout le mérite d'un pareil travail, nous croyons qu'il vaut mieux introduire une force déviatrice verticale, soit comme la pesanteur, soit comme l'action du vent, et laisser à la résistance de l'air l'expression qui résulte des expériences directes; c'est d'ailleurs ce qu'il faut faire pour les projectiles excentriques et pour les projectiles oblongs tirés dans les canons rayés.

autres doivent être considérées comme des forces accélératrices variables d'un coup à l'autre en grandeur et en direction, et même durant le trajet d'un projectile. Elles sont ainsi distinctes de la pesanteur qui est constante et de la résistance tangentielle de l'air qui est bien déterminée. La trajectoire qui résulte de l'action de ces deux forces est celle que nous regarderons comme la trajectoire normale.

Parmi ces causes, quelques-unes agissent d'une manière permanente et produisent des effets qu'on peut estimer à l'avance et que nous distinguerons par le nom de dérivations.

Causes déviatrices initiales.

225. Variations dans les directions des projectiles sphériques au départ. Les boulets et les projectiles creux en fonte de fer ont toujours un diamètre un peu moindre que celui de l'âme des bouches à feu auxquelles ils sont destinés. Il résulte de cette différence que généralement le projectile ne suit pas la direction de l'âme; on reconnaît ce fait par l'examen des bouches à feu.

Dans une bouche à feu en bronze qui a servi au tir, on observe en effet à l'emplacement du boulet, en avant de la charge, une dépression qui résulte, comme on sait, de la pression que les gaz qui s'écoulent par la partie supérieure de l'âme exercent sur le projectile; celui-ci dès lors ne quitte cet emplacement que sous un angle un peu plus élevé que celui de l'axe de la bouche à feu au-dessus de l'horizon.

Si la bouche à seu a peu de longueur, cette inclinaison détermine celle du projectile. Mais si la bouche à seu est assez longue ou si le relèvement est suffisamment grand, le projectile rencontre la paroi supérieure de l'âme. Après le choc, la direction du projectile est moins élevée que celle de l'âme et paraît relativement un abaissement.

Mais il pourra y avoir un nouveau choc qui ayant lieu alors dans la partie inférieure sera la cause d'un relèvement.

Il résulte de là que les projectiles sortent de la bouche à feu suivant une direction différente à chaque coup mais plus souvent relevée au-dessus de l'axe de l'âme. Par suite des inégalités qui se rencontrent dans la forme et dans la densité du projectile, par suite aussi des différences dans son emplacement devant la charge et par d'autres causes, la résultante de l'action des gaz sur le projectile n'est pas exactement dans le plan vertical; de sorte que la direction du projectile au sortir de la bouche à feu diffère un peu de ce plan.

De la pression que le projectile exerce sur la paroi inférieure de l'âme et du frottement qui en est la conséquence, il résulte aussi une force tangentielle; celle-ci imprime au projectile un mouvement de rotation qui produit des déviations dont il sera question plus loin.

Les balles de plomb, dans les fusils ordinaires, produisent aussi des pressions et des chocs, et, par suite, des variations dans la direction au sortir de l'âme qui ont de l'analogie avec les mouvements des boulets.

226. Mesure des variations dans les directions. Lombard avait déjà reconnu que les boulets en général ne sortaient pas parallèlement à l'axe des canons; il avait mesuré le relèvement au moyen d'une planchette placée à une petite distance et qui était coupée au passage. On mesure la direction du projectile au départ avec beaucoup plus d'exactitude, au moyen d'une feuille de plomb mince, placée à 8^m ou 9^m de la bouche à feu, et, comme on l'a

^{&#}x27; Mouvement des projectiles.

déjà indiqué (218); en comparant la position du point d'impact à celle du point où l'axe de l'âme prolongé rencontrerait cette feuille de plomb et qui est déterminé à l'avance, on a, non-seulement l'élévation du projectile au-dessus de l'axe, mais encore la véritable direction initiale de ce projectile. Pour cela, on doit avoir soin d'augmenter le relèvement observé de la petite quantité dont l'action de la pesanteur a abaissé le projectile dans ce trajet, ce qui est facile lorsqu'on connaît sa vitesse initiale, au moins approximativement.

D'après des expériences faites en France (218) avec des canons de 24 et de 16, avec des obusiers de 22cm et de 16cm, neufs, et les modes de chargement en usage, on a reconnu que les déviations avaient lieu dans les divers sens, mais que généralement il y avait relèvement par rapport à l'axe.

Ce relèvement moyen observé était de 0° 3′ $\frac{1}{4}$ pour les canons. On a reconnu, en outre, qu'en comparant les relèvements inégaux d'un coup à l'autre, au relèvement moyen, la moitié d'entre eux s'en écartait de plus de 0° 5′ soit en dessus soit en dessous. Il résulte de la qu'un quart des relèvements dépassait 8′ $\frac{1}{2}$; que pour un quart des coups la direction était au-dessous de l'axe de 1′ $\frac{1}{2}$, et qu'une moitié était comprisé entre ces deux limites.

Considérés dans le sens horizontal, la moitié des écarts dépassait $4'\frac{1}{2}$, soit à droite, soit à gauche du plan vertical passant par l'axe; les autres écarts étaient moindres.

Avec les obus, les relèvements sont plus considérables: le relèvement moyen a été de 0°10'½; cet excès provient tant de la moindre densité des projectiles que de la moindre longueur des bouches à feu.

La limite de la moitié des écarts était, comme avec les canons, de 0° 5' dans le sens vertical, et de $4'\frac{1}{2}$ dans le sens horizontal, de sorte que dans un quart des coups,

le relèvement dépassait $15'\frac{1}{2}$, dans un autre quart, il était moindre que $5'\frac{1}{2}$, la moitié restante était comprise entre ces deux limites.

227. Déviations dans les armes rayées en hélice. Dans les armes à feu rayées en hélice, la balle de plomb forcée dans les rayures ne peut pas ballotter; néanmoins, la balle ne s'échappe pas nécessairement parallèlement à l'axe de l'arme; car, si le centre de gravité n'est pas exactement sur l'axe du canon, il décrit une hélice, dont le pas est celui des rayures, et il s'échappe suivant la tangente au dernier élément de cette hélice; la déviation sera donc d'autant plus grande que les filets de l'hélice seront plus inclinés. Ainsi, une balle dans laquelle le centre de gravité se trouverait à un dixième de millimètre de l'axe, dans la carabine de chasseurs en usage en France et dont les rayures ont un pas très-grand et égal à 6^m226, la déviation produite par cette cause serait de 0m05 à 600m. Avec le mousqueton d'artillerie, dont le pas des rayures est de 2^m, la déviation serait de 0^m07 à 200^m; avec le pistolet d'officier de cavalerie, dont le pas est de 0^m54, la déviation serait de 0^m06 à 50^m.

La distance de 0m0001 entre le centre de gravité et le centre de figure est atteinte fréquemment dans les balles sphériques ordinaires. Il suffit pour cela qu'il y ait un vide de \(\frac{1}{60} \) du volume de la balle, dont le centre serait aux deux tiers du rayon à partir du centre. On peut estimer, d'après la position et le volume de ce vide, que la distance des centres est moyennement de \(\frac{1}{20} \) de millimètre. Les effets que produit cette excentricité sont diminués par certaines précautions qu'on prend dans le chargement.

228. Déviations provenant du mouvement des armes. La direction de la balle au départ peut être aussi affectée par le mouvement même de l'arme pendant que le projectile en parcourt la longueur. Ces effets seront particulièrement sensibles quand l'arme ne pourra pas reculer sans tourner autour d'un point fixe. Ils seront d'autant plus grands que le poids de la balle relativement à celui de l'arme sera plus considérable, et ils dépendront de la distance du point de rotation à l'axe'. Pour qu'ils disparaissent, il suffit que l'arme puisse reculer librement d'une très-petite quantité; mais la manière dont le tireur appuie le fusil à l'épaule par un point qui est en dehors de l'axe du canon a de l'influence sur la direction de la balle au départ et relativement au point visé.

229. Vibration des canons de fusil. On a reconnu que les canons de fusil éprouvent des vibrations tant dans le sens vertical que dans le sens horizontal, de façon que l'extrémité du canon décrit une sorte de spirale elliptique dont le grand axe est vertical. C'est ainsi qu'avec un canon de fusil d'infanterie de 1^m08 de longueur avec la balle et la charge de poudre en usage et avec la résistance qu'oppose l'épaule d'un tireur, l'étendue des vibrations est de 0^m005 dans le sens vertical et de 0^m0025 dans le sens horizontal. Lorsque le canon de fusil est entièrement libre, les vibrations dans l'un et l'autre sens sont réduites à 0^m0005.

Dans un fusil monté, tiré à l'épaule, les vibrations verticales et horizontales sont respectivement de 0m0019 et de 0m0011. En vertu de la flexion que ces vibrations indiquent, la direction de la balle peut s'écarter de la direction primitive de l'axe jusqu'à produire à 200m des déviations dont le maximum est respectivement de 0m70 et

^{&#}x27; Mémoires de l'Académie des sciences, année 1703, p. 98; et expériences faites à la direction des poudres. (Cours d'artillerie de M. le général Piobert, 2º édition, 1845. p. 79.)

^a Expériences faites à Mutzig, par le général de Mainville, en 1835.

0^m40. Lorsqu'on augmente la résistance au recul ou le poids de la charge, les vibrations et, par suite, les déviations augmentent.

Ces considérations font voir quelles précautions on doit prendre pour assurer la justesse du tir et quelle influence peuvent avoir la forme et le poids du canon.

230. Variation dans les vitesses initiales. Les vitesses initiales imprimées à un projectile qu'on tire avec une poudre de même espèce et une charge de même poids, ne sont pas constantes. La variation provient, pour un projectile donné, de l'inégalité qu'on ne sait pas éviter entièrement dans la manière dont l'inflammation se propage d'une partie à l'autre de la charge et dans la manière dont la combustion des grains s'opère. Pour des projectiles différents, elle provient en outre des différences dans leurs diamètres et dans leurs poids. Elle provient encore des résistances inégales que le projectile éprouve contre les parois de l'âme dans deux bouches à seu disférentes, soit en quittant sa position primitive, soit par suite des chocs et des frottements qui diminuent inégalement sa vitesse d'un coup à l'autre et qui dépendent de l'état de dégradation de la bouche à feu.

Ces variations sont très-facilement appréciables dans la mesure des vitesses au moyen du pendule balistique. Leur grandeur dépend beaucoup du mode de chargement; voici quelques-uns des résultats principaux:

Avec le canon de campagne, des boulets sphériques ensabotés suivant le mode en usage et avec la charge ordinaire du tiers du poids du boulet, qui imprime à celui-ci une vitesse initiale de $485^{m:s}$; on a observé qu'à la moitié des coups, la vitesse s'écartait de plus de $6^{m:s}$ ou d'environ $\frac{1}{s0}$ de cette vitesse; à l'autre moitié des coups, la vitesse différait de moins de 6^m , soit en plus, soit en moins.

Avec un canon de siége de 16 à la charge du quart du

poids du boulet, et chargé suivant le mode en usage, un bouchon de foin sur la poudre et un autre sur le boulet, la vitesse moyenne étant $466^{m:s}$, la moitié des vitesses s'écartait de plus de 9^m ou de $\frac{1}{52}$ de cette moyenne.

Avec le même canon et la même charge, en enveloppant le boulet d'une bande de carton d'épaisseur moindre que la différence des rayons de l'âme et du projectile, ce qui maintenait ainsi le boulet dans l'axe de l'âme et sans le presser, la régularité des vitesses a été beaucoup plus grande.

Avec le mode de chargement employé pour le tir plongeant et à petites vitesses, avec gargousses de petit diamètre et sans bouchon ni sabot, à la charge de \(\frac{1}{64} \) du poids du boulet de 16, qui lui imprimait une vitesse moyenne de $97^{m:s}5$, la moitié des écarts ne dépassait pas $1^{m}4$ ou \(\frac{1}{76} \) de cette vitesse moyenne. Dans ces derniers cas, la régularité des vitesses ayant particulièrement une grande influence sur les chances d'atteindre, on doit y attacher une grande importance lorsqu'on doit battre de longues branches d'ouvrages de fortification.

231. Influence de la variation du poids et du diamètre du projectile sur la vitesse initiale et sur les portées. Les tolérances qu'on accorde dans le poids et dans les diamètres des projectiles lors de leur réception, sont en général très-faibles et n'ont qu'une influence très-minime sur la vitesse initiale et sur la forme de la trajectoire.

Ainsi, pour des boulets de 12, il n'y a guère que 1 boulet sur 50 qui s'écarte de plus de 1 à 1 du poids moyen de tous les boulets. Tirés à la charge ordinaire de guerre, qui leur imprime une vitesse moyenne de 485^{m:8}, une diminution de 1 sur le poids de l'un d'eux produirait une augmentation de 4^m91 sur la vitesse; en vertu de cet accroissement, le projectile s'élèverait au-dessus de la trajectoire normale de 0^m084 à 500^m, et de 0^m152 à 1000^m; mais à cause de sa moindre densité, l'action de l'air étant

proportionnellement plus puissante, il se trouverait à 0^m/₄ au-dessous de la trajectoire normale à la distance de 1500^m; l'ayant ainsi coupée à une distance intermédiaire pour passer en dessous et s'en écarter de plus en plus. L'écart dû à la variation de densité de quelques projectiles dans les tolérances en usage, est peu considérable devant ceux qui sont dus à d'autres causes, et la tolérance en usage n'a pas d'influence bien sensible sur la régularité de l'ensemble des coups tirés; en resserrant ces limites, on créerait des difficultés que ne compenseraient pas la très-faible augmentation de la régularité du tir.

Causes qui agissent sur le projectile durant son trajet

232. Dérivation due à l'effet du vent. Il existe plusieurs causes qui font que le projectile ne suit pas la trajectoire normale qui résulterait de sa direction et de sa vitesse initiale, de la pesanteur dans la direction verticale et de la résistance de l'air dans la direction du mouvement, et sans lesquelles le projectile décrirait sa trajectoire normale; parmi ces causes, celle du mouvement de l'atmosphère ou du vent est la plus facile à reconnaître; on peut en déterminer exactement les effets dans un cas quelconque.

Borda s'est occupé de la recherche du mouvement des projectiles dans un milieu en mouvement, dans le cas seulement où la direction du vent est dans le plan vertical de tir. Persy' a considéré le cas où la direction du vent est perpendiculaire au plan de tir, par une méthode qui n'est qu'approximative. Nous allons traiter cette question dans le cas le plus général.

^{&#}x27; Mémoires de l'Académie des sciences pour 1769.

² Cours de balistique; lith. de l'École d'application de l'Artillerie et du Génie, à Metz, 1834.

Soit, sur un plan horizontal AB (Fig. 49), la projection de la direction au départ d'un mobile lancé dans l'air; φ étant l'angle de projection, et V la vitesse initiale, $V_i = V\cos\varphi$, en sera la composante horizontale; soit W la vitesse du vent, CD sa direction supposée horizontale et faisant avec AB un angle ω .

Supposons que l'on imprime à tout le système de la bouche à feu, du projectile et de l'atmosphère, une vitesse égale à celle du vent, dans la même direction, mais en sens opposé, c'est-à-dire de D vers C; rien ne sera changé dans les mouvements relatifs du projectile et de l'atmosphère. La vitesse horizontale absolue du fluide deviendra nulle; la projection horizontale de la vitesse du projectile sera la résultante de la vitesse V, = V cos \(\phi \), représentée par AF, et de la vitesse égale, parallèle et de sens opposé à celle du vent, et représentée par AG. La composante horizontale V₁' de la vitesse V' du projectile dans la nouvelle direction, sera donc représentée en grandeur et en direction, par la diagonale AH du parallèlogramme construit avec AF et AG pour côtés.

D'après les propriétés connues des triangles, on aura

(1)
$$V_{\bullet}' = \sqrt{V^2 \cos^2 \varphi + W^2 + 2V \cos \varphi \cdot W \cos \omega}.$$

La projection verticale de la vitesse restant la même, et étant égale à $V\sin\varphi$, la vitesse V' suivant la nouvelle direction, sera $V' = \sqrt{V^2 + W^2 + 2V\cos\varphi \cdot W\cos\omega}$: et si l'on nomme φ' l'angle de projection, on aura

$$\tan\varphi' = \frac{V\sin\varphi}{\sqrt{V^2\cos^2\varphi + W^2 + 2V\cos\varphi \cdot W\cos^2\varphi}},$$
ou
$$(2) \quad \tan\varphi' = \tan\varphi \cdot \frac{1}{\sqrt{1 + 2 \cdot \frac{W\cos\varphi}{V\cos\varphi} + \frac{W^2}{V^2\cos^2\varphi}}}.$$

On connaîtra ainsi tout ce qui détermine la trajectoire sui-

vant AH, et l'on pourra calculer la position du projectile à un instant quelconque.

Considérons le projectile arrivé sur la nouvelle trajectoire en un point dont la projection sur le plan horizontal est P; soit t le temps écoulé. Comme pendant ce temps, en vertu de l'hypothèse qu'on a faite, tout le système s'est avancé parallèlement à la direction DC d'une quantité égale à Wt; on devra, pour rétablir le système dans sa véritable position, le ramener dans la même direction et dans le sens opposé d'une quantité égale à Wt; si donc, à partir du point P, on porte sur une parallèle à CD, une quantité PQ égale à Wt, on aura, en Q, la projection véritable du projectile; à cet instant, la hauteur du projectile est également connue. Si donc l'on compare cette position à celle qu'aurait eu le projectile sans l'action du vent, on aura la dérivation produite par cette cause, à un instant déterminé. On aura, par les formules données plus haut, l'inclinaison de la trajectoire et la vitesse du projectile à ce même instant.

Si l'on considère en particulier les portées sur le plan horizontal, et qu'on détermine la portée qui aurait eu lieu sans l'action du vent, l'on connaîtra exactement la déviation telle qu'on la considère ordinairement, c'est-à-dire indépendante du temps et seulement en ce qui regarde la direction et la portée. La distance du point Q à la trace du plan de projection AB, sera la dérivation latérale.

233. Dérivation due au vent dans le tir sous de petits angles de projection. Dans le tir ordinaire des boulets et des obus animés de grandes vitesses aux distances ordinaires, l'angle de projection au-dessus de l'horizon est très-petit, et l'action horizontale du vent n'altère pas sensiblement la hauteur du projectile, après un temps donné. De plus, les dérivations sont toujours très-faibles relativement aux portées. Il résulte de là que la distance AR (Fig. 49) est sensiblement la portée qu'on aurait eue dans

la direction AB sans l'action du vent, et que RQ représente la dérivation absolue en grandeur et en direction, lorsque le projectile tombe sur le plan horizontal. Dans ce cas, on obtient facilement les équations de la trajectoire à double courbure que décrit le projectile.

Soit AR = x et AP = x', puisque PR est parallèle à HF, on aura $V_1:V_1'::x:x'$, d'où $x'=x\frac{V_1'}{V}$;

on aura de même $PR = x \frac{\dot{W}}{V_{i}}$.

y étant l'ordonnée de la trajectoire à l'instant que l'on considère, en conservant les notations connues (63), on aura

$$y = x \frac{V_1'}{V_1} \tan \varphi' - \frac{g}{2} \frac{x^2}{V_1^2} v_b(x', V');$$

la durée t sera $t = \frac{x'}{V_{\cdot}} \otimes (x', V') = \frac{x}{V_{\cdot}} \otimes (x', V'),$

et l'on aura $PQ = W \frac{x}{V_A} Q(x', V')$.

En nommant \triangle la dérivation RQ = PQ - PR comptée dans le sens du vent, on aura

(3)
$$\Delta = x \frac{W}{V_1} [\mathfrak{D}(x', V') - 1],$$

ou, en développant $\mathfrak{D}(x',V')$ et réduisant,

(4)
$$\Delta = \frac{x^2 W}{4c V_1} (1 + V_0) F \frac{x'}{2c}.$$

Les valeurs de x, y et Δ sont les coordonnées de la trajectoire à double courbure produite par l'action du vent.

La dérivation latérale et la dérivation en portée seront respectivement $\Delta \sin \omega$ et $\Delta \cos \omega$.

On peut mettre l'équation (3) sous la forme

(5)
$$\Delta = W\left[\frac{x}{V_1} \otimes (x', V') - \frac{x}{V_1}\right].$$

En remarquant que $\frac{x}{V}$ est la durée du trajet x dans le vide et que $\frac{x}{V} \otimes (x', V')$ est la durée du même trajet dans

l'air, on voit que la dérivation est égale au produit de la vitesse du vent par la différence des durées respectives du trajet du projectile dans l'air et dans le vide; ou, autrement encore, la dérivation pour un trajet donné est égale au déplacement que subit une molécule de l'atmosphère dans un temps égal à l'excès de la durée du trajet du projectile dans l'air sur la durée de ce trajet dans le vide.

234. Simplifications. En général, la vitesse du vent est faible relativement à celle du projectile; on peut alors négliger le rapport $\frac{W^2}{V_1^2}$ devant l'unité, de sorte qu'après avoir fait le développement du radical on trouve simplement

$$V_{1}' = V \cos \varphi + W \cos \alpha$$
, $\tan \varphi' = \tan \varphi \left(1 - \frac{W \cos \alpha}{V \cos \varphi}\right)$.

L'on peut aussi remplacer $\mathfrak{D}(x',V')$ par $\mathfrak{D}(x,V)$ et $F\frac{x'}{2c}$ par $F\frac{x}{2c}$, sans erreur sénsible.

Si la direction du vent est perpendiculaire au plan de tir primitif, on aura $\cos x = 0$ et par conséquent

$$V_1' = V_1, \quad x' = x \quad \text{et} \quad \tan \varphi' = \tan \varphi.$$

Dans le cas du tir des bombes, lorsque la vitesse W du vent ne sera pas grande relativement à la projection V, de la vitesse du projectile, la dérivation Δ ne sera pas considérable et les formules 3 et 4, ainsi que les considérations qui les suivent, sont également applicables à ce tir, à la condition que dans $\mathfrak{G}(x',V')$, dans $F\frac{x'}{2c}$ et dans V_0 , les quantités $\frac{x'}{c}$ et $\frac{V_1'}{r}$ seront remplacées respectivement par $\frac{\alpha x'}{c}$ et $\frac{\alpha V_1}{r}$, α dépendant des angles de projection et d'arrivée du projectile (76),

On reconnaît facilement l'influence de l'espèce du projectile et des grandeurs respectives des vitesses du vent et du projectile sur les dérivations. Pour cela, reprenons l'équation et supposons, pour plus de simplicité, que la

direction du vent est perpendiculaire au plan de tir; alors, x' est égal à x et cette équation devient

$$\Delta = \frac{x^2}{4c} \frac{W}{V} (1 + V_o) F \frac{x}{2c}.$$

On voit par cette équation, en considérant d'abord le terme $\frac{W}{V_1}$, que la dérivation du projectile est proportionnelle à la vitesse du vent et en raison inverse de celle du projectile. Lorsque le terme $\frac{x}{2c}$ est petit, c'est-à-dire lorsque les distances sont petites ou que le projectile est de grand diamètre et de grande densité, le terme $F\frac{x}{2c}$ est peu différent de l'unité et les dérivations sont alors simplement proportionnelles au rapport $\frac{x^2}{2c}$, c'est-à-dire au carré des distances et en raison inverse de 2c ou du produit du calibre du projectile par sa densité. Mais, en réalité, à cause du terme $F\frac{x}{2c}$, les dérivations croissent plus rapidement que le rapport $\frac{x^2}{2c}$.

Si l'on remarque maintenant que le terme $(1 + V_0)$ croît avec les vitesses, on verra qu'en réalité les dérivations ne croissent pas aussi rapidement que le rapport inverse $\frac{1}{V_0}$ des vitesses initiales.

235. Applications. Dans le tableau qui suit on a calculé la dérivation des divers projectiles sphériques suivant la direction du vent et dans les circonstances ordinaires du tir, pour une vitesse de 5^{m:s}, ce qui se rapporte à un vent assez fort; on a choisi la distance ordinaire de 600^m pour les boulets, les obus et les bombes, et celle de 150^m pour la balle de fusil. En s'appuyant sur ces résultats et sur les considérations qui précèdent, on pourra estimer les dérivations des projectiles pour d'autres vitesses et à d'autres distances.

Tableau des dérivations des projectiles dues à l'action d'un vent de 5m:s.

DÉSIGNATION des bouches à feu ou des armes à feu.	POIDS des projectiles.	POIDS de la charge de poudre.	inclinaison de la bouche à feu.	vitesse initiale des projectiles.	denivation dans la direction du vent.
CANONS:	kilog.	ilog.		m:s	mèt. à 600m
	12	4,000		500	1,57
de siége.	8	2,667	nécessaire	505	1,86
		0,400	pour (215	3,08
de campagne	6	1,958	atteindre	488	2,14
de campagne	4	1,224		486	2,53
OBUSIERS:		1			
de côte.	26,5	3,500	Id.	338	1,81
de place.	23	2,000	Id.	291	2,27
de siége.	23	1,500	Id.	256	2,50
de siege.	20	0,400	Id.	126	3,26
de campagne	11,2	1,500	Id.	384	2,31
de 16 ^{cm} .	11,2	0,750	Id.	280	2,76
<i>Id.</i> de 15cm.	7,4	1,000	Id.	373	2,38
1a. de 15°	1,4	0,500	Id.	276	2,83
de montagne	4,4	0,270	Id.	244	4,62
Canon-(boult	6,0	1,400	Id.	454	2,14
obus ^r à (obus	4,4	1,000	Id.	450	3,40
MORTIERS:					
ZOZCZIZANO I		nécessairs	150	112,5	5,77
de 22cm.	23	pour	300	93,3	7,40
ue 22	40	donner la portée	450	85,7	11,15
		de 600m.	600	96,6	17,20
de 27cm.	50	Id.	450	82,3	6,82
de 32cm.	75	Id.	45∘	82,0	6,13
FUSIL:	•				
balle_	0.0057	0.000	nécessaire		à 150m
de 16 ^{mm} 7.	0,0274	0,009	pour atteindre	445	0,64

236. L'inclinaison de la bouche à feu n'a pas d'influence sur la vitesse initiale du projectile. On a admis assez généralement, mais à tort, que l'inclinaison d'une bouche à feu au-dessus de l'horizon avait pour effet d'augmenter l'action des gaz de la poudre et la vitesse initiale. Cette opinion provient d'une erreur dans la traduction des faits; elle résulte de ce que les vitesses, entre lesquelles on établissait la comparaison, étaient déduites des portées par des formules plus ou moins approchées et fondées sur la supposition d'une résistance de l'air proportionnelle au carré de la vitesse; par suite de cette supposition, les vitesses calculées étaient inexactes; de plus, on négligeait de tenir compte de certaines causes déviatrices. On a déjà fait voir (114) ce qui pouvait être dù à l'inexactitude sur la loi de la résistance de l'air; on verra plus loin quelles autres causes ont pu y contribuer.

Des expériences directes faites à Metz, en 1846, ont prouvé que l'inclinaison de la bouche à feu n'avait pas d'influence sur la vitesse initiale. Ce fait s'accorde d'ailleurs avec les résultats de la pratique habituelle du pointage avec la hausse qui sert à diriger la bouche à feu. Dans ce procédé, en effet, on ne tient pas compte de l'inclinaison de la bouche à feu, et l'on n'a pas remarqué de différences appréciables dans les hausses nécessaires ou dans les portées.

237. La proximité du sol n'a pas d'influence sur la forme de la trajectoire. On a admis que le sol, suivant sa proximité du projectile et par suite suivant sa forme entre la bouche à feu et le but, avait une influence sur la trajectoire du mobile et la relevait; on a pensé que cet effet se faisait sentir sous les petits angles de tir jusqu'à celui de 3°.

^{&#}x27; Neuvième rapport de la Commission des principes du tir (suite, septembre 1846), archives du dépôt central. — * Traité d'artil-

On a attribué cet effet à ce que le fluide dans lequel se meut le projectile, ne pent pas être considéré comme indéfini dans tous les sens, et que la portion de ce fluide qui était lancée du côté du sol par l'hémisphère antérieur du mobile, rencontrait un obstacle résistant; obstacle qui l'empêchait de s'échapper et de se répandre dans l'espace aussi facilement que les secteurs d'air placés dans les autres directions et où le fluide conserve toute sa mobilité, et qui le faisait ainsi réagir sur le projectile.

S'il en était ainsi, il y aurait lieu d'introduire cette influence dans les formules de balistique, et on devrait tenir compte à chaque instant de la hauteur du projectile au-dessus du sol, et distinguer, par conséquent, le cas des batteries ordinaires, de celui des batteries enfoncées dans le sol, ou des batteries élevées au-dessus du terrain; par suite, il y aurait lieu de faire une différence entre les batteries suivant qu'elles sont employées à l'attaque des places ou à leur défense.

Cependant, la pratique du tir n'a pas montré qu'il fût nécessaire de tenir compte de ces circonstances.

On doit croire au contraire que si le fluide lancé par la partie antérieure du projectile rencontre du côté du sol un obstacle qu'il ne rencontre pas dans la partie supérieure, cet effet n'a lieu qu'après le passage du projectile, et qu'ainsi la réaction du sol ne peut avoir aucune insluence sur le mouvement du projectile.

Des expériences ont été faites à Metz, en 1846', pour reconnaître cette influence, par le tir comparatif de deux canons de 16, pointés exactement sous le même angle,

lerie de M. le général Piobert; partie élémentaire et pratique, 2º édition, page 169.

^{&#}x27;Onzième rapport de la Commission des principes du tir; archives du dépôt central de l'artillerie.

mais placés sur des plates-formes différemment élevées; l'une enfoncée de 0^m72 au-dessous du sol, l'autre sur le terrain, et la troisième élevée de 1^m04 au-dessus, ce qui plaçait le centre de la bouche respectivement à 0^m75, 1^m47 et 2^m51 au-dessus de ce terrain. Les canons ont été tirés successivement aux charges de ½ et ½ du poids du boulet, et chacun dans les trois positions; on a observé avec soin les hauteurs des boulets aux distances de 100^m, 200^m et 400^m, et l'on n'a pu reconnaître aucune différence appréciable. Cependant, les résultats des expériences étaient assez précis pour qu'une influence capable de repousser ou d'attirer le projectile de trois à quatre millimètres seu-lement, à la distance de 100^m, eût été rendue évidente.

L'erreur dans laquelle on est tombé est du même genre que la précédente, et elle a pu provenir, par exemple, de ce que, pour comparer les portées résultant du tir sous différentes inclinaisons au-dessus du sol, on aurait fait usage de formules balistiques inexactes, ou qu'on n'aurait pas tenu compte de l'angle de relèvement habituel des projectiles.

238. Mouvement de rotation des projectiles dû à la pression sur la partie inférieure de l'âme. Lorsqu'un projectile sphérique et homogène est placé dans l'âme d'une bouche à feu, en avant de la charge de poudre, et qu'il repose sur la paroi inférieure de la bouche à feu, il laisse à la partie supérieure une sorte d'évent qui se prête à la sortie des gaz enflammés de la poudre; la grandeur de cet évent est égale à la différence entre le diamètre de l'âme et celui du projectile.

Lorsque les gaz enflammés de la poudre commencent à agir, ceux qui s'écoulent par la partie supérieure exercent sur le projectile une pression considérable; comme en même temps ils le pressent à la partie postérieure, et le poussent en avant, il en résulte un frottement qui agit

au point de contact, perpendiculairement au rayon du projectile et dans la direction de l'avant à l'arrière. De cette force tangentielle, agissant pendant la durée du contact, il résulte que le projectile prend un mouvement de rotation en même temps qu'un mouvement de translation. Le premier a lieu autour d'un axe perpendiculaire à la fois au rayon qui passe par le point de contact et à la direction du mouvement de translation.

Quand le contact cesse, le projectile conserve son mouvement de rotation acquis, tandis que sa vitesse de translation s'augmente jusqu'à ce qu'il sorte de la bouche à feu. Alors il se meut dans l'air animé de son double mouvement.

Il arrive souvent, et surtout lorsque la bouche à feu présente une dépression à l'emplacement du boulet, que le projectile en s'élevant va frapper la paroi supérieure de cette bouche à feu; ce choc, qui fait changer la direction du projectile par rapport à l'axe, altère la vitesse de rotation et peut même changer la position de l'axe.

239. Mouvement de rotation dû à l'excentricité du projectile. La non homogénéité de la matière des projectiles en général, les vides qui se produisent dans la coulée des projectiles pleins, l'inégalité d'épaisseur des parois et le vide de la lumière dans les projectiles creux, sont causes que le centre de gravité ne concorde pas avec le centre de figure. La différence est en général très-faible, mais elle suffit, et plus particulièrement dans les projectiles creux, pour influer d'une manière sensible sur le mouvement de rotation, et par suite, comme on le verra plus loin, sur la forme de la trajectoire.

Supposons un projectile sphérique et excentrique (Fig. 50) dont C soit le centre de figure et G le centre de gravité. Si la pression des gaz s'exerce d'une manière uniforme sur l'hémisphère postérieur, la résultante de ces

pressions passera par le point C. Cette ligne ne passant pas par le centre de gravité G, il en résultera, outre le mouvement de translation du centre de gravité, qui aura lieu comme si la résultante de toutes les forces parallèles y était appliquée, un mouvement de rotation dont le moment est représenté à chaque instant par le produit de la force et de la perpendiculaire CI abaissée du centre C sur la direction GA que suivra le centre de gravité G.

En vertu du mouvement de rotation du projectile autour de ce dernier point, la distance CI varie à chaque instant; mais, en considérant que l'angle de rotation parcouru durant tout le trajet dans la bouche à feu n'est pas grand, en remplaçant en conséquence sa valeur variable par une valeur moyenne, et comparant le mouvement de rotation au mouvement de translation sous l'action des mêmes pressions, on arrive à ce résultat : que la vitesse de rotation acquise par le projectile est égale au produit de la projection moyenne de l'excentricité sur un plan perpendiculaire à l'axe de l'âme par la quantité de mouvement de ce projectile, dù à la vitesse de translation seule, et divisé par le moment d'inertie du projectile autour d'un axe perpendiculaire à la fois à la ligne des centres et à l'axe de l'àme de la bouche à feu. Le sens du mouvement est déterminé par celui du centre de figure relativement plus rapide que celui du centre de gravité.

240. Moyens de mesurer l'excentricité. En plaçant sur un bain de mercure un projectile sphérique et non homogène, et en le laissant arriver à l'état d'équilibre, le centre de gravité se placera au-dessous du centre de figure et sur la même verticale. Dans cette position, le sommet du projectile sera un point de la ligne des centres, on pourra donc le marquer sur le projectile.

Si, de plus, on applique sur un rayon différent de la ligne des centres et sur la surface de la sphère, ou en dehors de cette surface, un poids additionnel connu, le centre de gravité sera changé, et la ligne des centres primitive s'écartera de la position première; elle prendra donc une nouvelle position d'équilibre. En mesurant l'angle décrit et en comparant entre eux le moment du poids additionnel et le moment du projectile autour du centre de figure, on pourra déterminer la distance des centres, c'est-à-dire l'excentricité.

La grandeur de cette quantité et la position relative des centres de figure et de gravité déterminent la vitesse de rotation du projectile et la direction de ce mouvement.

241. Mouvement de rotation. Les deux mouvements de rotation dus aux deux forces distinctes se composent en un seul. Et si l'on prend sur chacun des axes de rotation une quantité proportionnelle à la vitesse, la diagonale du parallélogramme construit sur ces deux lignes comme côtés représentera l'axe du mouvement résultant et sa vitesse.

On peut déterminer ce mouvement par l'expérience, en observant la quantité dont l'extrémité du rayon parallèle à l'axe de la bouche à feu s'est déplacée dans un trajet de quelques mètres du projectile depuis la bouche à feu jusqu'à son entrée dans un massif pénétrable; on reconnaîtra de plus dans quelle direction le déplacement a eu lieu.

Avec les projectiles creux ordinaires, qui satisfont aux conditions de réception en usage en France et dans lesquels l'excentricité est plus grande que dans les houlets, sans dépasser généralement un centième du rayon, on reconnaît que l'effet de la pression à l'emplacement du projectile en avant de la charge est plus grand que l'effet de l'excentricité, et que, quand on place le projectile sans faire attention à la ligne des centres, le mouvement de rotation a lieu autour d'un axe horizontal ou un peu incliné de part ou d'autre; l'hémisphère antérieur allant de haut en avant.

On reconnaît encore que la vitesse de rotation croît avec la vitesse de translation et à peu près comme celle-ci. A égalité de charges de poudre, la vitesse de rotation croît en raison inverse des densités; et, par exemple, un obus ordinaire de 0m15 tiré dans l'obusier de campagne, successivement aux charges de 0k500 et 1k000, possède, à la sortie de l'obusier, des vitesses de rotation qui, comptées de haut en bas, sur l'extrémité antérieure d'un rayon, sont respectivement de 10,8 tours et 16,3 tours par seconde. Cette quantité correspond à une vitesse qui, mesurée à la circonférence, est respectivement égale à 5m0 et 7m6 par seconde, ou environ, pour l'un et l'autre cas, à $\frac{1}{100}$ de la vitesse de translation.

Mais, dans les projectiles auxquels on donne artificiellement une excentricité beaucoup plus considérable que celle qui provient de la non homogénéité de la matière, c'est cette excentricité qui détermine le sens du mouvement de rotation; cette vitesse est alors beaucoup plus grande que celle que nous avons reconnue aux obus ordinaires, et que celle qui proviendrait de la pression sur la paroi inférieure de l'âme.

242. Influence de la position de l'axe de rotation, relativement aux axes principaux d'inertie du mobile. Lorsque le projectile est sorti de la bouche à feu, son mouvement de rotation continue dans l'air, sans être beaucoup ralenti par l'action de ce fluide. Mais, en général, l'axe de rotation ne reste pas fixe dans le corps, ni parallèle dans l'espace.

En effet, comme on sait, les forces centrifuges de chaque particule du mobile qui résultent de ce mouvement étant transportées au centre de gravité, elles donnent une composante égale à zero; mais, à moins que l'axe de rotation ne soit exactement un des axes principaux d'inertie, le moment résultant ne sera pas nul; son action se composant avec le moment de rotation existant fera dévier l'axe, et, dans l'instant suivant, l'axe de rotation aura relativement au premier une direction différente, passant néanmoins par le centre de gravité. L'axe de rotation ne sera donc qu'instantané, et il changera incessamment de position dans le corps, et de direction dans l'espace.

Lorsque le mobile sera exactement défini, on pourra déterminer à chaque instant la position de cet axe et le plan du mouvement de rotation.

La recherche des déviations qu'éprouve un projectile animé d'un mouvement de translation et d'un mouvement de rotation autour d'un axe quelconque, est très-compliquée. Poisson s'en est occupé dans plusieurs savants mémoires'; nous donnons ici une courte analyse de ses travaux.

243. Recherches analytiques de Poisson, sur l'influence du mouvement de rotation. Lorsqu'un corps sphérique et homogène est lancé sans aucune rotation initiale, dans un air calme, son centre de figure ne sort pas du plan vertical de projection; tout, en effet, est semblable alors de part et d'autre de ce plan; mais, dans la pratique de l'artillerie, le concours des circonstances qui produit cette simultanéité n'a jamais lieu et il en résulte des écarts considérables du projectile, à droite ou à gauche du plan de projection, qui nuisent à la justesse du tir et n'ont pas manqué d'être observés.

Robins, le premier, a attribué ces déviations au mouvement de rotation du projectile qui accompagne en général son mouvement de translation. Cette circonstance jointe

Recherches sur le mouvement des projectiles, en ayant égard à leur figure, à leur rotation, etc., lues à l'Académie des sciences, en 1839. — Journal de l'École polytechnique, XVIe et XVIIe cahier.

à la non sphéricité parsaite du projectile et à sa non homogénéité, autant qu'elles donnent lieu à un frottement du mobile contre l'air qu'il traverse, sont effectivement les diverses causes qui, indépendamment des agitations de l'air, concourent ensemble et tendent à produire les déviations horizontales du centre de gravité et à modifier son mouvement projeté sur le plan vertical dans lequel il est lancé.

Pour appliquer les équations du double mouvement de translation et de rotation au cas d'un projectile pesant qui se meut dans l'air, Poisson considère la résistance relative à chaque point de la surface du mobile comme étant composée de deux parties, l'une normale et qu'on appelle la résistance du fluide proprement dite, l'autre tangente et qui constitue le frottement. Poisson restreint ses considérations analytiques au cas où le mobile s'écarte très-peu de la forme sphérique et de la parfaite homogénéité; il considère ces effets séparément pour les réunir ensuite lorsque leurs causes ont toutes eu lieu en même temps et il arrive aux résultats ci-après:

Quand un boulet parfaitement sphérique et homogène tourne en sortant de la bouche à feu autour de l'un de ses diamètres, le mouvement continue pendant toute la durée du trajet dans le même sens et autour du même diamètre qui reste constamment parallèle à lui-même. La vitesse de rotation décroît en raison inverse du produit du diamètre du projectile par sa densité, mais d'une quantité extrêmement petite.

La rotation du projectile influe sur sa direction et sur sa portée; la déviation horizontale qu'elle produit, à droite ou à gauche du plan vertical, est indépendante de l'angle que fait ce plan avec le plan vertical de l'axe de rotation. Elle dépend de la longueur du trajet après lequel on la considère.

Lorsque le corps tourne autour d'un axe vertical, la déviation se produit à gauche ou à droite du plan de projection, selon que l'hémisphère antérieur du mobile tourne de gauche à droite ou de droite à gauche, par rapport à un observateur placé dans ce plan et qui regarde la trajectoire; elle s'évanouit quand le projectile tourne autour d'un axe horizontal. La déviation verticale, c'est-à-dire la quantité dont la rotation élève ou abaisse le boulet relativement à la position qu'il aurait à chaque instant s'il ne tournait pas, conserve pendant toute la durée du trajet un rapport constant avec la déviation horizontale. Elle s'évanouit quand l'axe de rotation est vertical; s'il est horizontal et perpendiculaire au plan de projection, elle a pour effet d'élever ou d'abaisser le projectile et en conséquence d'augmenter ou de diminuer la portée horizontale, selon que la partie antérieure du mobile tourne du haut vers le bas ou du bas vers le haut. Ces résultats se rapportent au cas le plus ordinaire, celui du tir à trèspeu près horizontal.

Quoiqu'on n'ait pas de données suffisantes sur les coefficients du frottement, on reconnaît cependant que cette déviation ne peut jamais être qu'une très-petite fraction de la longueur de la portée; en sorte que ce n'est pas au frottement de la surface du boulet contre la couche d'air adjacente et d'inégale densité, que sont dues principalement les déviations observées, ainsi que Robins et Lombard l'avaient pensé.

Poisson considère ensuite le cas de la non sphéricité dans une balle un peu allongée ou aplatie, lancée par une carabine qui lui a imprimé un mouvement de rotation autour de son axe, et ensuite la circonstance de l'excentricité provenant de la non homogénéité de sa masse. Il reconnaît pour différents cas que l'influence de la petite distance des deux centres de la balle sphérique non homo-

gène est beaucoup moindre sur son mouvement de translation et sur la justesse du tir d'une carabine, que ne peut l'être celle de la non sphéricité d'une balle un peu aplatie ou allongée.

244. Le frottement résultant du mouvement de rotation ne rend compte ni du sens ni de la grandeur des déviations. L'effet du frottement de l'air contre le projectile enimé d'un mouvement de rotation aurait pour résultat, d'après ce qu'on vient d'exposer, de faire dévier le projectile dans le sens opposé au mouvement de l'hémisphère antérieur; or, on a déjà reconnu que les effets n'étaient pas assez grands pour expliquer l'étendue des déviations qu'on observe; on reconnaît, de plus, qu'en général, les déviations ont effectivement lieu dans un sens opposé. On doit donc rechercher la raison des déviations dans une autre cause, telle que celle de la variation de densité et de pression des couches d'air qui sont autour du mobile.

245. Influence du mouvement de rotation d'un projectile dans l'air due aux différences de densité du fluide. - La déviation a lieu dans le sens du mouvement de l'hémisphère antérieur du projectile. Considérons un projectile qui serait animé à la fois d'un mouvement de translation suivant AB (Fig. 51), et d'un mouvement de rotation, dont le sens serait CD, autour d'un axe, que, pour plus de facilité dans les expressions, nous supposerons vertical; l'hémisphère antérieur se mouvant de droite à gauche, les points situés sur l'hémisphère de droite se mouvront dans le même sens que le centre de gravité, et les points de l'hémisphère de gauche, dans le sens opposé; les premiers auront, par rapport à l'air, une vitesse relative plus grande que ceux de l'hémisphère de gauche. Le déplacement de l'air se fera donc, du côté droit, avec moins de facilité que du côté gauche: par suite, la densité du fluide et par conséquent la pression seront plus grandes à droite qu'à gauche.

Il résulte de là, qu'il n'y a plus de symétrie entre les résistances exercées autour de la direction du mouvement de translation, et que les résistances étant plus grandes sur l'hémisphère de droite, la pression sera de ce côté plus considérable que de l'autre et agira de manière à faire dévier le projectile de droite à gauche, dans le même sens que s'exécute le mouvement des points de l'hémisphère antérieur. Cet effet croîtra avec la vitesse de translation et avec la vitesse de rotation.

Si l'axe de rotation fait avec la direction du mouvement de translation un angle moindre qu'un angle droit, en restant toutefois dans le plan vertical de projection, l'excès des vitesses absolues des points de l'hémisphère de droite sur les vitesses absolues des points symétriquement placés de l'hémisphère de gauche, sera moins grand; par conséquent, les densités et les pressions de l'air qui s'ensuivent, présenteront des différences moindres, et, par conséquent aussi, les déviations qu'elles produiront, seront moins considérables.

Enfin, si l'axe de rotation se rapproche de la direction du mouvement jusqu'à se confondre avec elle, il y aura égalité dans toutes les résistances symétriquement disposées, et il n'en résultera aucune déviation.

Ces considérations s'appliquent à un mouvement de translation, supposé rectiligne, et au tir des projectiles, sous des angles peu élevés au-dessus de l'horizon.

Si l'axe de rotation n'est pas un des axes principaux d'inertie du mobile, majeur ou mineur, cet axe de rotation ne sera qu'instantané, et variera de position dans le corps, et de direction dans l'espace; alors, la déviation aura lieu dans une direction et avec une intensité variable à chaque instant. Cette direction pourra même, si le changement de l'axe de rotation est assez rapide, avoir décrit une ou plusieurs révolutions dans le trajet du projectile,

et produire ainsi une trajectoire très-différente de celle que le projectile aurait décrite, sans le mouvement de rotation.

246. L'influence du mouvement de rotation démontrée par l'expérience. L'expérience confirme l'exactitude des considérations qui précèdent.

Les expériences sont de deux sortes : les unes directes, les autres se rapportent à l'observation des déviations dans le tir.

Les premières ont été exécutées d'abord par M. G. Magnus¹, elles ont été répétées à Vincennes² en 1853.

L'appareil se compose d'un ventilateur produisant un courant horizontal ab (Fig. 52) d'une section suffisamment grande, d'un petit cylindre auquel, à l'aide d'un mécanisme extérieur, on peut imprimer à volonté un mouvement de rotation rapide, et enfin de deux petites girouettes df et gh très-mobiles. Les axes de ces girouettes sont verticaux et laissent entre eux un intervalle un peu plus grand que le diamètre du cylindre placé au milieu d'eux; le tout peut être compris dans le courant d'air du ventilateur.

Dans cette situation: en premier lieu, quand l'on place l'axe du cylindre dans l'axe du courant et qu'on met le cylindre en mouvement, on observe que les plans des girouettes df et gh restent parallèles à l'axe du cylindre, tout comme quand le cylindre reste en repos.

En second lieu, quand l'axe du cylindre est vertical et perpendiculaire à l'axe du courant, on doit distinguer deux cas:

1er Cas. Si le cylindre est sans mouvement, les gi-

^{&#}x27; Mémoire présenté à l'Académie de Wissenshaffen, 1851 et 1852, impr. à Berlin; traduit par O. Terquem. Voir journal le Cosmos, tome II.

Par M. Fèvre, chef d'escadron d'artillerie.

rouettes df et gh restent parallèles entre elles et parallèles à l'axe du courant.

2º Cas. Si le cylindre est animé d'un mouvement de rotation rapide, on observe ce qui suit :

1º L'observateur étant placé en face du ventilateur, si le cylindre tourne de droite en avant suivant mn, c'est-àdire la partie antérieure du cylindre allant de droite à gauche, la girouette de droite ah s'écarte du cylindre et celle de gauche df s'en approche en prenant respectivement les positions ah' et df'. On conclut de là que, sur la droite, le courant d'air du ventilateur étant contrarié par le mouvement de la surface du cylindre qui a lieu en sens inverse, tandis que de l'autre côté l'écoulement est facilité par le mouvement de la surface qui a lieu dans le même sens, il en résulte une augmentation de pression à droite, comparativement à la situation de repos du cylindre, et que cette pression s'exerce à la fois sur le cylindre et sur la girouette de droite; à gauche, au contraire, il y a comparativement une pression plus petite qu'en dehors de la girouette, ce qui fait rapprocher celle-ci. Il résulte évidemment de là que si le cylindre était librement suspendu, la pression qui s'exerce à droite, comparativement plus grande que celle qui s'exerce à gauche, presserait le cylindre de droite à gauche et causerait une dérivation de ce dernier côté; le sens de cette dérivation est celui du mouvement de la partie antérieure du cylindre.

2º Si le cylindre tourne en sens inverse, on observe des phénomènes analogues et l'on reconnaît qu'il y a une pression de gauche à droite.

Il est évident que si à un cylindre on substituait une sphère, on obtiendrait des résultats analogues, mais plus ou moins prononcés, suivant la longueur qu'avait le cylindre.

Les résultats de cette expérience peuvent être appliqués au mouvement des projectiles sphériques dans l'air et sont conformes à l'explication des phénomènes donnés plus haut (245).

Dans cette expérience, il est vrai, le projectile n'a pas de mouvement de rotation, et c'est l'air qui est en mouvement; mais les mouvements relatifs sont les mêmes, et, pour les rendre similaires, il suffirait de supposer que l'ensemble est animé d'un mouvement de translation parallèle à la direction du courant et en sens inverse. Cela, au besoin, serait confirmé par cette remarque que les résultats observés sont les mêmes, quelle que soit la direction du courant du ventilateur relativement à celui du mouvement de la terre.

La seconde sorte d'expériences se rapporte aux résultats du tir des projectiles animés d'un mouvement de rotation.

En général, par l'effet de la pression des gaz enflammés de la poudre sur le projectile et par celui-ci sur la partie inférieure de l'âme, le projectile prend un mouvement de rotation dans un plan vertical ou peu différent (238), et dans un sens déterminé par la vitesse relativement plus grande de l'hémisphère supérieur, ou de haut en bas pour l'hémisphère antérieur, comme est l'action de la pesanteur; nous regarderons ce mouvement comme direct.

On sait aussi que quand le projectile est excentrique (239), et qu'il est placé dans la bouche à feu, de telle sorte que le centre de figure est verticalement au-dessus du centre de gravité, cette disposition seule suffit pour que le mobile reçoive un mouvement de rotation direct; celui-ci s'ajoutera donc au premier. Lorsque le centre de figure est au-dessous du centre de gravité, il reçoit, au contraire, un mouvement inverse qui se retranche du mouvement direct naturel et le diminue ou change son sens. Il doit résulter de là, que, comparativement à ce qui aurait lieu sans l'excentricité, la vitesse de rotation due à la première disposition est plus grande, et qu'il y a une force

dérivatrice de haut en bas, qui fait dériver le projectile dans le même sens; dans l'autre cas il y a, au contraire, une force dérivatrice de bas en haut, qui fait dériver le projectile dans ce dernier sens. Dans les deux cas, la dérivation aura lieu du côté de la position primitive du centre de gravité par rapport au centre de figure; il résultera de là qu'en tirant sous un petit angle constant au-dessus de l'horizon, on obtiendra des portées plus grandes dans le premier cas que dans le second.

Si le centre de gravité est placé en avant et sur le diamètre parallèle à l'axe, il arrivera que par le mouvement qu'il prendra, quand le projectile tournera dans l'âme, le centre de gravité se trouvera un peu abaissé dans une partie du trajet; la dérivation qui en résultera devra se montrer par une petite diminution de portée; au contraire, si le centre de gravité est primitivement en arrière, la dérivation se traduira par une petite augmentation de portée.

Si le centre de gravité et le centre de figure sont placés sur une perpendiculaire au plan vertical de projection, le mouvement de rotation produira une dérivation latérale; elle sera à droite si le centre de gravité est à droite, et à gauche si le centre de gravité est de ce dernier côté.

Ces indications sont constamment confirmées par l'expérience lorsque les excentricités sont suffisamment grandes. Nous en citerons quelques exemples.

Des obus de 22cm, dont les poids étaient 27k9 et 29k85, et dont un culot réservé à la partie opposée à la lumière de l'obus, combiné avec le vide de cette lumière, donnait respectivement une excentricité de Qm0015 et de 0m0020, ont été tirés ' avec un obusier de siége à la charge de 1k500, et avec un obusier de côte à celles de 1k500 et 3k000, sous l'angle de 4° 6' au-dessus du terrain; on pla-

^{&#}x27; Expériences faites à Metz en 1839.

çait alternativement le centre de gravité au-dessous ou au-dessus du centre de figure; on a tiré ces projectiles comparativement avec ces obus sans culot et pesant 26k6. On a consigné, dans le tableau suivant, les résultats qui sont des moyennes sur trois coups:

TABLEAU des portées comparatives d'obus ordinaires et d'obus excentriques de 0^{m22}, en plaçant alternativement le centre de gravité de ces derniers au-dessous ou au-dessus du centre de figure.

BOUCHES à feu:	POIDS des charges de poudre.	POIDS des obus.	PORTÉES DES OBUS		
			ORDINAIRES.	EXCENTRIQUES, le centre de gravité	
				en bas.	en haut.
	kilog.	kilog.	mèt.	mèt.	mèt.
	1	26,6	708	ď	»
de siége.	1,500	- 29,9) »	518	950
		27,9	»	548	941
		26,6	869	>	»
de côte.	1,500	29,9	l »	712	1163
		27,9	D	731	1009
		26,6	1170	ď	»
de côte.	3,000	29,9	l »	1072	1557
		27,9	»	1117	1320

On voit, d'après ce tableau, qu'en plaçant le centre de gravité en bas, les portées sont constamment beaucoup plus courtes que lorsqu'on place le centre de gravité en haut; par conséquent, l'effet du mouvement de rotation direct qu'a produit la première disposition ou la vitesse qu'elle a ajoutée au mouvement direct naturel, a agi dans le sens du mouvement de l'hémisphère antérieur; il y a

un effet inverse lorsque le centre de gravité a été placé en haut. Les obus non excentrés ont donné des portées intermédiaires entre les précédentes.

On peut regarder la différence entre les portées comme due au double de l'effet des vitesses de rotation en sens inverse, et d'après cela, on peut déterminer la force déviatrice du mouvement de rotation; pour le faire, on a calculé dans chaque cas la valeur de la force accélératrice verticale; dans l'équation normale de la trajectoire, cette force n'est que la pesanteur représentée par 9m809; on trouve alors 2,50 pour leur demi-différence avec l'obus de 27k9. Cette quantité correspond à un poids de 7k10; avec l'obus de 29k9, on trouve 2,53 qui correspond à un poids de 7k7.

Les vitesses de rotation dues à l'excentricité déterminée comme on l'a indiqué (239) au moyen de la vitesse initiale et exprimée par le nombre de révolutions par seconde, sont de 8,0 pour l'obus de 27k9, et de 8,6 pour celui de 29k9; ces nombres sont ainsi proportionnels aux forces déviatrices.

Dans d'autres expériences', un obus de 15cm, dont l'excentricité égale à 0m00185 était due à la position excentrique du centre de la sphère intérieure, pesant 8k025, tiré sous l'angle de 8°, en plaçant successivement le centre de gravité en bas et en haut, a donné respectivement pour les moyennes portées prises sur cinq coups, 985m5 et 1840m5. En plaçant le centre de gravité à hauteur du centre de figure, sur le rayon perpendiculaire au plan de projection, successivement à droite et à gauche, les déviations ont eu lieu dans chacun de ces sens; elles ont présenté un écart moyen total de 112m, dont la moitié, ou 56m, doit être attribuée au mouvement de rotation pour la portée moyenne de 1200m.

^{&#}x27; Mémoire de M. le major Boorman, lith. en Belgique, 1843.

En plaçant la ligne des centres de gravité et de figure parallèlement à l'axe de la bouche à feu, et le centre de gravité soit en avant soit en arrière, on obtient à peu près les mêmes portées.

247. Excentricité dans les projectiles ordinaires. Les différences dans les portées ou dans les dérivations latérales résultant de positions inverses du centre de gravité, décroissent avec l'excentricité des projectiles; aussi dans les projectiles en usage elle est beaucoup moindre que celle dont nous avons parlé. Dans les obus de 0m15 elle atteint rarement 1/15 du rayon, mais elle va fréquemment jusqu'à 1 de ce rayon. Elle a, dans les obus, une influence notable sur les déviations. On reconnaît cette influence lorsqu'en placant la lumière de l'obus parallèlement à l'axe de l'obusier, comme on le fait ordinairement, mais en mettant la ligne des centres constamment dans le plan vertical, le centre de gravité tantôt en-dessous tantôt endessus; on obtient alors des portées notablement moindres. dans le premier cas. De même, en plaçant ce centre dans un plan perpendiculaire à celui-ci, on obtient des déviations moyennes très-prononcées, à droite ou à gauche, suivant que le centre de gravité est de l'un ou de l'autre de ces côtés.

Dans les boulets ordinaires, l'excentricité est très-faible, et la position du centre de gravité, par rapport au centre de figure, n'a qu'une influence inappréciable.

Avec les bombes, que l'on tire toujours sous de grands angles au-dessus de l'horizon, l'effet de l'excentricité naturelle est beaucoup moins sensible que pour les obus. Sous l'angle qui donne la plus grande portée, son effet n'est pas sensible; sous des angles plus grands, il change de sens, c'est-à-dire que de la position du centre de gravité au-dessus de l'axe il résulte des portées moindres que de la position inverse.

248. Explication de certaines déviations qui paraissent extraordinaires. Les effets du mouvement de rotation, combinés avec les déviations dans la direction au départ, expliquent naturellement des effets qui, au premier abord, paraissent singuliers.

Si un projectile, par exemple, a exercé un choc sur la partie gauche de l'âme, il en résultera que son centre de gravité suivra une direction inclinée vers la droite, par rapport à l'axe de la bouche à feu; mais, en même temps, le projectile prendra un mouvement de rotation dans lequel l'hémisphère antérieur marchera de droite à gauche; il résultera de là une dérivation vers la gauche du plan vertical. De sorte qu'un observateur placé dans le plan vertical de tir, verra le projectile se porter d'abord vers la droite, venir ensuite vers la gauche, et couper ainsi le plan vertical de tir.

Cet effet se présente plus particulièrement avec les projectiles de faible densité dans lesquels le mouvement de rotation est plus rapide que dans les autres. Il a également lieu avec les boulets; on le remarque fréquemment, quand on peut observer plusieurs points d'une même trajectoire, et plus particulièrement quand on a pu observer la différence entre la direction au départ de l'âme et le prolongement de l'axe du canon.

249. Moyens de diminuer les déviations des projectiles. La connaissance des causes des déviations des projectiles permet d'indiquer et d'apprécier les moyens de les empêcher.

On diminue l'inégalité dans les vitesses initiales et dans les angles de projection, en confectionnant les charges avec une grande uniformité, en restreignant les limites des poids et des diamètres des projectiles, en rebutant les bouches à feu trop dégradées et qui présentent, soit un logement trop profond à l'emplacement du projectile, soit des battements. Mais, les principales causes de déviations sont dues au mouvement de rotation du projectile dans l'air, particulièrement quand la direction de cet axe est variable dans le trajet; aussi doit-on s'attacher à empêcher ou au moins à régler ce mouvement. C'est ainsi, qu'en fixant à la partie postérieure d'une balle sphérique de fusil une petite tige de fer qui empêche le mouvement de rotation, on diminue beaucoup les déviations de cette balle.

250. Emploi des rayures en hélice, pour imprimer un mouvement de rotation. On règle le mouvement de rotation des balles de fusil en les forçant à s'engager dans les rayures en hélice tracées dans l'intérieur des carabines. La balle prend ainsi un mouvement de rotation autour de l'axe de l'âme en même temps qu'un mouvement de translation le long de cet axe et elle continue ce mouvement de rotation dans l'air. Les résistances se trouvant alors symétriquement réparties, la pression de l'air n'est plus une cause de déviation.

Mais, comme on l'a vu (227), le centre de gravité ne se trouvant pas exactement sur l'axe, il en résulte qu'au départ la direction du centre de gravité de la balle suit une ligne un peu différente de l'axe et que, par suite, l'axe de rotation ne se confond pas avec la trajectoire; cette circonstance devient la cause de petites déviations. Ceci fait voir qu'il peut y avoir des inconvénients à prendre une rayure très-inclinée.

Si, de plus, l'axe de rotation n'est pas exactement l'un des axes principaux d'inertie, la direction de cet axe sera constamment variable; cette variation pourra, suivant les cas, devenir très-considérable; à cet égard, il est important que l'axe de rotation se confonde avec l'axe principal, majeur ou mineur, mais mieux avec le premier, ou qu'il s'en écarte peu. On obtient cet effet par la forme

de la balle. Ainsi, une balle aplatie suivant l'axe de rotation, tournant par suite autour de l'axe d'inertie majeur, aura plus de stabilité dans le tir qu'une balle sphérique et qu'une balle allongée suivant cet axe et terminée par des hémisphères, à moins pourtant qu'elle n'ait une forme convenablement appropriée.

Ces considérations sont confirmées par l'expérience; des balles du diamètre de 16mm35 avant le chargement, et de 16mm7 après le chargement, mais de longueurs différentes, ayant été tirées avec un canon de pistolet rayé en hélice sur un pas de 0m54, avec des charges réglées de manière à imprimer à chaque balle une vitesse initiale constante et égale à 134m:s, ce qui leur imprimait aussi une vitesse de rotation de 248 révolutions par seconde, on a obtenu les résultats suivants. Lorsque le rapport de la longueur aù diamètre était respectivement 1,06, 0,916, 0,760, et que, par suite, les poids étaient 33\$78, 25\$75, 23832, le côté du carré qui contenait le tiers des coups tirés était respectivement, savoir : de 0m59, 0m31, 0m29 à 50m; de 2m38, 1m05, et 0m94 à 100m, et dans des proportions plus différentes encore, à la distance de 150m. On voit par là, que malgré une diminution de la masse, qui est défavorable à la régularité du tir, les déviations ont été moindres avec les balles dans lesquelles le mouvement de rotation avait lieu autour de l'axe du moment d'inertie majeur, et présentait ainsi plus de stabilité. On remarquait, en effet, que les balles aplaties frappaient le but par l'hémisphère qui était primitivement en avant, et qu'elles conservaient ainsi de la stabilité dans le tir; tandis que les balles longues, lorsque le trajet était long,

^{&#}x27;Expériences sur les balles sphériques, plates et longues, par M. Is. Didion; et Journal de l'École polytechnique, 27° cahier, 1839.

changeaient de direction et finissaient par frapper par le flanc.

251. Stabilité de l'axe de rotation dans les balles oblongues de forme ogivale. La stabilité de l'axe de rotation des projectiles peut être augmentée par des résistances agissant en arrière du centre de gravité et résultant de sa forme. La balle oblongue adoptée en France, pour la carabine des chasseurs à pied, jouit de cette propriété.

Si G est le centre de gravité de cette balle (Fig. 52), GA étant la direction du mouvement de translation, l'action de l'air est moindre sur la partie antérieure de forme conique que sur la partie postérieure sur laquelle se trouvent tracées des rayures; il résulte de là que le centre d'action de la résultante de ces forces est en un point R situé en arrière du point G; cette disposition donne à la balle une stabilité qui augmente celle qui résulte du mouvement de rotation autour de GA.

Supposons que par une cause quelconque la direction de l'axe de figure de la balle tende à changer, et qu'elle devienne ainsi un peu oblique à la direction du mouvement (Fig. 53). La résistance de l'air agit alors suivant BR, parallèlement à GA, avec un bras de levier DR, pour rapprocher l'axe de figure et de révolution SR de la ligne GA du mouvement. La forme des rayures circulaires HK augmente beaucoup l'action de l'air à la partie postérieure du côté F qui s'est éloigné de l'axe, tandis que la résistance diminue de l'autre côté. Il arrive par là que le centre de résistance R n'est plus sur l'axe, mais bien en quelque point, comme R', plus en dehors de l'axe GS, et que par là le moment de stabilité est augmenté à la sois par la grandeur de la résistance et par celle de son bras de levier. Par ces considérations on voit que si, par une cause quelconque, l'axe tendait à changer de direction, il serait bientôt ramené suivant la trajectoire, et que, par suite, l'axe conserve beaucoup de stabilité.

252. Dérivation particulière aux balles oblongues de forme ogivale. Le centre de gravité G, par suite de l'action de la pesanteur, décrit une courbe qui tourne sa concavité du côté du sol (Fig. 54); l'axe GS ne peut pas prendre immédiatement la direction de la tangente à cette trajectoire; la partie inférieure SF de la balle se présente donc constamment à l'action de l'air sous une certaine obliquité; et, dans son trajet, cet axe fait toujours avec la tangente à la trajectoire un petit angle dont l'ouverture est tournée vers le but. Il résulte de là une composante dirigée de F vers E, qui fait dériver le projectile de bas en haut, et qui, par conséquent, donne une trajectoire moins courbée que celle qui appartiendrait à un projectile sphérique ayant même vitesse initiale et même poids, et qui éprouverait de la part de l'air une résistance égale dirigée suivant la tangente à la trajectoire. La balle oblongue donne donc comparativement, sous un même angle de projection, une trajectoire plus relevée et des portées plus grandes.

Par suite de l'inclinaison de l'axe sur la trajectoire et de la forme des rayures, la densité et la pression de l'air se trouvant plus considérables dans la partie inférieure du projectile que dans la partie supérieure, celle-là, par les aspérités naturelles de la balle et par celles qui proviennent des rayures du canon, exercent sur l'air une action plus considérable que la seconde, et éprouvent une résistance proportionnée; il résulte de là une composante perpendiculaire au plan de projection, et dirigée dans le sens du mouvement de la partie supérieure, ce qui fait dériver la balle de ce côté; ce sera à droite de l'observateur, pour le sens ordinaire des rayures qui font tourne la balle du haut à droite, pour un observateur placé de rière le canon.

Si les résistances qu'éprouvent les divers points de

balle oblongue dans sa partie inférieure sont convenablement réparties sur la longueur, elles feront dévier la balle à droite en la laissant parallèle au plan vertical de tir. Mais, si ces résistances sont inégalement réparties et que leur résultante passe en avant du centre de gravité de la balle, elle fera incliner l'axe de celle-ci vers la droite.

De cette situation, et du mouvement de translation parallèlement au plan vertical de tir, résultera une nouvelle cause de dérivation à droite, comme celle qui produit la dérivation de bas en haut dans le plan vertical de tir; elle augmentera la dérivation à droite.

Si, au contraire, la résultante passe en arrière du centre de gravité, ce qui pourra résulter d'aspérités plus prononcées de ce côté, l'axe de figure du projectile s'inclinera sur le plan vertical de tir, la pointe à gauche; cette cause de dérivation diminuera les effets de la première cause et les compensera en partie.

On voit par là, que l'appréciation des causes de dérivation des projectiles oblongs est fort compliquée.

L'influence du mouvement de rotation et la stabilité de l'axe de rotation sont bien démontrées par l'expérience, et l'on obtient du tir bien dirigé des armes rayées une justesse très-remarquable; elle l'est particulièrement pour la balle oblongue, soit pleine du poids de 48¢, soit creuse à la partie postérieure, tirée dans la carabine des chasseurs à pied; elle l'est moins avec la balle creuse tirée dans le fusil d'infanterie, parce que, pour des raisons de service, le poids de cette balle a dû être réduit à 32¢.

La cause de la dérivation latérale existe pour les balles d'une forme aplatie, mais à un degré très-faible, et qu'il est difficile de reconnaître par l'expérience.

On a appliqué, en France et en Suède, la forme ogivale, aux boulets en fonte, tirés avec des canons de ce métal, et l'on a obtenu également une régularité de tir remar-

quable. Des expériences récentes ont été entreprises en France avec les canons en bronze et ont été, en 1859, couronnées d'un plein succès '.

Des essais furent entrepris à Vincennes, en 1850, pour obtenir des boulets tirés dans les canons en bronze une justesse de tir comparable à celle des balles oblongues dans les canons de fusil rayés. Le tir des projectiles en fonte dans les canons en bronze présente, par la dureté comparative de la matière du projectile sur celle du métal de la bouche à feu, une difficulté qui n'existe pas dans le tir des balles de plomb dans des canons en fer. Le Ministre de la guerre nomma à cet effet une commission d'officiers d'artillerie dont je faisais partie avec MM. Caron, Burnièr, Tamisier et Fèvre. M. Tamisier proposa des ailettes mobiles en cuivre, et postérieurement en zinc laminé, qui, glissant sous un angle obtus par rapport au plan méridien, s'écartaient de l'axe du projectile par leur pression même sur le côté de la rayure et donnaient au projectile la propriété des balles forcées ; il réussit à imprimer un mouvement de rotation aux projectiles oblongs; mais, la mobilité nécessaire aux ailettes était une difficulté qui fit renoncer à ce système.

Je proposai, et on essaya, un système d'ailettes fixes dans lequel celles-ci ayant un profil excentrique permettaient au projectile d'entrer facilement dans l'âme et ne le laissaient sortir que forcé. lorsqu'il était pressé par les gaz enflammés de la poudre. Pour le faire voir, soit (Fig. 55) une section faite dans la partie cylindrique du projectile et une section de l'âme supposées placées concentriquement en O, l'ailette avant un profil mixtiligne, la base ab suivant la circonférence, le côté opposé cd en arc de cercle ayant son centre C à côté de celui de l'axe du projectile, et présente ainsi deux côtés bc, ad inégaux; le profil de la rayure est tracé du même centre C, et avec le même rayon; il est prolongé jusqu'en f au delà du grand côté, de manière à laisser un certain vide; il est aussi prolongé d'une petite quantité en g, au delà du petit côté. De cette façon, quand le petit côté de l'ailette est rapproché du petit côté de la rayure, le projectile se trouve concentrique à l'âme, et quand le grand côté de l'ailette presse le grand côté de la rayure, il y a un jeu suffisant pour que le projectile puisse glisser dans l'âme depuis la bouche jusque contre la charge de poudre; il s'appuie par une ou par plusieurs ailettes sur le fond de la rayur

253. Régularité du tir résultant d'une position déterminée du centre de gravité, relativement au centre de figure, dans les obus excentriques. La position du centre de gravité d'un obus excentrique dans un sens déterminé par rapport au centre de figure dans les bouches à feu, est

inférieure, sans éprouver de résistance et sans que la partie cylindrique du projectile puisse toucher l'ame.

Le projectile étant dans cette situation représentée en pointillé sur la figure, l'ailette est dans la partie inférieure de la rayure, le grand côté à gauche pour un observateur placé à la culasse; la rayure MN étant inclinée à gauche, on voit que quand le projectile sera poussé par les gaz de la poudre, parallèlement à l'axe, le petit côté ad de l'ailette se rapprochera de la partie mn de la rayure située à droite et qui est la moins profonde, et l'axe du projectile s'élèvera jusqu'à devenir concentrique à l'âme. A partir de cette position, l'ailette suit la rayure et par suite le projectile prend autour de son axe de figure une vitesse de rotation dont la grandeur dépend de l'inclinaison de la rayure.

On produit le mouvement de rotation dès le départ, si, quand le projectile est au fond, contre la charge de poudre, on a le soin de le faire tourner sur lui-même de bas à droite.

Les premiers essais faits avec ce dispositif appliqué au calibre de 6 ont réussi dans un tir à 600m. Les ailettes étaient faites en alliage d'étain, d'antimoine et de plomb suffisamment résistant, sans qu'il fût assez dur pour dégrader le bronze des bouches à feu. Les ailettes, au nombre de 4 (6 sont préférables), inclinées comme la rayure, occupaient une partie de la longueur de la portion cylindrique. Ce projectile prenait nécessairement le mouvement de rotation, et l'axe conservant sa direction dans le trajet le projectile frappait le but par sa partie antérieure. Ce sont les premiers projectiles à ailettes fixes qui aient réussi dans les canons en bronze et qui aient présenté une solution du problème.

De nouveaux essais ont été faits à l'École d'artillerie de La Fère les années suivantes, en remplaçant chaque ailette par deux boutons dont le profil n'était pas excentrique. (C'est le système adopté en 1858.) Celles-ci ont présenté des inconvénients, et l'on fait actuellement (février 1860) de nouveaux essais dans le système des ailettes excentriques.

une cause de dérivation dans ce sens; il s'ensuit qu'on diminuera les déviations variables d'un coup à l'autre, en plaçant ce centre de gravité constamment dans la même position.

Parmi celles qu'on peut choisir, les positions latérales ne sauraient être adoptées, parce qu'il en résulterait des difficultés pour le pointage. Les positions perpendiculaires à l'axe et dans le plan vertical de projection, ne présentent pas cet inconvénient.

Lorsque le centre de gravité est en dessous, l'excentricité concourt avec le frottement sur la paroi inférieure de l'âme pour augmenter la vitesse de rotation, les déviations latérales sont moins grandes et les portées plus régulières. Ces avantages ont fait donner la préférence à cette position, chez les nations qui ont adopté les projectiles excentriques.

Cependant, quand on remarque que dans ce cas, sous des angles de projection égaux, les portées sur le sol sont beaucoup plus petites, et quand on compare les déviations pour la position inverse avec celle qu'on obtiendrait si l'angle de projection était augmenté de manière à donner des portées égales aux premières, on trouve, dans bien des cas, que c'est la position du centre de gravité en dessus qui donne la plus grande régularité pour une portée donnée.

On obtient l'excentricité des projectiles sphériques et creux, en déplaçant le centre de la sphère intérieure, dans une direction perpendiculaire à l'axe de la lumière de l'obus, d'une quantité ordinairement égale au tiers de l'épaisseur moyenne des parois; de cette manière, l'épaisseur maximum devient le double de l'épaisseur minimum.

Cette disposition ne peut présenter d'avantages, qu'autant que la ligne des centres est constamment et exactement verticale; toute autre position serait la cause de variations dans les portées, et d'augmentation dans les

déviations latérales qui deviendraient alors plus grandes que pour les projectiles ordinaires. On doit croire que dans le tir sur le champ de bataille, par suite de la précipitation qu'on y apporte et de l'émotion du combat, ce système perdrait beaucoup des avantages qu'il paraît présenter dans les expériences et qu'il pourrait devenir ainsi moins avantageux que celui des obus ordinaires; aussi, certaines puissances qui les avaient adoptés à l'exemple d'autres, les ont-ils abandonnés.

Les avantages ne sont plus aussi sensibles pour les obus tirés avec de grandes vitesses, ils ne sont pas non plus bien sensibles pour le jet des bombes tirées habituellement sous de grands angles de projection.

254. Placement du centre de gravité des projectiles ordinaires. Avec les projectiles sphériques ordinaires, il ne peut y avoir que des avantages à disposer de leur excentricité naturelle de telle sorte que le mouvement de rotation ait toujours lieu dans le même sens, en plaçant à cet effet le centre de gravité dans la partie inférieure.

Dans les boulets, l'excentricité naturelle est très-faible, et une position déterminée du centre de gravité n'a qu'une influence difficilement appréciable sur les portées; à plus forte raison n'a-t-elle pas d'influence sensible sur leur régularité ou sur l'étendue des déviations.

Dans les obus, l'avantage qu'on peut retirer d'une position déterminée du centre de gravité est très-limité, par suite de l'obligation où l'on est de placer la fusée et la tumière de l'obus du côté de la bouche de l'obusier; on n'est plus maître alors de placer le centre de gravité dans la verticale du centre de figure, et l'on doit se borner à mettre verticalement le plan méridien qui contient ce centre. Dans ce cas, la position inférieure, qui produit un mouvement de rotation direct, mouvement de même sens que celui qui provient de la pression sur la paroi infé-

rieure de l'âme, donne la plus grande vitesse de rotation et la plus grande régularité dans les portées. Cette précaution, dans le tir avec des vitesses faibles ou avec des vitesses moyennes, augmente notablement la régularité; elle présenterait des avantages marqués dans l'emploi des obusiers à tir plongeant; ces avantages compenseraient peut-être les inconvénients de la complication que cette disposition introduirait dans le service.

L'application au tir des bombes présenterait aussi un avantage appréciable, et diminuerait les déviations latérales.

255. Moyens d'obtenir la stabilité de l'axe de rotation. La forme sphérique du vide des projectiles creux et le déplacement qu'on peut lui faire subir pour obtenir le mouvement de rotation autour d'un axe constamment horizontal, n'assurent pas la stabilité de cet axe. En effet, cette disposition ne fait pas concorder l'axe de rotation avec l'axe principal du moment d'inertie, majeur ou mineur; il y a donc instabilité. On le reconnaît quand on tire plusieurs fois de suite un projectile rendu excentrique et qu'on le met à chaque coup dans la même position; la permanence dans le sens des déviations latérales prouve que l'axe de rotation, d'abord horizontal, s'incline constamment dans un sens déterminé.

On obtiendrait donc beaucoup plus de régularité, si l'on donnait au vide intérieur des obus la forme d'un ellipsoïde de révolution, dont le grand axe serait assez différent du diamètre perpendiculaire. La différence devrait être assez grande pour que le moment d'inertie autour de cet axe surpassât les moments autour des autres axes d'une quantité notable, et qu'elle puisse ainsi assurer la stabilité malgré les inégalités qu'on rencontre dans une fabrication courante. Le grand axe devrait être placé perpendiculairement au plan vertical de projection. L'excentricité pourrait être très-faible, et, pour certains cas, on

pourrait même n'en pas donner; le mouvement de rotation dû à la pression sur la paroi inférieure suffirait pour procurer de la régularité dans le tir.

Une disposition de ce genre dans les boulets permettrait aussi d'obtenir plus de régularité dans le tir; on devrait pour cela réserver un vide elliptique intérieur et excentrique, ou un vide cylindrique, dont l'axe serait sur une . corde très-peu distante du centre de figure.

256. Variations dans les portées dues à la variation de la densité de l'air. La résistance que les projectiles éprouvent dans leur trajet étant proportionnelle à la densité de l'air, les variations de cette densité ou les changements de la température, de la pression barométrique et de l'état hygrométrique, ont, sur la trajectoire et sur les portées, une certaine influence. Quoiqu'elle soit petite, en général, il est néanmoins utile de la connaître. Les tables X et XI rendent cette détermination facile.

Dans l'équation de la trajectoire (63), y=x tang $\varphi-\frac{x^2}{4h\cos^2\varphi}$ % (x,V), la fonction % (x,V) varie avec $\frac{x}{c}$; cette dernière quantité a pour valeur $x\frac{2A\varpi R^2g}{P}$; ici la quantité A est proportionnelle à la densité F de l'air, au moment du tir. Il suit de là, qu'une augmentation dans la densité produira une augmentation proportionnelle dans $\frac{x}{c}$ et une certaine augmentation dans la valeur de % (x,V), augmentation que nous représenterons par Δ % (x,V); par conséquent, l'augmentation dans l'abaissement du projectile sera

$$-rac{x^{2}}{4h\cos^{2}\phi}\,\Delta\,{
m M}(x,{
m V});$$

une colonne des tables de la fonction $\mathfrak{B}(x, V)$ donne les différences $\Delta \mathfrak{B}(x, V)$, pour une variation de 0,01 dans la

valeur de $\frac{x}{c}$; par une simple proportion, on aura donc la variation de $v_b(x, V)$, pour un accroissement quelconque de la densité.

EXEMPLE. Dans le tir du canon-obusier de campagne de 12cm, à obus, à la charge de 1^k000 et à la distance de 600m, on a

$$\frac{x}{c} = 0.8176$$
; $V = 450$ m:s; $h = 10322$ m; $V_0 = 1.0350$.

Si la densité de l'air, au lieu d'être 1,2083, était $\delta = 1,2204$, l'accroissement proportionnel serait $\frac{0,0117}{1,2083}$, ce qui produirait sur $\frac{x}{c}$ une augmentation égale $0.8176\frac{0,0117}{1,2083}$ ou 0.0079. Or, d'après la table X, à (0.8176; 1.0350), ou, plus simplement, à (0.80; 1,00) qui a pour valeur 1.7276, à une augmentation de 0.01 dans la valeur de $\frac{x}{c}$, correspond une augmentation de 0.0122 dans celle de (x) (x, V). On en conclut que pour une augmentation de 0.0079, on aura

$$\Delta$$
 Vb $(x, V) = 0.0079 \frac{0.0122}{0.01} = 0.0096.$

Par conséquent, l'augmentation d'abaissement due à l'augmentation de la densité de l'air est égale à $-\frac{600^{\circ}}{4.10322}0,0096 = -0^{\circ}084$.

Si θ est l'inclinaison au-dessus du plan horizontal de la tangente à la trajectoire, on aura la variation des portées en divisant par tang θ la quantité ci-dessus; et comme on a tang $\theta = \tan \varphi - \frac{x}{2h\cos^2\varphi} s(x, V)$, l'accroissement dans les portées, toute réduction faite, en remarquant que dans le tir horizontal (88, éq. 12) $2h\sin 2\varphi = x \psi(x, V)$, sera

$$\frac{x \Delta y \delta(x, \mathbf{V})}{y \delta(x, \mathbf{V}) - 25(x, \mathbf{V})};$$

une augmentation dans la densité produira, comme on le voit, un abaissement dans la hauteur de la trajectoire, et une diminution dans les portées.

Dans l'exemple précédent où $\Re(x, V) = 1.5101$ et $\Im(x, V) = 2.2932$, la différence dans les portées sera égale à

$$600 \frac{0,0096}{1,5101 - 2.2,2932} = -1 \text{m}86,$$

c'est-à-dire que la diminution sera 1^m86.

En faisant l'application de cette formule à divers exemples, on trouve que les abaissements causés par des augmentations dans la densité de l'air, sont en général peu considérables, mais qu'ils ne sont pas toujours négligeables; ainsi, avec un boulet de 16, tiré à la charge du ½ du poids du boulet, une augmentation de ½ de la densité de l'air à partir de la densité moyenne, laquelle correspond à un changement de 0^m015 dans la hauteur du baromètre, ou de 50 1 dans la température, produirait un abaissement de 0^m08 à 600^m; à la charge de ‡ du poids du boulet, il ne serait encore que de 0m11; mais à la charge de 1/4, ou avec une vitesse initiale de 138m: il serait de 0m56. A égalité de vitesse et de distance, et avec des projectiles différents, on obtiendrait les mêmes abaissements, pour des variations de densité en raison inverse des calibres ou des densités des projectiles.

Une variation de 15° dans la température et de 0m030 dans la hauteur du baromètre, ce qui peut se rencontrer d'un jour à l'autre, produirait sur un boulet de 16 lancé à 600m à la charge de ¼ du poids du boulet, un abaissement de 0m517; cette quantité, qui correspond à une différence de près de 0° 3′ ou à une hausse de 3 millimètres, n'est pas négligeable dans le service.

Ces formules auront surtout une application utile pour rapporter à une densité uniforme de l'air, les résultats

d'expériences faites en des jours différents, comme nous l'avons indiqué plus haut (218).

§ III.

Trajectoires réclies des projectiles.

257. Données nécessaires pour déterminer la trajectoire réelle d'un projectile. On a donné (sections III, IV, V) les lois du mouvement d'un projectile soumis à l'action de la pesanteur et à celle de la résistance de l'air, dans la direction du mouvement. Elles appartiennent au mouvement, dans un air calme, d'un point matériel pesant et s'appliquent à celui d'un projectile sphérique homogène et sans mouvement de rotation. Nous avons donné la solution des divers problèmes qu'on peut se proposer de résoudre dans ces circonstances.

On a vu (219) qu'il y avait entre les formules et les ordonnées réelles observées de la trajectoire d'un projectile sphérique des dissérences notables, et l'on a reconnu qu'elles tenaient à des causes autres que les deux sorces qu'on a fait entrer dans le calcul. On a reconnu également que les causes déviatrices qui agissaient sur le projectile variaient en grandeur et en direction d'un projectile à un autre, lors même qu'on cherchait à rendre les circonstances du tir aussi égales qu'il est possible; on a reconnu ensin qu'elles variaient, pour le même projectile, dans l'étendue du trajet de la bouche à seu au but. On a fait voir que ces causes déviatrices étaient dues au mouvement de rotation dont les projectiles sphériques ordinaires sont généralement animés.

Pour déterminer le mouvement réel du projectile, on devra connaître, dans tous les cas : 1° la direction du projectile au départ, direction qui, à chaque coup, s'écarte

plus ou moins de l'axe de la bouche à feu, un peu plus généralement au-dessus (225 et 226); 2º la vitesse initiale qui, pour une charge donnée de poudre, varie aussi à chaque coup dans certaines limites (230). Ces données suffisent pour déterminer la trajectoire lorsque l'on considère le projectile comme un point matériel, ou un projectile sphérique homogène et sans mouvement de rotation (sect. III, IV, V).

Si le projectile a un mouvement de rotation, on devra connaître en outre la direction de ce mouvement et la vitesse. On ignore encore, pour la plupart des cas, la grandeur de la force déviatrice qui résulte d'une vitesse de rotation déterminée. On sait seulement qu'elle agit généralement dans la direction et dans le sens du mouvement de l'hémisphère antérieur (245). Nous avons déterminé sa grandeur, pour quelques cas des projectiles excentriques, lorsque l'axe de rotation était perpendiculaire à la direction du mouvement.

Si l'axe de rotation et le plan du mouvement restent parallèles à eux-mêmes durant tout le trajet, la déviation continuera à se faire dans le même sens et avec une intensité qui peut varier avec la vitesse et dont on ne connaît pas encore la relation.

Si l'axe de rotation du projectile se trouve être un des axes principaux d'inertie du projectile, et que sa surface, sans irrégularité notable, soit une surface de révolution autour de cet axe, celui-ci restera parallèle à lui-même, et la déviation continuera dans le même sens. L'axe de rotation conservera une direction d'autant plus stable, que le moment d'inertie, majeur ou mineur, sera plus différent du moment d'inertie moyen.

Lorsque l'axe de rotation ne sera pas un des axes principaux, majeur ou mineur, et que sa position sera déterminée par rapport à ceux-ci, on pourra, par les lois de la mécanique, déterminer à chaque instant du trajet la position de cet axe et cette vitesse; par leur moyen, on déterminera qu'elle est, à cet instant, la direction et la grandeur de la force déviatrice. On pourra négliger, sans erreur appréciable, l'influence de la résistance de l'air sur la vitesse du mouvement de rotation.

258. On tient compte séparément de chacune des forces déviatrices. Les forces déviatrices qui naissent du mouvement de rotation étant en général peu considérables, les vitesses qu'elles produisent et les chemins qu'elles font parcourir sont très-faibles relativement à la vitesse du projectile et à l'étendue du trajet; de sorte que leurs composantes dans le plan perpendiculaire à la trajectoire pourront être regardées comme sans influence sur le mouvement de translation, et que leur mouvement pourra être considéré d'une manière indépendante. Ces considérations sont particulièrement applicables au tir ordinaire des armes à feu et des bouches à feu sous de petits angles au-dessus de l'horizon.

Il en serait de même pour des arcs de trajectoire d'une certaine étendue, dans le tir des bombes sous de grands angles de projection.

259. Application au tir peu élevé au-dessus de l'horizon. Prenons pour exemple le cas d'un projectile tiré sous un très-petit angle au-dessus de l'horizon, et dont l'axe de rotation serait perpendiculaire au plan vertical de projection, et le mouvement direct, c'est-à-dire que son hémisphère antérieur tournerait de haut en bas; nous supposerons de plus que l'axe de rotation étant un axe principal du corps, il restera parallèle à lui-même durant le trajet, et que, par suite, la déviation aura lieu constamment dans le même sens que celui de la pesanteur.

Conservons les notations admises, et nommons de plus q' la force déviatrice exprimée comme la pesanteur q, et

dépendant de la vitesse de rotation; nous la regarderons comme constante dans l'étendue du trajet. Nommons z la déviation qu'elle produit par rapport à la trajectoire normale que décrirait le projectile sans la force g'; la déviation produite par celle-ci et l'abaissement dû à la pesantent g, seront dans le rapport des deux quantités g' et g; de cette sorte, en se rappelant que $V_1^2 = 2gh\cos^2\varphi$, l'abaissement dû à la pesanteur étant $\frac{1}{2}g\frac{x^2}{V_1^2}\sin(x,V)$, la déviation sera

$$z = \frac{1}{2}g' \frac{x^2}{V_1^2} v_b(x, V).$$

Dans le cas que nous considérons, la courbe restera plane; elle sera seulement plus abaissée que la trajectoire normale.

Si le plan de rotation passant par la trajectoire au départ n'est pas vertical, et que, par exemple, la partie inférieure soit inclinée vers la gauche, la déviation se fera dans le plan du mouvement et dans le sens inférieur à gauche.

Si l'axe de rotation n'est pas perpendiculaire à la tangente à la trajectoire, la force déviatrice sera diminuée; s'il est dans le plan vertical, par exemple, la cause déviatrice latérale sera d'autant moins grande que l'axe sera plus rapproché de la direction du mouvement, et s'il se confondait avec lui la déviation serait nulle. Dans tous les autres cas, la force déviatrice agira dans une direction perpendiculaire au plan qui passe par l'axe et par la tangente à la trajectoire.

La valeur de g' dépendra donc de l'inclinaison; la loi suivant laquelle elle agit nous est inconnue; mais on pourrait supposer, comme on l'a admis pour l'inclinaison des surfaces planes, et cela jusqu'à ce que des recherches expérimentales nouvelles aient permis de l'apprécier plus

exactement, qu'elle est proportionnelle au carré du sinus de l'inclinaison.

Si l'axe de rotation n'est pas un des axes principaux d'inertie du mobile, il changera de direction durant le trajet et variera suivant des lois connues; d'après cela, on connaîtra à chaque instant la grandeur de la force déviatrice et sa direction, et l'on pourra encore déterminer à chaque instant la position du mobile relativement à la trajectoire normale.

260. Représentation du mouvement réel des projectiles. Pour représenter le mouvement réel d'un projectile tiré sous un petit angle au-dessus de l'horizon, imaginons un plan qui soit toujours perpendiculaire à la trajectoire normale et qu' reste par conséquent sensiblement vertical; supposons en outre qu'un de ses points suive exactement la trajectoire et se meuve avec la même vitesse que le projectile.

En traçant par ce point et dans le plan mobile une horizontale et une perpendiculaire à cette ligne, cette perpendiculaire restera dans le plan vertical de projection et le projectile, dans ses déviations, restera dans ce plan; sa position, relativement aux deux droites prises comme axes des coordonnées, indiquera donc la déviation verticale, la déviation latérale et la déviation absolue. Le lieu des positions successives sur ce plan, sera la courbe des déviations. En marquant par des points, sur cette courbe, les positions du projectile à des intervalles égaux et assez rapprochés, on aura la représentation complète du mouvement.

D'après ce que nous avons dit, on voit que si l'axe de rotation du mobile est un des axes principaux d'inertie, la déviation se faisant constamment dans le même sens, la courbe des déviations sur le plan des coordonnées mobiles, sera une ligne droite, et que celle-ci ne sera autre que la trace du plan méridien perpendiculaire à l'axe de rotation.

En supposant que la trajectoire normale soit rectifiée et réduite à sa projection horizontale, les déviations rapportées à cette ligne seront, avec les abaissements dus à la pesanteur, dans le même rapport que la force déviatrice g' à la pesanteur g. D'après cela, il deviendra très-facile de les déterminer.

Pour rendre les effets de ces déviations plus apparents et plus faciles à saisir, on peut les projeter sur le plan horizontal et sur le plan vertical passant l'un et l'autre par la trajectoire normale rectifiée. On choisira les longueurs du trajet pour abscisses et les projections pour ordonnées; celles-ci seront prises à la même échelle que les coordonnées du plan mobile, plus grande que celle des abscisses.

Pour compléter la représentation du mouvement d'un projectile, on devra tracer la trajectoire normale, répondant aux mêmes abscisses, avec des ordonnées prises à une échelle plus grande; cette trajectoire sera constante pour tous les projectiles tirés dans les circonstances qu'on regarde comme égales; chacun d'eux ayant une trajectoire réelle particulière et différente, celle-ci sera représentée par une courbe particulière.

261. Cas où la direction de l'axe de rotation est variable. Si l'axe de rotation du mobile ne se confond pas avec l'un de ses axes principaux d'inertie, majeur ou mineur, et qu'on connaisse sa position par rapport à ceuxci et la grandeur respective des moments d'inertie, on pourra encore déterminer la loi des déviations. Ce problème, très-compliqué, a été traité analytiquement par Poisson, dans certaines hypothèses et pour des cas parti-

^{&#}x27;Recherches sur le mouvement des projectiles dans l'air, en ayant égard à leur mouvement de rotation, par S. D. Poisson.

— Journal de l'École polytechnique, 1839.

culiers; nous allons indiquer le moyen de le résoudre complétement par points, dans le cas général.

On divisera la durée du trajet en intervalles déterminés t', t''....., égaux entre eux ou inégaux et en assez grand nombre, quatre ou cinq au moins. Pour chacun de ses intervalles on calculera les longueurs du trajet.

En partant de la position de l'axe de rotation et de la vitesse de ce mouvement au sortir de la bouche à seu, on déterminera après chacun de ces instants la position de cet axe et cette vitesse. Les principes de la mécanique et les formules du mouvement de rotation des corps', ou les considérations géométriques sur le mouvement de rotation ', en donnent le moyen.

Cela fait, on tracera sur le plan des coordonnées mobiles, ou plan des déviations, la trace du plan qui passe par la tangente à la trajectoire et par l'axe de rotation; la perpendiculaire à cette trace sera la direction de la déviation initiale du mouvement de rotation; si g' est la force déviatrice qui correspond à la vitesse de rotation dans le premier intervalle, $\frac{1}{2} g't'^2$ sera le chemin latéral parcouru ou la déviation après ce premier instant; on portera cette quantité sur la droite; la vitesse acquise dans cette direction sera g't'.

Dans le second intervalle t'', et sans la force déviatrice, la déviation produite eût été g't't''; mais la force déviatrice agissant suivant une direction un peu différente, que l'on connaît, et étant représentée par g'', elle ferait, si elle était seule, parcourir au mobile un espace $\frac{1}{2}g''t''^{2}$; le chemin réellement parcouru sera donné en grandeur et en direction par la diagonale du parallélogramme construit sur ces deux lignes, ou, plus exactement, l'extrémité

[·] Mécanique de Poisson.

² Théorie du mouvement de rotation des corps, par Poinsot.

de cette diagonale sera la position du mobile à la fin du deuxième intervalle.

La vitesse, à la fin de cet intervalle, sera donnée en grandeur et en direction par la diagonale du parallélogramme construit, en prenant pour côtés et sur les mêmes directions la vitesse g't' au commencement de cet instant, et la vitesse g''t' qui serait acquise pendant cet intervalle par la force déviatrice seule. On continuera ainsi pour tous les autres intervalles.

On obtiendra un peu plus d'exactitude dans les résultats, en appertant à cette méthode les modifications déjà indiquées (156 et 157) pour le tracé des trajectoires.

En projetant les points obtenus de cette manière, sur les axes des coordonnées verticales ou horizontales, on aura les déviations dans l'une et dans l'autre de ces directions.

262. Trajectoire dans le cas de plusieurs causes déviatrices coexistantes. Si le projectile n'est pas projeté suivant l'axe de la bouche à feu, les écarts dus à cette circonstance seule auraient lieu suivant la ligne d'intersection du plan mobile des coordonnées avec le plan qui passe par l'axe de la bouche à feu et par la direction de la ligne de projection effective. Ces écarts seront proportionnels à la tangente de l'inclinaison et aux distances de la bouche à feu. Les déviations qui résultent de cette cause devront être ajoutées à celles des causes précédentes, si elles existent en même temps.

Si l'air n'est pas calme, le projectile sera soumis à l'effet du vent; on déterminera les déviations qui en résultent, comme on l'a déjà indiqué (232 à 235), et on les ajoutera à la composante horizontale des autres déviations.

En calculant de cette manière des trajectoires dans diverses hypothèses de vitesse et de direction du mouvement de rotation, et en les comparant à celles qu'on observe effectivement, on verra que ces déviations, dont quelques-unes sont très-singulières, s'expliquent facilement par l'existence de ces diverses causes. Réciproquement, d'après les déviations observées, on pourra déterminer les causes qui ont dû y donner naissance.

§ IV.

Trajectoire des projectiles oblongs dans les ennons rayés.

263. Nécessité de tenir compte de la dérivation. Les projectiles oblongs, tirés dans des canons rayés en hélice, et introduits récemment dans l'artillerie des diverses puissances, doivent être ici l'objet d'une étude spéciale, qui cependant ne peut encore être que générale, vu que les formes des projectiles ne sont pas définitivement arrêtées Chaque projectile devra être l'objet de déterminations particulières, en ce qui concerne certains coefficients.

Nous ne nous occuperons actuellement que du tir sous de petits angles de projection, le seul encore pratiqué.

On a vu plus haut (252) que le projectile oblong ne suit pas la trajectoire qui résulterait de sa vitesse de translation, de la pesanteur et de la résistance tangentielle de l'air; ainsi, la vitesse initiale de la balle creuse des cartouches d'infanterie, du poids de 32s, tirée à la charge de 4s5 dans le fusil d'infanterie rayé, est égale à 345m; en prenant A = 0,019 pour le coefficient de la résistance de l'air, on trouve que l'abaissement, au-dessous de la ligne de tir, serait de 13m60 à 400m. Mais, au contraire, l'abaissement observé dans des expériences précises est de 10m70; on en conclut qu'il y a eu une dérivation verticale de 2m90.

Cotte dérivation peut être comparée, soit à la pesanteu

soit à la dérivation due au vent. Dans la première hypothèse, en remarquant que l'abaissement est proportionnel à la pesanteur, on voit que l'on rendrait compte de l'abaissement observé, en réduisant la pesanteur dans le rapport de 13m60 à 10m70, ou dans celui de 9,809 à 7,72; c'est comme si la balle, dont le poids est de 32s, était pressée de bas en haut, avec une force constante égale à 6s82. Dans la seconde hypothèse, on obtiendrait la même dérivation si la balle, étant sphérique, de même diamètre et de même poids, la vitesse du vent dans le sens vertical, et dirigée de bas en haut, était égale à 3m. 40.

Outre cette dérivation verticale il en existe une autre, qui est horizontale, et du même genre, et qu'il importe aussi de connaître, afin de diriger le tir en conséquence.

On peut rechercher quelle est celle de ces deux hypothèses qui représenterait le mieux la dérivation, soit d'une force constante comme la pesanteur, soit d'une force déviatrice comme celle du vent; ou essayer d'autres lois de déviation plus ou moins rapides; et, dans ces diverses hypothèses, rechercher l'équation de la trajectoire et celles de l'inclinaison, de la durée et de la vitesse, pour un trajet donné.

264. Équation de la trajectoire des boulets oblongs. — La force déviatrice étant comparée à la pesanteur. Supposons d'abord que la force déviatrice soit constante comme la pesanteur, mais dirigée de bas en haut. Il suffira de diminuer la pesanteur g d'une quantité g'. La trajectoire d'un projectile oblong tiré dans un canon rayé, en conservant les notations ordinaires (art. 63), sera, dans cette hypothèse,

(1)
$$y = x \tan \varphi - \frac{g - g'}{2} \frac{x^2}{V_1^2} \psi_0(x, V);$$

dans cette expression g' est une force déviatrice verticale agissant de bas en haut, à l'inverse de la pesanteur.

Admettons que la dérivation horizontale suive la même loi, sauf la grandeur de g' que l'on remplacera par g'', la dérivation z aura pour expression

(2)
$$z = \frac{g''}{2} \cdot \frac{x^2}{V_{\cdot}^2} vb(x, V).$$

La force g" agira latéralement et de gauche à droite, pour l'observateur placé du côté de la culasse, quand les rayures du canon, comme ordinairement, s'inclinent à droite sur la génératrice supérieure.

Inclinaison de la trajectoire; durée; vitesse. L'équation (1) de la trajectoire du projectile oblong étant de même forme que celle du projectile sphérique, la tangente de l'inclinaison à une distance horizontale x sera (art. 64)

(3)
$$\tan \theta = \tan \varphi - \frac{(g - g')x}{V^2} \mathfrak{J}(x, V).$$

La durée t du trajet et la vitesse V du projectile auront les mêmes expressions respectives :

(4)
$$t = \frac{x}{V_1} \dot{\otimes}(x, V); \quad v = \frac{V}{\mathcal{O}(x, V)} \cdot \frac{\cos \varphi}{\cos \theta}.$$

Lorsque les inclinaisons au-dessus de l'horizon seront très-faibles, la dernière expression se réduira sensiblement

$$\dot{\mathbf{a}} \ v = \frac{\mathbf{v}}{\mathbf{v}(\mathbf{x}, \mathbf{V})}.$$

265. Equation de la trajectoire des boulets oblongs. — La force déviatrice étant comparée à celle du vent. Dans la seconde hypothèse, celle d'un vent agissant verticalement de bas en haut, l'ordonnée de la trajectoire doit être augmentée du relèvement dû au vent supposé vertical. Or, cette expression, pour une vitesse égale à W et

à une distance x, est

$$z = \frac{W}{V_c} [\oplus (x, V) - 1]$$
 ou $\frac{x^2}{4c} \frac{W}{V_c} (1 + V_o) F \frac{x}{2c}$

W est la vitesse d'un vent qui agirait verticalement de bas en haut; c doit être calculé, dans cette expression comme dans $\mathfrak{G}(x, V)$, d'après le diamètre et le poids du projectile supposé sphérique, mais avec une valeur de A plus petite, et qui, d'après ce qui a été indiqué pour des balles de plomb pleines, a été A = 0.018; et, pour les balles creuses à la partie postérieure, A = 0.020.

D'après cela, l'équation de la trajectoire d'un projectile oblong dans un canon rayé sera

(5)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{\mathbf{V}_1^2} \mathfrak{V}_0(x, \mathbf{V}) + \frac{x^2}{4c} \frac{\mathbf{W}}{\mathbf{V}_1} (\mathbf{1} + \mathbf{V}_0) \mathbf{F} \frac{x}{2c},$$

ou, en remarquant que $V_0 = \frac{V_t}{r}$,

(5*)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V_{\cdot}^2} \left[\text{Vb}(x, V) - \frac{Wr}{2qc} V_0 (1 + V_0) F \frac{x}{2c} \right];$$

de telle sorte que l'équation de la trajectoire des boulets oblongs, tirés dans les canons rayés, ne diffère de celle des projectiles sphériques qu'en ce que le facteur $\mathfrak{B}(x, V)$

doit être diminué de
$$\frac{Wr}{2gc}V_0(1 + V_0)F\frac{x}{2c}$$
.

Voir (art. 311, éq. 3) une autre simplification. La dérivation horizontale z sera

(6)
$$z = x \frac{W'}{V_1} [\mathfrak{D}(x, V) - 1]$$
 ou $\frac{x^2}{4c} \frac{W'}{V_1} (1 + V_0) F \frac{x}{2c}$.

Dans cette expression W' est différent de W et agit horizontalement de gauche à droite.

Inclinaison de la trajectoire; durée; vitesse. Dans l'hy-

ou

pothèse d'une force déviatrice comme le vent, on obtient l'expression de la tangente en différentiant la valeur de y de l'équation (5) ou (5^{*}) par rapport à x, ce qui donne, toute réduction faite,

(7)
$$\tan \theta = \tan \theta - \frac{gx}{V_1^2} \delta(x, V) + \frac{W}{V_1} \frac{x}{2c} (1 + V_0) F' \frac{x}{2c}$$

(7*)
$$\tan \theta = \tan \theta - \frac{gx}{V_{\cdot}^2} \left[\delta(x, V) - \frac{Wr}{2gc} V_0 (1 + V_0) F' \frac{x}{2c} \right];$$

de telle sorte que l'expression de l'inclinaison de la trajectoire d'un boulet oblong ne diffère de celle d'un projectile sphérique qu'en ce que le facteur s(x, V) doit être diminué de $\frac{Wr}{2ac}V_0(1+V_0)F'\frac{x}{2c}$.

Cette diminution ne diffère de celle qui se rapporte aux ordonnées (éq. 5*) qu'en ce que $F\frac{x}{2c}$ est remplacé par $F'\frac{x}{2c}$; relation analogue à celle qui existe entre $\mathfrak{B}(x, \mathbf{V})$ et $\mathfrak{S}(x, \mathbf{V})$.

Quant aux durées et vitesses, elles conservent les mêmes expressions que plus haut (art. 264, éq. 4).

266. Formules de dérivations plus rapides. Si la dérivation donnée par la formule précédente ne croît pas assez rapidement avec les distances, on pourra substituer à $\mathbf{F} \frac{x}{90}$, soit $e^{\frac{x}{7c}}$, soit $e^{\frac{x}{c}}$, ou simplement remplacer $\frac{1}{c}$ par

à F_{2c} , soit e^{c} , soit e^{c} , ou simplement remplacer $\frac{1}{c}$ particle $\frac{n}{c}$ et notamment dans F_{2c} .

L'équation de la trajectoire serait avec $e^{\frac{x}{2c}}$

(8)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V_1^2} \vartheta_b(x, V) + \frac{x^2}{4c} \frac{W}{V_1} (1 + V_0) e^{\frac{x}{2c}},$$

ou

(8°)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{W_1^2} \left[v_b(x, V) - \frac{Wr}{2gc} V_0(1 + V_0) e^{\frac{x}{2c}} \right].$$

La tangente de l'inclinaison donnée par la différentiation de y par rapport à x sera

(9)
$$\tan \theta = \tan \theta - \frac{gx}{V_{i}^{2}} \delta(x, V) + \frac{x}{2c} \left(1 + \frac{1}{2} \frac{x}{2c}\right) \frac{W}{V_{i}} (1 + V_{0}) e^{\frac{x}{2c}}$$

ou

(9*) tang
$$\theta = \tan \varphi - \frac{gx}{V_i^2} \left[S(x, V) - \frac{Wr}{2gc} \left(1 + \frac{1}{2} \frac{x}{2c} \right) V_0 (1 + V_0) e^{\frac{x}{2c}} \right]$$

Enfin, avec e^c , on aurait pour équation de la trajectoire

(10)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V_1^2} \psi_b(x, V) + \frac{x^2}{4c} \frac{W}{V_1} (1 + V_0) e^{\frac{x}{c}},$$

ou son analogue comme précédemment.

La tangente de l'inclinaison de la trajectoire, donnée comme précédemment par la différentiation de y, sera

(11) tang
$$\theta = \tan \varphi - \frac{gx}{V_1^2} \Im(x, V) + \frac{x}{2c} \left(1 + \frac{x}{2c}\right) \frac{W'}{V_1} (1 + V_0) e^{\frac{x}{c}},$$

ou son analogue comme ci-dessus.

La durée et la vitesse ont la même expression que cidessus.

267. Comparaison des formules sous le rapport de la dérivation avec les distances. Les dérivations dans les quatre hypothèses considérées (art. 264, 265 et 266) sont

$$\frac{g'}{2} \frac{x^2}{V_1^2} V_0(x, V); \quad \frac{W}{V_1} (1 + V_0) \frac{x^2}{4c} F \frac{x}{2c};$$

$$\frac{W}{V_{1}}(1+V_{0})\frac{x^{2}}{4c}e^{\frac{x}{2c}};\quad \frac{W}{V_{1}}(1+V_{0})\frac{x^{2}}{4c}e^{\frac{x}{c}}.$$

Pour rendre la comparaison plus facile, supposons que la résistance se rapproche de plus en plus d'être proportionnelle au carré de la vitesse; alors V_0 sera négligeable devant l'unité et les qualre expressions ci-dessus deviendront respectivement:

$$\frac{g'}{2}\frac{x^3}{\mathbf{V}_{,i}^2}\mathbf{F}\frac{x}{c}; \quad \frac{\mathbf{W}}{4c}\frac{x^3}{\mathbf{V}_{i}}\mathbf{F}\frac{x}{2c}; \quad \frac{\mathbf{W}}{\mathbf{V}_{i}}\cdot\frac{x^3}{4c}e^{\frac{x}{2c}}; \quad \frac{\mathbf{W}}{4c}\frac{x^3}{\mathbf{W}_{i}}e^{\frac{x}{c}}.$$

Ce qu'on sait des valeurs de $F\frac{x}{c}$ et $F\frac{x}{2c}$ (66 et 67) montre bien évidemment que le décroissement est plus rapide dans la première expression que dans la deuxième, dans la troisième que dans la première. Ce rapport est rendu plus clair par le développement en série qui est respectivement :

$$\frac{g'}{2} \frac{x^2}{V_1^2} \left[1 + \frac{1}{3} \frac{x}{c} + \frac{1}{12} \left(\frac{x}{c} \right)^2 + \frac{1}{60} \left(\frac{x}{c} \right)^3 + \text{etc.} \right];$$

$$\frac{W}{4c} \frac{x^2}{V_1} \left[1 + \frac{1}{4} \frac{x}{c} + \frac{1}{24} \left(\frac{x}{c} \right)^2 + \frac{1}{192} \left(\frac{x}{c} \right)^3 + \text{etc.} \right];$$

$$\frac{W}{4c} \frac{x^2}{V_1} \left[1 + \frac{1}{2} \frac{x}{c} + \frac{1}{8} \left(\frac{x}{c} \right)^2 + \frac{1}{48} \left(\frac{x}{c} \right)^3 + \text{etc.} \right];$$

$$\frac{W}{4c} \frac{x^2}{V_1} \left[1 + \frac{x}{c} + \frac{1}{2} \left(\frac{x}{c} \right)^2 + \frac{1}{6} \left(\frac{x}{c} \right)^3 + \text{etc.} \right].$$

Les formules qu'on vient de donner sont empiriques, sans doute, quand il s'agit de dérivations autres que celles qui sont dues au vent ou à la pesanteur, mais elles sont le plus naturellement applicables, et c'est parmi elles que l'on doit d'abord chercher l'accord avec les résultats d'observation; ou bien, comme on l'a déjà dit, assimiler les dérivations à celles qui se rapportent au vent (art. 265), en remplaçant $\frac{1}{c}$ par $\frac{n}{c}$ et $F\frac{x}{2c}$ par $F\frac{nx}{2c}$, n étant un facteur à déterminer par l'expérience.

268. Applications. Nous donnons ci-après les résultats de l'observation du tir de divers projectiles oblongs.

EXEMPLE. Soit pris pour exemple le tir de projectiles oblongs du diamètre de 0^m160, avec un vide capable de contenir 1^k600 de poudre et pesant 29^k. Ils ont été tirés en Angleterre, en 1850, avec les canons Cavalli et Wahrendorff, aux charges de 3^k628 et 4^k534, sous les angles de 5°, 10° et 15°; on a observé les portées et les durées moyennes des trajets sur 12 coups, et l'on a obtenu les résultats ci-après:

ANGLES de projection.	PORTÉES observées.	DURÉE des trajets.	DÉRIVATIONS latérales moyennes.
degrés 5	mètres 1770	secondes 6,43	mètres 14 57
15	3907	16,38	97 23
10	3239	12,22	92 115
	de projection. degrés 5 10 15	de projection. observées. degrés mètres 1770 2919 15 3907 5 1946 10 3239	de projection. portees observées. des trajets. degrés mètres secondes 5 1770 6,43° 10 2919 11,60° 15 3907 16,38° 5 1946 6,68° 10 3239 12,22°

A l'aide des formules indiquées plus haut on a essayé les diverses valeurs de A ci-après dans l'expression de la résistance de l'air¹, $\rho = A \sigma R^2 v^2 \left(1 + \frac{v}{r}\right)$.

$$A = 0.020, A = 0.018, A = 0.017, A = 0.015.$$

Et l'on a calculé les durées et les portées, d'abord comme si le projectile était sphérique, et, ensuite dans les deux hypothèses,

^{&#}x27; A l'époque où ont été faits ces calculs (décembre 1850) aucune expérience n'avait été faite pour la détermination du coefficient A relative aux projectiles oblongs.

soit d'une force verticale ascentionnelle g', comme la pesanteur, soit d'un vent vertical de vitesse W.

En considérant le projectile comme sphérique et n'éprouvant, par suite, qu'une résistance tangentielle, on a reconnu que quel que soit le coefficient A que l'on adopte, il est impossible de représenter les durées avec une même vitesse initiale sous les divers angles. On a calculé ensuite pour chaque valeur de A la vitesse initiale et la valeur de g qui représentaient le mieux les durées et les portées. On a recherché de même la vitesse initiale et la vitesse W qui représentaient le mieux les mêmes durées et les portées, et l'on a trouvé que la valeur de g0.018 satisfaisait le mieux dans les deux hypothèses. On a trouvé pour vitesse initiale, savoir : g0.348g1.5 à la charge de g1.628.5 et g1.50g1.5 à celle de g1.54 et. ensuite, g2.618 dans la première hypothèse, ou g1.54 cans la seconde.

Dans cette seconde hypothèse, à la charge de 3^k628, les hauteurs calculées aux trois distances observées sous 5°, 10° et 15°, étaient respectivement — 0^m5, 0^m0 et — 1^m0, au lieu d'être zéro (sur le sol). Ces quantités sont tout à fait négligeables. A la charge de 4^k524, les hauteurs étaient respectivement 7^m et 4^m3, sous les angles de 5° et 10°, au lieu d'être zéro, ce qui est encore peu de chose à des distances de 2000^m et 3000^m; mais la divergence sous l'angle de 15° pour une portée de 3900^m était beaucoup plus grande.

Dans la première hypothèse avec g'=0.618, l'accord des ordonnées calculées était un peu moins grand à la charge de 3^k628 , et plus grand à l'autre. Mais, dans les deux hypothèses, la dérivation calculée pour la charge de 4^k524 sous 15° , ou à la distance de 4270^m , était beaucoup trop faible; ce qui fait voir qu'il faudrait adopter une loi de dérivation plus rapide (cette recherche n'a pas été faite).

Les dérivations latérales paraissent suivre les mêmes lois et sont proportionnelles aux dérivations verticales calculées; celles-ci sont, à une exception près, les deux tiers des dérivations horizontales.

Il est à remarquer que le coefficient A = 0,018 est, à très-peu

près, conforme à celui qu'a donné plus tard l'expérience directe sur des projectiles oblongs.

SECOND EXEMPLE. Prenons pour second exemple les résultats d'observation du tir des projectiles oblongs des canons de campagne adoptés en France (modèle 1858).

RÉSULTATS du tir et dérivations du boulet oblong de 12, pesant 11^k5, dans le canon-obusier rayé, à la charge de 1^k (expériences de La Fère en 1858); moyennes sur 10 coups:

HAUSSES sur Om800.	portées sur le terrain	dérivation à droite.	DURÉES des trajets.
millimètres	mètres	mètres	secondes
31,4	671,0	1,28	2,6
51,0	990,7	3,79	3,9
70,7	1301,3	7,90	5,3
100,5	1726,6	15,97	7,3
130,4	2162,5	18,60	9,3
160,4	2448,5	42,76	11,1
200,3	2822,7	64,45	13,5
240,3	3179,5	96,55	· "

Les durées des trajets permettent de déterminer la vitesse initiale du projectile et de vérifier la valeur de A = 0,018 indiqué par l'expérience sur des balles de plomb.

Les données sont $P=11^k5$, $2R=0^k119$, A=0.018; d'où $c=2923^m$ et $\frac{1^m}{c}=0.0003417$. Les hausses indiquées pour la longueur 0^m800 entre la plate-bande de culasse et le plus grand rensiement du bourrelet, donnent directement les tangentes des inclinaisons et, par suite, les angles de projection. Ces hausses d'ailleurs sont relatives au point touché du sol, La durée du trajet étant t, on aura

$$=\frac{x}{V_t} \otimes (x, V), \quad \text{d'où} \quad V = \frac{x}{t} \otimes (x, V).$$

Ayant, pour chacun des deux résultats, x, t et une valeur approchée de V, qui entre dans $\mathfrak{O}(x,V)$, on déterminera la valeur de V,; ou, on la regardera comme très-approchée pour une seconde opération qui donnera la valeur définitive de V, ou $V\cos\varphi$; d'où l'on déduit V. En prenant la moyenne sur les quatre résultats intermédiaires, on a trouvé 307m:5. Cette vitesse et A = 0.018 représentent les durées observées à 0.018 a 0.018 représentent les durées observées à 0.018 représentent les durées durées observées à 0.018 représentent les durées durées durées du 0.018 représentent les durées durées

La vitesse étant déterminée on a cherché quelle valeur devait être donnée à W dans la formule $z=\frac{x^2}{4c}\cdot\frac{W}{V_1}(1+V^\circ)F\frac{x}{2c}$, pour représenter la dérivation horizontale observée à chaque distance; et, pour cela, on a calculé la dérivation qui résulterait de $W=1^{m:s}$ à chaque distance, et, la comparant à la dérivation observée, on a trouvé des valeurs de W croissant avec les distances depuis $6^{m:s}$ jusqu'à $16^{m:s}$. Ce résultat montre que l'expression de la valeur de z ne fait pas croître les dérivations assez rapidement.

En second lieu, on a essayé l'expression $z=\frac{g''}{2}\frac{x^2}{V_i^2} \, \mathfrak{V}_{\mathfrak{b}}(x,V)$ et l'on a trouvé pour g'' des valeurs croissant avec les distances depuis 0,46 jusqu'à 0,88, ce qui indiquait que l'accroissement quoique plus rapide que le premier ne l'était pas suffisamment.

En troisième lieu, on a dans les premières expressions substitué $e^{\frac{x}{2c}}$ à $F\frac{x}{2c}$; on a trouvé pour W des valeurs croissant depuis W=7.2 jusqu'à 11.8; l'accroissement de z étant trop peu rapide, on a essayé, en quatrième lieu, $z=\frac{W}{V_1}(1+V_0)\frac{x^2}{4c}e^{\frac{x}{c}}$. Alors la valeur de W n'a plus présenté que des différences accidentelles provenant des observations et s'est trouvée en moyenne V=6.34; elle représente assez exactement les dérivations observées.

On a calculé ensuite la dérivation verticale; et, pour cela, en conservant A = 0.018; $V = 307^{m:s}$, on a calculé, à l'aide de la formule $y = x \tan g \varphi - \frac{g}{2} \frac{x^2}{V_1^2} v_b(x, V)$, l'ordonnée de la trajectoire à chacune des huit distances observées. Les ordonnées qui devraient être nulles s'il n'y avait aucune force accélératrice ver-

ticale autre que la pesanteur, ont été négatives; la quantité dont elles sont au-dessous de zéro, ou au-dessous du sol, est la dérivation verticale; celle-ci s'est trouvée croissante avec les distances et égale moyennement aux deux tiers de la dérivation horizontale observée.

Ces résultats sont conformes à ceux qu'on a trouvé d'après les expériences rapportées dans le premier exemple.

TROISIÈME EXEMPLE. Nous citons pour troisième exemple les expériences sur le canon de 4 rayé de campagne; dans ces expériences, les durées n'ayant pas été observées, il en résulte une incertitude dans la valeur de la vitesse initiale; c'est pour cette cause que nous n'appliquons pas les formules des dérivations.

RÉSULTAT du tir et dérivations de l'obus oblong cylindro-ogival du calibre de 4, du poids de 4×100, dans le canon de 4 rayé, à la charge de 0×550 (expériences de La Fère en 1858); moyennes sur 50 coups pour chaque distance.

HAUSSES sur 700mm.	PORTÉES sur le sol.	dérivations à droite.	HAUSSES sur 700mm	PORTÉES sur le sol.	DÉRIVATIONS. à droite.
mm	m	m.	щ	m	m
9,8	262	0,75	86,4	1800	22,85
22,0	608	3,05	108,4	2110	32,22
33,8	890	5,42	138,3	2452	46,79
48,5	1177	8,62	172,3	2730	86,80
68,5	1527	15,67	230,2	3114	124,64

§ V.

Application du calcul des probabilités au tirdes projectiles '.

269. Point d'impact moyen. Quoique les causes déviatrices diverses qui agissent sur les projectiles se présentent à chaque coup d'un tir continu, dans un ordre qu'on ne connaît pas à l'avance, l'ensemble d'un grand nombre de coups présente néanmoins certaines lois qu'on peut reconnaître et formuler, au moins d'une manière empirique, et dont l'application présente beaucoup d'utilité; c'est l'objet du calcul des probabilités appliqué au tir.

Supposons qu'une arme soit chargée d'une manière uniforme et constamment dirigée sur un même point d'une cible verticalé ou sur un point placé au-dessus; supposons, de plus, que la vitesse du projectile soit assez grande et l'angle de projection assez petit pour que les trajectoires ne présentent que de faibles inclinaisons avec l'horizontale.

Les points de la cible, ou points d'impact, paraîtront d'abord fort irrégulièrement répartis et l'on ne reconnaîtra aucune loi dans leur arrangement. Mais, à mesure que le nombre des points frappés ira en augmentant, on verra qu'autour d'un point central, les points d'impact sont plus rapprochés entre eux que dans les autres parties, et que le rapprochement de ces points entre eux va en diminuant à mesure qu'on s'éloigne de ce point central.

'Nous donnons ici les principes généraux de l'application du calcul des probabilités au tir; nous donnons également les formules des chances d'atteindre. Nous renvoyons, pour plus d'éclaireissements et pour les démonstrations des formules, à l'ouvrage que nous avons publié, en 1858, sous le titre : Calcul des probabilités, appliqué au tir des projectiles.

Ne considérons d'abord que les hauteurs des points d'impact, comme s'ils étaient tous ramenés horizontalement sur la même verticale, et supposons le nombre des points assez grand pour qu'il se soit établi une sorte de continuité dans leur rapprochement au-dessus et au-dessous du point central. On reconnaîtra facilement une sorte de symétrie entre l'un et l'autre côté, à moins de causes particulières. On verra aussi que le nombre des points d'impact au-dessus de l'horizontale est sensiblement égal à celui des points d'impact situé au-dessous. De plus, si l'on mesure la distance de chaque point d'impact au point central, c'est-à-dire l'écart de chacun des premiers relativement à ce dernier, la somme des écarts en dessus sera sensiblement égale à celle des écarts en dessous. Tout cela résulte de la synfétrie qui tend à s'établir dans les écarts en dessus comparés aux écarts en dessous.

La condition d'égalité dans les deux sommes d'écarts sert à déterminer d'une manière précise la position du point central; pour obtenir la hauteur de ce point, ou la hauteur moyenne de tous les points d'impact, il suffit de prendre la somme des hauteurs avec leurs signes, lesquels seront positifs pour les écarts au-dessus de l'horizontale et négatifs pour les écarts au-dessous, et de la diviser par le nombre des points. Le point ainsi obtenu jouit, en effet, de cette propriété que la somme des écarts des points d'impact situés au-dessus est égale à la somme des écarts des points d'impact situés au-dessous.

Le nombre des points d'impact situés au-dessus peut n'être pas égal à celui des points d'impact situés audessous, mais le rapport de ces deux nombres ne s'écartera pas beaucoup de l'unité et il s'en rapprochera d'autant plus que le nombre des points considérés sera plus grand.

Les mêmes considérations s'appliquent aux écarts laté-

raux, ou mesurés relativement à une ligne verticale tracée sur la cible et rapportés sur une horizontale prise sur cette même cible, laquelle est perpendiculaire au plan de tir. L'on obtient alors une verticale telle que la somme des écarts à droite est égale à la somme des écarts à gauche.

L'intersection de l'horizontale et de la verticale obtenue par la moyenne des hauteurs et par la moyenne des écarts latéraux, est nommée point d'impact moyen.

- 270. Trajectoire moyenne. Si l'on observe la position des points de passage des mêmes projectiles à travers des cibles sans résistance et placées verticalement à diverses distances du point de départ, on aura pour chacune d'elles un point d'impact moyen; si, par la série de ces points, on fait passer une courbe continue, on obtiendra une trajectoire que l'on désigne par le nóm de trajectoire moyenne. On la regarde comme celle autour de laquelle se trouvent les trajectoires particulières et déterminée comme si les causes déviatrices accidentelles se compensaient mutuellement; c'est à cette trajectoire moyenne ainsi déterminée, et qui n'est pas nécessairement une trajectoire réelle, que s'appliquent les formules de balistique, comme on l'a fait voir (art. 218).
- 271. Écart moyen; moyen écart. La considération des écarts rapportés au point d'impact moyen, sert à déterminer le degré de rapprochement ou d'éloignement des points d'impact entre eux et le degré de justesse de tir. Pour cela, l'on fait la somme des écarts en dessus, on l'ajoute à celle des écarts en dessous, lesquelles sommes sont égales, au signe près, et l'on divise le résultat par le nombre des points. Le quotient est ce que l'on nomme écart moyen vertical.

On opère de même quant aux écarts latéraux et l'on a l'écart moyen horizontal. Ces deux écarts ne sont pas nécessairement égaux, même sur une surface verticale.

Le premier est généralement un peu plus grand que le second, à cause des variations dans les vitesses d'un coup à l'autre et des relèvements accidentels du projectile au départ, lesquels n'ont d'effet que dans le sens vertical.

Les écarts sont forts différents si l'on considère les portées en longueur et les écarts latéraux sur un plan incliné ou sur un plan horizontal, comme le terrain.

En mesurant, sur la cible verticale, la distance de chaque point d'impact au point d'impact moyen, on aura les écarts absolus, et leur moyenne sera l'écart moyen absolu.

On peut aussi représenter le degré d'écartement des points par les carrés des écarts. Pour cela, on fait le carré de chaque écart positif ou négatif rapporté au point d'impact moyen; la somme de ces carrés, tous positifs, divisée par leur nombre, donne le moyen carré; la racine carrée de ce nombre est le moyen écart; on désigne aussi ce moyen écart par l'expression quadratique pour le distinguer de l'écart moyen qui est linéaire. On détermine ainsi séparément le moyen écart vertical et le moyen écart horizontal.

Si l'on remarque que pour un point d'impact quelconque le carré de l'écart horizontal, ajouté au carré de l'écart vertical, donne le carré de l'écart absolu, on reconnaîtra que le carré du moyen écart horizontal, ajouté au carré du moyen écart vertical, donne le carré du moyen écart absolu.

Si l'on rapporte les écarts à un point de la cible autre que le point d'impact moyen, la somme des carrés de ces écarts, soit horizontaux, soit verticaux, soit absolus, sera plus grande que s'ils sont pris relativement à ce premier point; c'est-à-dire que le point d'impact moyen jouit de cette propriété, que la somme des carrés des écarts rapportés à ce point est un minimum relativement à la somme des carrés des écarts rapportés à tout autre point; de plus, la différence des moyens carrés est égale au carré de la distance des deux points.

La grandeur de l'écart moyen comme celle du moyen écart représentent l'éparpillement plus ou moins grand des points d'impact sur la cible ou leur écartement réciproque. Il résulte de là qu'à mesure que ces quantités deviennent plus grandes, le nombre de fois qu'une petite partie de ce but sera frappée sur un nombre donné de coups, sera de moins en moins grand; autrement dit, la probabilité d'atteindre le but à un coup donné ira en diminuant. C'est ce que l'on remarque constamment, par exemple, sur les écarts observés dans le tir d'une arme, lorsque la distance du but va en augmentant; les autres circonstances restant les mêmes, généralement, les écarts moyens croissent plus rapidement que les distances.

OBSERVATIONS. On a dit plus haut que sur un but vertical, perpendiculaire au plan vertical de tir, l'horizontale passant par le point d'impact moyen, qui appartient à la trajectoire moyenne, divise le nombre des points d'impact en parties sensiblement égales. Si le plan de la cible s'incline de plus en plus, de telle sorte que la partie supérieure s'éloigne du point de départ en se rapprochant d'un plan horizontal, les distances des points d'impact des diverses trajectoires particulières, mesurées sur le plan, seront de plus en plus grandes. Il en sera de même des points d'impact des trajectoires situées au-dessous de l'horizontale.

Mais, comme les écarts considérés relativement à la trajectoire moyenne, vont en croissant avec les distances, il est facile de voir que les points d'impact fournis par les trajectoires situées au-dessus de l'horizontale, donneront des points d'impact présentant de plus grandes déviations que ceux qui correspondent aux trajectoires situées en dessous, et dont les points d'impact se trouvent alors en decà de l'horizontale.

Il résulte de là que quoique l'horizontale divise les points d'im-

pact en nombres égaux, la somme des écarts des points d'impact situés au delà de l'horizontale, sera néanmoins plus grande que la somme des écarts des points d'impact situés en deçà. Le point de la trajectoire moyenne ne présente donc plus sur un plan incliné, et à plus forte raison sur le sol, la propriété de l'égalité de la somme des écarts dans les deux sens; et, par conséquent, la moyenne des portées sur le plan du terrain ne correspond pas à la trajectoire moyenne; cette trajectoire moyenne donnerait sur le sol une portée moins grande.

On conclut de la que sur le sol le point de la trajectoire moyenne n'est pas donné par la moyenne des portées; il est en deçà. Il convient mieux, pour obtenir ce point, de chercher la ligne perpendiculaire au plan de tir qui partage les points d'impact en deux nombres égaux; c'est une considération dont il faut tenir compte dans les calculs de la trajectoire. L'erreur serait d'autant plus grande que les trajectoires seraient moins inclinées sur le sol. Cette considération s'applique encore au tir ordinaire des bombes, quoiqu'a un plus faible degré qu'au tir des obus et des boulets sur le sol.

272. Des chances d'atteindre des buts de forme et dimensions diverses. Il est important, dans l'emploi des armes à feu et des bouches à feu, de connaître à l'avance la chance d'atteindre un but suivant sa forme et ses dimensions. Cette probabilité dépend de la loi des écarts.

D'après l'observation, on a pu admettre que la probabilité d'un écart donné t est proportionnelle à une puissance d'un nombre plus petit que l'unité, laquelle puissance est égale au carré de l'écart; de cette façon, en prenant pour ce nombre l'unité divisée par la base e des logarithmes naturels, la probabilité de l'écart sera proportionnelle à e^{-t^2} ; par suite, la probabilité que l'écart soit moindre, qu'une quantité donnée sera proportionnelle à l'intégrale fe^{-t^2} . Les limites dépendent de la quantité donnée. Elles dépendront également de la grandeur du moyen écart, et, par l'application du calcul des pro-

babilités, on trouve, en fonction du moyen écart, la probabilité d'atteindre, à un coup donné, des surfaces de formes déterminées.

Nous allons indiquer les résultats principaux de ces formules, en rappelant ce que nous avons dit des moyennes.

B₁, B₂...... B_n étant, sur une cible verticale située à une certaine distance du point de départ du projectile, les hauteurs de n points touchés rapportées à une horizontale tracée sur cette cible; la hauteur de la trajectoire moyenne B_m à cette distance est, en tenant compte des signes,

$$B_m = \frac{B_1 + B_2 + \dots + B_n}{n} = \frac{\Sigma B}{n}.$$

 A_1, A_2, \dots, A_n étant les distances des mêmes points à une verticale tracée sur la même cible, en comptant comme positives les distances des points d'impact situés à droite, et comme négatives celles des points situés à gauche, on aura, pour leur moyenne,

$$A_m = \frac{A_1 + A_2 \dots + A_n}{n} = \frac{\Sigma A}{n}.$$

 A_m et B_m sont l'abscisse et l'ordonnée du point d'impact moyen; il appartient à la trajectoire moyenne à la distance que l'on considère.

Si l'on opère de même à diverses distances, on aura autant de points de la trajectoire moyenne.

Écarts de la moyenne; écart moyen; moyen écart. Les écarts de ces mesures moyennes étant, relativement à la verticale, $a_1 = A_1 - A_m$, $a_2 = A_2 - A_m$,.... et, relativement à l'horizontale, $b_1 = B_1 - B_m$, $b_2 = B_2 - B_m$,.... on aura, pour les écarts pris avec leurs signes,

$$\Sigma a = a_1 + a_2 + \dots + a_n = 0; \quad \Sigma b = b_1 + b_2 + \dots + b_n = 0.$$

Si h et k sont le moyen écart horizontal et le moyen écart vertical, on aura

$$h^2 = \left(\frac{\Sigma a^2}{n}\right)^{\frac{1}{2}}; \quad k = \left(\frac{\Sigma b^2}{n}\right)^{\frac{1}{2}}.$$

Si c_1 , c_2 sont les écarts absolus, on aura, pour le moyen écart absolu,

$$l = \left(\frac{\sum c^2}{n}\right)^{\frac{1}{2}} = \left(\frac{\sum a^2 + \sum b^2}{n}\right)^{\frac{1}{2}} = (h^2 + k^2)^{\frac{1}{2}}.$$

D'après la loi des écarts admise, H et K étant les écarts moyens, horizontal et vertical, le nombre des observations étant assez grand, on a la relation remarquable

$$2h^2 = \sigma H^2$$
 et $2k^2 = \sigma K^2$.

Probabilité d'atteindre des surfaces, des rectangles, des carrés, des cercles. Dans les formules qui se rapportent à la probabilité d'atteindre, on rencontre l'expression suivante, qui dépend de la loi admise des écarts, $\frac{2}{\sqrt{\pi}} \int_0^{\alpha} e^{-t^2} dt$, laquelle est fonction de α seul, nous la représenterons par $\phi(\alpha)$. En voici quelques valeurs:

TABLE des valeurs de $\phi(\alpha)$	$=\frac{2}{\sqrt{\bar{z}}}$	$\int_{\alpha}^{e} e^{-t}$	dt.
-------------------------------------	-----------------------------	----------------------------	-----

α	φα	α	φ(α)	φ(α)	α
0,00	0,00000	1,00	0,84270	0,00	0,0000
0,10	0,11246	1,10	0,88020	0,10	0,0888
0,20	0,22270	1,20	0,91031	0,20	0,1791
0,30	0,32863	1,30	0,93401	0,30	0,2724
0,40	0,42839	1,40	0,95228	0,40	0,3708
0,50	0,52050	1,50	0,96611	0,50	0,4769
0,60	0,60386	1,60	0,97635	0,60	0,5951
0,70	0,67780	1,70	0,98379	0,70	0,7329
0,80	0,74210	1,80	0,98909	0,80	0,9062
0,90	0,79691	1,90	0,99279	0,90	1,1631
1,00	0,84270	2,00	0,99532	0,99	1,8214

La probabilité P d'atteindre une bande verticale indéfinie dont les bords sont à $\pm s$ du point d'impact moyen, laquelle a ainsi une largeur égale à 2s dans le sens horizontal et indéfinie dans l'autre sens, est

(1)
$$P = o\left(\frac{s}{h\sqrt{2}}\right).$$

Cette formule s'applique à une cible verticale ou au tir des bombes et du canon sur le terrain.

La probabilité d'atteindre un rectangle dont la largeur horizontale est s et dont la hauteur est t, est

(2)
$$P = \varphi\left(\frac{s}{h\sqrt{2}}\right) \cdot \varphi\left(\frac{t}{k\sqrt{2}}\right).$$

Si h et k sont égaux ou très-peu dissérents et que la

surface soit un carré dont le côté est s et qu'on fassi $h^* + k^* = l^*$, la probabilité d'atteindre le carré sera

$$P = \left[\phi \left(\frac{s}{l} \right) \right]^{s}.$$

Dans la même circonstance, la probabilité d'atteindre un cercle dont le rayon est r, est

(4)
$$P = 1 - e^{-\frac{r^2}{l^2}}$$
;

d'où

$$r^{2} = l^{2} \cdot \log \frac{1}{\sqrt{1-p}}.$$

Ici log. exprime un logarithme naturel (voir table VII).

La dernière formule (5) donne le rayon du cercle qu'on
a la probabilité P de toucher, à un coup donné.

La justesse de tir d'une arme est égale au quotient de la probabilité d'atteindre un but de peu d'étendue par la superficie de ce but; l'étendue de ce but doit être assez réduite pour que la probabilité d'atteindre ne dépasse pas 0,04, ce qui, quand le but est un carré, réduit son côté à 7.

La justesse peut être exprimée avec plus de précision lorsque l'on connaît h et k; elle a alors pour valeur $\frac{1}{2k} = \frac{0,159155}{k}$

Très-souvent on apprécie la justesse du tir par le rayon du cercle qui renferme la moitié des points d'impact; dans ce cas, lorsque h=k, la formule (5), pour P=0.5, donne le rayon r=1.176h; d'où $h=\frac{r}{1.176}$; la justesse a alors pour expression $\frac{0.220}{r}$.

Dans le tableau ci-après, on donne les rayons des cercles qui renserment 0,1, 0,2... des points touchés d'une cible verticale dans un tir pour lequel h=1.

Probabilité P..... 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 Rayon r...... 0,456 0,667 0,844 1,010 1,176 1,354 1,552 1,795 2,146.

En multipliant par la valeur de h, dans chaque cas, les nombres de cette dernière ligne, on aura les valeurs de k qui se rapportent à la probabilité indiquée dans la ligne supérieure. On suppose ici que h=k ou que ces quantités sont peu différentes et qu'on a pris la valeur moyenne quadratique h_1 , entre h et k, c'est-à-dire $h_1 = \sqrt{\frac{h^2 + k^2}{2}}$.

273. Expression des chances d'atteindre suivant les distances. Le moyen écart observé dans le tir d'une arme variant suivant que le but est plus ou moins éloigné, il importe de le connaître aux diverses distances que l'on veut considérer; le moyen écart dépendant des déviations plus ou moins grandes des trajectoires particulières, on est naturellement porté à supposer ces déviations dues à une cause unique agissant avec plus ou moins d'énergie pour chacune des trajectoires et à représenter le moyen écart par la formule qui représente les dérivations, sauf le coefficient, qui se rapporterait à la moyenne grandeur de la cause. Celle-ci peut être comparée à l'effet du vent ou aux dérivations des projectiles de forme oblongue tirés dans des armes rayées (265, éq. 6). Mais on peut, dans la formule relative à l'effet du vent, faire varier la valeur de c, ou y remplacer $\frac{1}{c}$ par $\frac{n}{c}$ et $\frac{x}{2c}$ par $\frac{nx}{2c}$ dans $F(\frac{x}{2c})$, et l'on aurait alors

(6)
$$z = \frac{nx^2}{4c} \frac{W}{V} F \frac{nx}{2c}.$$

La formule (6) se prête à la presque totalité des cas;

en effet, en donnant à W et à n des valeurs convenablement choisies, la courbe calculée des écarts moyens pourra s'accorder avec la courbe des moyens écarts observés, à l'origine et en deux autres points. Cela suffira toujours pour la précision que donnent les observations.

On pourrait également remplacer F^{nz} par e^{nz}.

Ce sont généralement les écarts moyens H et K plus faciles à obtenir que fournissent les observations anciennes; on en déduira les moyens écarts h et k par la relation $2h^2 = \pi H^2$ ou $2k^2 = \pi K^2$ (272).

On les remplace souvent dans les observations récentes, et avec avantage, par les rayons des cercles qui renferment la moitié des projectiles au but.

EXEMPLE. On donne comparativement ci-après les rayons des cercles qui renferment la moitié des balles sphériques du fusil d'infanterie et la moitié de celles de la carabine des chasseurs à pied, et déterminés par l'observation:

En prenant les distances pour abscisses et les rayons pour ordonnées, on trouvera deux courbes qui présenteront l'apparence de deux trombes; celle du fusil d'infanterie enveloppant l'autre; cette figure rend la comparaison de justesse très-facile. On trouvera les coefficients W et n de la formule (6) qui représentera le mieux les rayons, comme on l'a fait pour ces dérivations. L'on trouve ainsi que la courbe des rayons relatifs au tir du fusil d'infanterie, dans l'exemple ci-dessus, est assez exactement représentée par la formule (6) donnée plus haut, dans laquelle on a conservé les notations admises pour x, c, V_o , V_i , et W_i , en prenant $V = 445^m$ et r_i , étant le rayon du cercle qui renferme la moitié des balles,

$$r_1 = \frac{nx^2}{4c} \frac{W}{V_1} (1 + V_0) F \frac{nx}{2c}.$$

464

SECTION IX.

En preuant n=1, $W=5^{m:s}70$, on obtient les résultats ci-après:

Distances	100m	200m	300m	400m
Rayons calculés	0m34	1m62	4m37	9m40

Les différences entre ces résultats et les nombres résultant du tir ne dépassent pas notablement celles qui tiennent aux erreurs d'observations.

SECTION X.

DES DIFFÉRENTES ESPÈCES DE TIR.

POINTAGE, VITESSES ET TABLES DE TIR.

274. Des différentes espèces de tir. La trajectoire que décrit, dans l'air, un projectile d'un calibre déterminé et dont, par conséquent, le diamètre, la densité et le poids, varient très-peu de l'un à l'autre, dépend essentiellement de l'angle et de la vitesse de projection; on peut faire varier ces quantités dans des limites très-étendues.

Lorsqu'on se donne la vitesse du projectile en déterminant en conséquence le poids de la charge de poudre, on doit déterminer l'angle de projection de manière à faire passer la trajectoire par le point à battre; c'est le cas ordinaire des canons. Dans d'autres cas, comme avec les mortiers, on se donne l'angle de projection, et l'on détermine en conséquence la vitesse initiale que doit avoir le projectile, et, par suite, la charge de poudre que doit recevoir la bouche à feu. L'angle de chute, la durée du trajet, la vitesse du projectile au but et les autres circonstances du tir, sont des conséquences de l'angle et de la vitesse de projection.

Dans d'autres cas, comme dans le tir plongeant destiné à frapper des objets cachés aux coups directs et situés derrière les parapets dont on se couvre dans la défense et la portée nécessaire; cette charge est variable suivant la nature et la qualité de la poudre, et suivant l'état de dégradation de l'âme du mortier.

On choisit l'angle de 60° quand on veut obtenir une grande vitesse de chute pour enfoncer des voûtes ou de forts blindages. On emploie l'angle de 30° quand on veut que le projectile, en tombant, ne s'enfonce que peu dans le sol et que ses éclats produisent plus d'effets meurtriers à sa surface. Lorsqu'on veut que la bombe ne s'enfonce pas et qu'elle agisse comme les obus dans le tir plongeant, on tire les mortiers sous des angles de 15° à 10°.

L'inclinaison la plus usitée est celle de 45°, ou un angle un peu au-dessous, qui, à égalité de vitesse, donne la portée maximun. On regarde cette inclinaison comme donnant le minimum de déviation; cette opinion n'est exacte qu'en ce qui concerne les déviations renfermées dans le plan vertical et provenant d'un écart dans la direction au départ; mais elle ne l'est pas en ce qui concerne d'autres causes de déviation ou les déviations latérales; celles-ci décroissant plus rapidement que les durées des trajets, elles diminuent avec l'inclinaison de la bouche à feu par suite de l'augmentation des vitesses initiales nécessaires pour que les projectiles aient la même portée. L'inclinaison à laquelle correspondent les moindres déviations, dépend aussi de la distance du but, de sa forme, de ses dimensions absolues et du sens dans lequel sont les plus grandes dimensions.

Dans les applications des formules de balistique au tir des mortiers, il est important de tenir compte d'un relèvement habituel de la bombe au-dessus de l'axe des mortiers; l'observation nous en a prouvé l'existence; cette assertion confirme d'ailleurs la comparaison entre les portées, les angles de projection et les durées observées, et qui autrement présente des différences inexplicables.

D'après quelques observations directes sur des mortiers de 22^{cm} , nous avons trouvé l'angle de relèvement moyennement égal à $\frac{2}{3}$ de degré.

278. Pointage des canons et des obusiers. Les canons et les obusiers sont tirés sous des angles variables; ceux-ci vont quelquefois jusqu'à 15° ou 16°, quand on veut que le projectile arrive au but en plongeant derrière les masses couvrantes et qu'il atteigne des objets qu'on ne peut pas découvrir directement.

Les canons et les obusiers portent deux crans, l'un sur la plate-bande de culasse, l'autre sur le bourrelet ou la plate-bande près de la bouche; la ligne qui les joint, et qu'on nomme ligne de mire, passe ainsi par les points les plus élevés de la bouche à feu et se trouve dans le plan qui serait mené par l'axe de celle-ci, perpendiculairement à celui des tourillons.

Les tourillons étant horizontaux, on dirige la ligne de mire sur la crête du parapet; ensuite, on fait tourner la bouche à feu autour des tourillons jusqu'à ce que l'axe ait l'inclinaison voulue; dans cette détermination, on doit tenir compte du relèvement habituel du projectile, au sortir de l'âme (225 à 227).

On mesure l'inclinaison au moyen d'un fil-à-plomb et d'un arc de cercle tracé sur une sorte de triangle évidé en bois, qui affecte ainsi la forme d'un sextan. Les divisions sont plus grandes que sur le quart de cercle employé pour les mortiers et l'on peut pointer avec plus de précision; cette condition est plus importante dans ce tir, parce qu'une petite erreur sur l'inclinaison produit, dans les portées, une différence dont l'étendue augmente d'autant plus que la vitesse est plus grande.

Quand il s'agit d'expériences, on remplace avec avantage les arcs de cercle et le fil-à-plomb, par unc sorte de fausse équerre de grande longueur et un niveau à bulle d'air; l'une des branches se place sur la bouche à feu; l'autre, qui est mobile, sur un arc de cercle ou sur une ligne droite divisée, est mise horizontale à l'aide d'un niveau à bulle d'air.

Pour avoir la véritable inclinaison de l'axe avec ces instruments, il faut tenir compte de l'inclinaison que fait avec cet axe la génératrice de la surface extérieure sur laquelle on les applique.

Cette inclinaison est mesurée par le rapport de la différence des demi-diamètres de deux cercles de la surface du renfort sur lequel on pose l'instrument, à la distance qui les sépare. Ces dimensions sont, en général, données avec exactitude, par les tables de construction des bouches à feu.

279. Pointage au moyen de la hausse. A l'emploi du quart de cercle et à celui d'autres instruments dont les arcs divisés, toujours d'un petit rayon, ne donnent pas une grande précision, on a substitué un procédé dans lequel la longueur de la bouche à feu sert de rayon, et où l'arc divisé en degrés est remplacé par une petite règle divisée en parties égales.

Cette règle est placée à la plate-bande de culasse, sur le rayon qui est perpendiculaire à l'axe des tourillons; la quantité dont elle sert à prolonger ce rayon, s'appelle la hausse. Le rayon visuel qui part de l'extrémité de la hausse et qui est tangent au bourrelet dans les canons, à la plate-bande de la bouche dans les obusiers, est dirigé sur le but; cette ligne de mire fait un certain angle avec l'axe. Lorsque la hausse est déterminée pour la position donnée du but, on fait mouvoir la bouche à feu jusqu'à ce que le rayon visuel passe par le point à battre. Dans cette position, l'axe de la bouche à feu a l'inclinaison voulue, et la trajectoire passe par le même point de la ligne de visée.

Par ce moyen, une seule opération suffit pour pointer;

il en résulte que le procédé est à la fois très-expéditif et très-exact.

280. Relation des hausses et des angles de mire. Soit 0 (Fig. 55) le centre de la bouche à feu, OA le prolongement de l'axe, M le point à battre, P sa projection sur l'horizontale OP; soit OB le rayon du bourrelet, et DC celui de la culasse, situés dans le plan vertical de tir; on mène MB; cette ligne détermine sur le rayon DC de la culasse prolongé un point F, et la hausse CF qui convient à la distance OM. Si le point I est l'intersection du rayon visuel BM avec l'axe prolongé OA, l'angle FID est l'angle de mire égal à l'angle FBG, BG étant mené parallèlement à l'axe OD de la bouche à feu.

L'angle de mire m est facile à déterminer au moyen de l'angle de projection $AOP = \varphi$, de l'angle d'élévation du but $MOP = \epsilon$, et de l'angle BMO = i, sous lequel le rayon de la culasse est vu du but; car, le triangle IMO donne FID = AOM + IMO, ou

$$m = \varphi - \varepsilon + i$$
.

On a déjà fait voir (103) que, tant que les angles ne sont pas grands, c'est-à-dire dans le tir habituel des canons et des obusiers, l'angle de projection rapporté à la ligne qui va de la bouche à feu au but, est sensiblement indépendant de l'élévation de ce but; et, comme l'angle i est constant, cela revient à dire que si le point M s'élève, en restant toujours à la même inclinaison du point O, et que l'inclinaison relative AOM du canon reste la même, la trajectoire passera par le point M et que l'angle de mire FID restera aussi le même. Le rayon visuel FD devra donc constamment passer par le point M, et on devra pointer de la même manière sur le point à battre M, quelle que soit son élévation.

Cette propriété précieuse rend simple et exacte le pointage au moyen de la hausse.

L'angle *i* est toujours très-petit, et on peut le négliger quand les distances du but sont grandes; alors, l'angle *m* est directement donné par les formules qui se rapportent au tir (103, éq. 31 et 32).

281. Calcul des hausses. Comme ordinairement les angles φ et ε sont très-petits, on peut remplacer les arcs par leurs tangentes, et on aura

$$tang m = tang (\varphi - \epsilon) + tang i,$$

ou, en désignant par φ , l'angle de projection relatif et égal à φ — ϵ , on aura plus simplement

$$tang m = tang \varphi_i + tang i$$
.

Si l'on nomme r le demi-diamètre OB du bourrelet, R le demi-diamètre DC de la culasse, H la hausse CF, l la distance des deux cercles, a la distance du but, on aura $\tan m = \frac{R-r}{l}$, et, sans erreur appréciable, $\tan i = \frac{r}{a}$; d'où l'on tirera

$$\frac{R-r+H}{l}=\tan\varphi_1+\frac{r}{a},$$

et

$$H = l \tan \varphi_1 - (R - r) + r \frac{l}{a}.$$

Quand la distance a du but sera grande, et qu'en conséquence on pourra négliger r^{l}_{a} , on aura simplement

$$H = l \tan \varphi - (R - r)$$
.

Les dimensions l et R-r sont données par les tables de construction des bouches à feu, et sont observées rigoureusement dans l'exécution. On pourra donc, pour chaque bouche à feu, dresser une table de la relation des

hausses H, aux angles relatifs de tir φ , ou φ — ϵ , elle sera ainsi indépendante des distances.

En y joignant, comme petite table de correction, les valeurs de $r\frac{l}{a}$, calculées pour quelques distances, on aura facilement la valeur exacte de la hausse.

En partant de la valeur de φ , ou $\varphi - \epsilon$, déjà donnée (103, éq. 31), et qui est tang $(\varphi - \epsilon) = \frac{a}{4h} \mathfrak{V}_b(a, V)$, la formule des hausses sera

$$\mathbf{H} = l \cdot \frac{a}{4h} \mathbf{V}_{b}(a, \mathbf{V}) - (\mathbf{R} - r) + r \frac{l}{a},$$

ou plus simplement, pour les grandes distances,

$$-H = l \cdot \frac{a}{4h} v_b(a, V) - (R - r).$$

282. But en blanc. Lorsque, pour les dimensions R, r et l de la bouche à feu, la charge que l'on emploie, et la distance a du but, l'angle φ , ou φ — e est égal à m, alors H est égal à zéro, et le pointage s'exécute en visant par les sommets des cercles de la plate-bande de culasse et du bourrelet. Ainsi (Fig. 55), le rayon visuel qui passe par les points C et B va rencontrer la trajectoire en m; la distance Bm = a est celle qui satisfait à cette condition. Dans ce cas, on dit qu'on pointe de but en blanc; Om est la distance du but en blanc relative à la bouche à feu, à la charge et aux autres conditions du chargement, l'angle CBG que fait CB avec l'axe est l'angle de mire naturelle; par opposition, les autres lignes de mire sont dites lignes de mire artificielles.

La ligne CB et la trajectoire ont un premier point d'intersection en n, très-près de la bouche à feu, et qui se

confond presque avec le point I, sur l'axe OA. Ce point est à considérer dans le cas du tir des canons à très-petite distance. La seconde intersection m seule détermine la position du but en blanc.

283. Quantité dont on doit viser au-dessus du but pour l'atteindre. On peut apprécier l'inclinaison de la bouche à feu, en déterminant la quantité dont il faut viser au-dessus du but pour l'atteindre.

Si, pour trouver cette quantité, on abaisse du point M une perpendiculaire MQ sur le prolongement BQ de GB parallèle à l'axe, cette ligne sera parallèle à DF, et elle coupera la ligne de mire naturelle CB en q; la similitude des triangles MqB et BFC donnera Mq: CF:: BQ: BG, d'où $Mq = \frac{CF \cdot BQ}{BG}$. Or, dans les limites où l'on peut pointer ainsi, BQ ne diffère pas d'une manière appréciable de OM ou de a, et Mq représente la distance du point visé au but; en l'appelant Q, CF étant la hausse H, on aura

$$Q = H \cdot \frac{a}{l}.$$

Si à la hausse H on substitue sa valeur en fonction de la distance qui est $H = l \cdot \frac{a}{4h} \operatorname{sk}(a, V) - (R - r) + r \frac{l}{a}$, on aura

$$Q = \frac{a^2}{4h} \mathfrak{V}_b(a, V) - \frac{a}{l} (R - r) + r.$$

284. Hausses négatives et quantités dont il faut pointer au-dessous du but pour l'atteindre. Si la distance d'un point à battre tel que m, était moindre que celle du but en blanc, le rayon visuel qui passerait par le sommet du bourrelet viendrait rencontrer le cercle de la culasse au-dessous de la plate-bande; dans ce cas la hausse serait

négative et l'on ne pourrait pas s'en servir pour pointer. Il faut alors viser au-dessous du but d'une certaine quantité pour l'atteindre.

Le sens de la hausse est indiqué par le signe moins, et sa grandeur est donnée par la même formule que précédemment; en faisant $Q_i = -Q_i$, elle aura pour expression

$$Q_1 = a \frac{R - r}{l} - \frac{a^2}{4h} vb(a, V) - r;$$

elle conservera avec les hausses négatives la même relation que précédemment, en faisant H₁ = — H₂, on aura

$$Q_{i} = H_{i} \frac{\alpha}{l};$$

aux distances de la première et de la seconde intersection de la ligne de mire et de la trajectoire, on aura $Q_1 = 0$, et on pointera directement.

Ces dernières considérations s'appliquent particulièrement au tir des armes à feu portatives.

285. Observations relatives au relèvement du projectile et à la position du point de chute sur le terrain. Dans le calcul des hausses, on devra tenir compte du relèvement moyen des projectiles au-dessus de l'axe de l'âme (226 à 228). Il a pour résultat d'augmenter d'autant l'angle de projection et l'angle de mire, ou, ce qui revient au même, tant que les angles restent petits, la tangente trigonométriqué de l'angle de mire est augmentée de la tangente t de cet angle de relèvement; par suite, on doit diminuer la hausse H de t.l, ou regarder R comme augmenté de cette même quantité, comparativement à ce qui aurait lieu sans ce relèvement.

Lorsque le point que frappe le projectile est sur le terrain, l'angle φ — ε doit être compté par rapport à ce point, et il y a lieu de tenir compte de sa position audessous de l'horizontale qui passe par le centre de la bouche à feu, et qui rend alors « négatif sur un terrain horizontal.

286. Cas où la ligne sur laquelle on compte les hausses est inclinée. — Arrondissement du bourrelet. — Crans de mire. Nous avons supposé que la hausse était comptée à partir du derrière de la plate-bande de culasse, et perpendiculairement à l'axe de la bouche à feu. Lorsqu'on applique la hausse sur la génératrice de la surface troncconique du cul-de-lampe, celle-ci étant un peu inclinée, les hausses se trouvent par cela même réduites; pour les ramener à la grandeur qu'elles doivent avoir, il faut les multiplier par la sécante de l'inclinaison.

A mesure que l'on prend des hausses plus grandes et que la ligne de mire s'incline davantage, le rayon visuel ne passe plus par le même point du bourrelet, il s'élève au-dessus; l'inclinaison du canon est donc un peu trop faible, mais la différence est extrêmement petite et peut être négligée, surtout quand l'arrondissement est fait avec un petit rayon.

On compte ordinairement la distance l des demi-diamètres, à partir du derrière de la plate-bande de culasse; on doit remarquer qu'alors la présence d'un cran de mire pratiqué dans cette plate-bande, permet de faire passer le rayon visuel par la circonférence supposée continue du bord postérieur de cette plate-bande; autrement, le rayon visuel partirait de l'extrémité antérieure de la plate-bande, et, dans le tir de but en blanc, il faudrait tenir compte de la diminution de la valeur de l.

Les crans de mire servent essentiellement à donner la direction; l'inclinaison se donne comme si les surfaces des plates-bandes du bourrelet n'étaient pas interrompues.

287. Pointage par l'abaissement de la culasse. On détermine aussi l'inclinaison de la bouche à feu, par le mou-

vement d'un point de la plate-bande de culasse, ou mieux de l'extrémité du bouton de culasse, au-dessous de la position du but en blanc.

On doit remarquer qu'après avoir pointé de but en blanc, c'est-à-dire qu'après avoir dirigé la ligne de mire CB (Fig. 56) sur le point à battre M, H étant la hausse CF qu'on aurait dû employer, on doit encore faire tourner la bouche à feu autour de ses tourillons jusqu'à ce que la ligne FB vienne en CB dans le prolongement de BM; par suite, on verra que l'angle que doit décrire la bouche à feu autour de ses tourillons est égal à FBC, dont la tan-

gente est sensiblement égale à $\frac{H}{I}$.

Soit T le centre des tourillons, G l'extrémité du bouton, et TG = T la distance de ces points; si TK est la position que doit prendre la ligne TG, l'angle GTK devra être égal à l'angle FBC, et on aura sensiblement $GK = \frac{H}{I}t$.

Pour obtenir cette position, on place une règle divisée assez longue suivant GL, perpendiculairement à GT; le point L étant fixe, la longueur de la règle sera diminuée de HT; et, après l'avoir remise en place, on fera tourner la bouche à feu jusqu'à ce que le point G soit arrivé en K, sur le nouveau point de division de la règle. Les petites erreurs qui proviennent de la manière dont on compte les angles, peuvent être négligées, parce que les inclinaisons sont fort petites. C'est un procédé commode, qui permet de continuer à pointer la bouche à feu en la remettant à chaque coup dans la même position, et sans viser de nouveau; il s'applique aussi bien en deçà qu'au delà de la distance du but en blanc. Il présente un grand avantage la nuit, par exemple, avec des bouches à feu A acées sur des plates-formes solides.

288. Inclinaison des tourillons; erreur et correction dans le pointage. Dans le pointage au moyen de la hausse, on a supposé que les tourillons étaient horizontaux; s'ils ne le sont pas, on commet une erreur qu'on peut calculer, et l'on doit corriger le pointage en conséquence.

On suppose que dans la bouche à feu (Fig. 57), dont l'axe DO est prolongé suivant OD, (a) représente la projection sur un plan parallèle à la fois à l'axe des tourillons et à celui de la bouche à feu, (b) une projection perpendiculaire à l'axe des tourillons, et par conséquent parallèle à l'axe de la bouche à seu, (c) une projection sur un plan perpendiculaire à l'axe de la bouche à feu; soit OB le rayon à la bouche, et DC le rayon à la culasse; on mène par le cran de mire B du bourrelet, une ligne parallèle à l'axe; elle coupera le plan de la culasse en un point G; C étant le sommet de la culasse, CF sera égal à la hausse H qui convient à la distance a. En prenant sur la ligne de mire BM = a, on aura un point de la trajectoire. Soit toujours R le rayon DC à la culasse, r le rayon OB au bourrelet, et φ — ϵ l'angle de projection relatif.

Si l'on imagine que la bouche à feu tourne autour de l'axe de l'âme et que le tourillon de gauche s'élève de telle sorte que son axe fasse un angle a avec la position primitive et horizontale (c); la trajectoire ne sera pas changée, ni le point d'intersection I, ni le point touché M; mais, la ligne de mire le sera; le point G sera en G'(a), (c), le point F en F', le point B en B', le point M à l'extrémité de la ligne de mire aura décrit un arc de cercle MM' (c), l'angle MDM' (c) sera égal à a; de sorte que pour que le point frappé soit encore M, le point visé doit être M'. Par conséquent, le point qu'on doit viser, sur un plan perpendiculaire à l'axe, doit être sur la gauche d'une

quantité égale à la perpendiculaire M'P, et plus haut, d'une quantité égale à MP.

Si l'on nomme b la distance OI de la bouche à l'intersection de la ligne de mire avec l'axe, et que l'on remarque que OB et DC étant parallèles, on aura OI

: BG:: OB: GF, d'où OI =
$$\frac{\text{BG.OB}}{\text{GF}}$$
, ou $b = \frac{l \cdot r}{R - r + H}$;

l'on aura aussi D'M : D'I :: FG : BG ; d'où $\frac{D'I \cdot FG}{BG}$ égale D'M ou son égale DM (c), or, D'I = a - b; on aura donc

$$DM = \frac{(a-b)(R-r+H)}{l} = \frac{a(H+R-r)}{l} - r;$$

de là, on déduit pour l'erreur dans le pointage, ou la correction horizontale E = MP, et, l'erreur verticale étant e = PM, en remarquant que $PM = DM (1 - \cos \alpha) = DM \cdot 2 \sin^2 \frac{1}{2} \alpha$, on aura

$$\mathbf{E} = \left(\frac{a(\mathbf{H} + \mathbf{R} - r)}{l} - r\right) \sin \alpha \text{ et } e = \left(\frac{a(\mathbf{H} + \mathbf{R} - r)}{l} - r\right) 2 \sin^2 \frac{1}{2} \alpha;$$

la valeur de $\frac{a}{l}$ étant ordinairement d'un très-grand nombre d'unités, on pourra négliger r devant $\frac{a}{l}r$, et on aura plus simplement

$$\mathbf{E} = \frac{a}{l}(\mathbf{H} + \mathbf{R} - r)\sin\alpha, \quad e = \frac{a}{l}(\mathbf{H} + \mathbf{R} - r)2\sin^2\frac{1}{2}\alpha.$$

En remplaçant, dans ces expressions, $\frac{H+R-r}{l}$, ou dans son égale (281) tang($\varphi - \epsilon$) + $\frac{r}{a}$, par sa valeur en fonction de la distance (103, éq. 31), on aura, pour la

correction horizontale

$$E = \frac{a^2}{kh} \%(a, V) \sin \alpha,$$

et pour la correction verticale

$$e = \frac{a^2}{4h} \Re(a, \mathbf{V}) 2 \sin^2 \frac{1}{2} \alpha.$$

On voit, par là, que l'erreur que l'on commettrait, par suite de la non horizontalité des tourillons, est proportionnelle à la tangente de l'angle de projection; elle est de plus proportionnelle au sinus de l'inclinaison des tourillons, dans le sens horizontal, et au carré du sinus du demi-angle, dans le sens vertical.

D'après l'expression de la hausse en fonction de la distance, et en remarquant que (a, V) croît avec a et avec a, et que a et avec a et que a et avec a et avec

Dans les limites des inclinaisons qu'on peut admettre pour les tourillons, $2\sin\frac{1}{2}\alpha$ sera beaucoup plus petit que $\sin\alpha$; de sorte que les erreurs en hauteur mesurées sur le plan vertical, sont beaucoup plus faibles que les erreurs en direction; mais, si l'on compte les erreurs en portée, sur le plan horizontal, en remarquant qu'elles seraient égales aux premières divisées par la tangente de l'angle de chute, on verra qu'elles seront au contraire généralement exprimées par des nombres plus grands que les premières, quoique beaucoup moins importantes pour l'effet des armes.

On reconnaîtra le degré d'importance de ces corrections, par un exemple particulier. Ainsi, pour le canon lisse de campagne de 12, à la distance du but en blanc, on aura $a=525^{\rm m}$, $R=0^{\rm m}169$, $r=0^{\rm m}1335$, $t=2^{\rm m}086$. Supposons $\alpha=10^{\rm o}$, l'erreur horizontale sera $1^{\rm m}56$, ou environ $0^{\rm m}15$ par degré d'inclinaison des tourillons.

Dans le sens vertical, l'erreur sera 0^m136, et sur le terrain horizontal elle correspondra à environ 5^m.

Si l'on détermine l'inclinaison par la différence de niveau des roues de l'affût et qu'on la suppose $0^{\rm m}10$ sur leur écartement qui est $1^{\rm m}765$, mesuré dans le haut, on aura $\sin\alpha = \frac{0^{\rm m}10}{1^{\rm m}765}$; l'erreur horizontale sera $0^{\rm m}52$. C'est environ $0^{\rm m}05$ par chaque centimètre d'élévation.

On aurait sensiblement les mêmes résultats pour le canon de 8 sur l'affût de campagne.

289. Conditions qui fixent la distance du but en blanc. Quand l'on fixe les dimensions des bouches à feu, on est maître de la différence R-r, et par suite de l'angle de mire m et de la portée du but en blanc, pour une charge de poudre donnée. Cette détermination a une grande importance pour la facilité du pointage. On s'est longtemps attaché à régler l'angle de mire naturel, de façon que la portée de but en blanc fût égale à la distance ordinaire du combat, et, pour le tir des canons aux charges ordinaires de guerre, on l'a fixée entre 450^m et 600^m, suivant leur calibre. Au delà de ces distances, on donne l'inclinaison avec les hausses sans difficulté; en deçà, on doit pointer en visant d'une certaine quantité au-dessous du but. Il arrive par là, que dans une grande partie de l'intervalle, cette quantité est plus grande que la hauteur du but, et que l'opération devient très-difficile, souvent même impraticable contre des hommes ou des cavaliers placés sur un champ de bataille, ou contre les épaulements des tranchées dans les sièges; cette quantité est de 2^m60 avec les canons de campagne à âme lisse, et de 4m et 5m avec les canons de siège, à la charge du $\frac{1}{3}$ ou de $\frac{1}{2}$ du poids du houlet.

Dans les obusiers adoptés en France en 1829, on s'est imposé la condition qu'on n'eût jamais à pointer au-dessous du but d'une quantité aussi grande que la hauteur de ce but, et qu'ainsi en visant au pied on pût toujours atteindre l'objet. Au delà de la portée de but en blanc, les hausses sont par là un peu plus grandes, mais cela ne présente qu'un très-faible inconvénient.

La portée de but en blanc d'une bouche à feu augmente avec le poids de la charge de poudre et avec les modifications qui augmentent la vitesse du projectile. Elle diminue avec les changements en sens contraire.

La portée de but en blanc des fusils des modèles antérieurs à 1840, était de 120^m, le fusil étant sans baïonnette; lorsque le fusil avait sa baïonnette, la ligne de mire devenait à peu près parallèle à l'axe du canon; par suite, il fallait toujours viser au-dessus du point que l'on voulait toucher.

Dans le fusil adopté en 1840, la distance du but en blanc a été portée à 150^m; pour atteindre au milieu du corps un homme situé à une distance plus petite que 150^m, on n'a pas, avec cette arme, à viser plus bas que les genoux, et l'on n'a pas à viser plus haut que la coiffure aux distances plus grandes, du moins jusqu'à celles où le tir conserve encore assez d'efficacité. Dans ces limites, on n'a jamais besoin de hausses.

Avec les carabines des troupes à pied, qui conservent une grande justesse à des distances beaucoup plus grandes, on fait usage d'une hausse particulière fixée sur l'arme.

§ II.

Vitesses initiales.

290. Vitesses initiales imprimées aux projectiles, à l'aide de la poudre dans les bouches à feu. La vitesse initiale que doit posséder le projectile au point de départ considéré, peut lui être imprimée par divers moyens. Telles ont été: les anciennes machines de guerre, l'air atmosphérique comprimé dans les fusils à vent, la vapeur d'eau à une grande tension, etc.; telle est maintenant la poudre enflammée dans les bouches à feu ou dans les armes à feu; nous ne nous occuperons que de ce dernier moyen, actuellement en usage et susceptible d'imprimer de très-grandes vitesses aux projectiles.

La vitesse initiale dépend non-seulement de la nature de la poudre, du poids de la charge, mais encore du mode de chargement. Le mode de chargement doit être approprié aux circonstances et aux conditions qu'il importe le plus de remplir. Telles sont, avec les bouches à feu de campagne, la facilité d'exécution dans le tir et la conservation des munitions dans le transport; avec les canons de siège tirés à grandes charges, la moindre dégradation dans le tir; la possibilité de tirer au-dessous de l'horizon avec les canons de siège et de place; la régularité des vitesses pour le tir à feu plongeant des canons et des obusiers tirés alors à faibles charges.

Pour qu'on puisse faire l'application des formules balistiques à la pratique, on doit connaître dans chaque cas le poids de la charge de poudre qui peut imprimer au projectile la vitesse déterminée et indiquée par les formules; et réciproquement, la vitesse initiale qui résulte d'une charge de poids donné d'une poudre déterminée. Les résultats qui suivent, proviennent d'expériences faites au moyen du pendule balistique avec la poudre ordinaire de guerre et des bouches à feu en très-bon état; ce sont les vitesses initiales, c'est-à-dire les vitesses à la bouche des canons ou des obusiers; ceux qui se rapportent aux canons de l'armée de terre résultent des expériences faites à Metz, de 1836 à 1840; ceux qui se rapportent aux canons de la marine résultent des expériences faites à Lorient, de 1842 à 1846 °; ceux qui se rapportent aux balles de fusil résultent d'expériences faites au Bouchet, en 1848 3.

Les résultats particuliers, c'est-à-dire les vitesses qu'on obtiendra dans chaque cas, avec les bouches à feu et les projectiles de même calibre, et avec des charges de poudre de même poids et de nature à peu près égale, pourront différer d'un coup à l'autre suivant l'état de cette poudre; ce sera là un des éléments qui feront varier les vitesses de quantités notables, et que l'on ne peut pas préciser ici; on se contentera de dire qu'on ne doit pas estimer l'augmentation ou la diminution des vitesses initiales dans le tir du canon et des obusiers d'après celles qu'on déduirait des portées du mortier éprouvette (84 et 16), comme l'ont enseigné jusqu'à ces derniers temps Lombard et plusieurs autres auteurs.

⁴ Archives de l'artillerie, au dépôt central; huitième rapport de la Commission des principes du tir.

² Expériences d'artillerie exécutées à Lorient, à l'aide du pendule balistique. Paris, 1847.

³ Mémorial d'artillerie, nº VII, page 322.

291. Tableau des vitesses initiales des boulets, mesurées au pendule balistique.

CANON	de la marine.	CHARGE VITES.	kg. m:s De 30. 6,000 501 485,000 485 7,500 475 8,750 425 8,000 359 8,000 471 8,500 471 8,500 471 8,500 488 8,000 488 8,000 888 1,500 884
CANON-	de 12.	CHARGE VITES.	m:s nulet. 470 458 458 450 600 394 394 1450 450
_	1 1	_	HI.S kg. 1600 A but 163 A but 163 A but 163 A but 163
CANONS DE CAMPAGNE	de 8 (ancien).	CHARGE VITES.	kg. 0,068 0,125 0,125 0,125 0,505 0,507 0,507 0,750 0,750 0,750 1,125 1,125 1,250 1,750 1,
	67	VITES.	11211111111111111111111111111111111111
	de 12.	CHARGE VITES.	kg. 6000000000000000000000000000000000000
CANONS DE PLAGE	de 8 (ancien).	VITES.	M: 50 10 10 10 10 10 10 10 10 10 10 10 10 10
	de 8 (ancien)	CHARGE VITES.	kg. 0,0831 0,0831 0,0831 0,0831 0,0833 0,333 0,585 0,5
	15.	VITES.	855 846 855 855 855 855 855 855 855 855 855 85
CAN	de 12.	CHARGE VITES.	68. 11. 126.
DE SIÉGE	9	VITES.	158 588 588 159 159 159 159 159 159 159 159 159 159
	de 16.	CHARGE VITES.	6.000 1.
CANONS DE	24.	VITES.	H:S 173 173 188 198 198 198 198 198 198 198 198 198
CAN	de 24.	CUARGE VITES.	11,500 11

Dans les canons de siège et de place, la poudre est renrmée dans une gargousse en papier; on met un bounon de foin sur la poudre et un autre sur le boulet. Dans chargement des canons de campagne, la poudre est rensermée et tassée dans un sachet en serge, le boulet est ensaboté. Les poids marqués d'un astérisque (°) sont ceux des charges ordinaires de guerre.

Vitesses initiales des obus tirés avec les obusiers de siège, de campagne, de montagne et de côte.

OBUS		DE 1	SIER 60m.	OBU:	6cm,	DE (anc Obus d	SIER 15cm. ien). e 7º700	Obt	ier de is ensai avec t	
Obus avec é			de 11 ¹ 200 ensaboté.		us l ½200 saboté.	la char	boté, ge dans achet impon.	POID4	initial	esses es aux ges de
CHARG.	VITES.	CHARG.	VITES.	CHARG.	VITES.	CHARG.	VITE 4.	obus.	14500	34000
kg. 0,250	m:s	kg.	m:s	kg.	m:s	kg.	m:s	kg. 24,18	m:s 248	m:s 338
0,375 0.500		0,200	114,8		189,9	0,500	276 335	26,65 27,95		327 322
0,750		0,400 0,600 0,750	236,1	0,600 234,4 Obus ensaboté Charge		0 de 11 ^k .		29,93 256 345 Ohus de 29*40 non		
1,250 1,500	256,2	1,250	1 '	en sachet avec tampon.		Boulet	4,000; 318 Boulet de 12405		ensab ot é.	
2,000	279,4	1,500	400,9		balles		301 le 12 ^{cm}	CHARG 1,00	0	11E88R. 205
				4,500	\$500. 343	de 1 k 280 0, 270		2,00 3,50		297 375

Les dimensions des bouches à feu et des projectiles auxquelles se rapportent les résultats d'expériences

conte	contenus dans les tabloaux précédents sont données ci-après:	rs les t	ableaua	; précé	lents so	nt don	nées ci	-après :			
DIMENSIONS		N A S	A NOW &			ō	OBUSIERS	S		CAN	CANON-
Children					1		€ <	1		OBO	OBUSIER
et		ਰ	de	•	siége	camp	campagne	-uou	côte		de
POIDS.	-			(ę		-} e	tagne de	de	و	. 19
	zi.	16.	18.	æ	28cm.	16rm.	15cm.	13cm.		S	lėger.
Calibre de l'âme	8	IN I	8	m	E 0	B	a	m m m	8	B	S
Canons de siège et de			0,141,0	0,100		10110	0,1011		0,2240		
de place	2,086	2,978	2,848	2,543	٨	٨	^	٩	A	^	•
~	^	۸	3 ,00	1,746	^	^	٨	٨	۸	1,815	1,746
des trée de la chambre					9	9,5	3	4	9		
ACC UC IA CHAMPIC.	^	^	^	^	008,0	1,640	1,483	0,740	3,16	^	^
Diamètre moyen des projectiles 0,1483	0,1485	0,4295 0,4482 0,4029 0,2200 0,4629 0,1484	0,1182	0,1029	0,2200	0,1629	0,1484	0,1178	0,3200	0,448	0,448
Poids moven des projectiles	و د بد	E 144	1	1	ء وراسر	96 24 25	74 L	, u.	1	, M	, 1
			}	- -	2010	•		<u> </u>	24,44	}	ì

Vitesses initiales des boulets massifs et des boulets creux dans les canons de la marine, d'après les expériences exécutées à Lorient, de 1842 à 1846.

	CAN	CANON DE 30.	30.			CAL	CANON DE 24.	24.		CANON DE 12.	DE 12
Longueur d'âme Calibre		LONG. m 2,645 0,1647	COURT. m 2,458 0,1647	RT. 58 647	\	LO! m 2,5	LONG. m 2,587 0,1525	COU B 2,4	COURT. m 2,430 0,1525		COURT. m 2,111 0,1907
Boulet Diamètre. Poids	massif roulant. 0,1596	creux ensaboté. 0,1602 k	massif roulant. 0,1596	creux ensaboté. 0,1609 k		massif roulant. 0,1474 k	creux ensaboté. 0,1485 1, 8,67	massif roulant. 0,1474 k 11,93	ensaboté. 0,1485 k 8,67		massif roulant. 0,1173
Charge.	Vitesse.	Vitesse.	Vitesse.	Vitesse.	Charge.	Vitesse.	Vitesse.	Vitesse.	Vitesse.	Charge.	Vitesse.
kg 6,000 5,000 4,800 3,780	m:S 804,2 484,7 474,4 655,4	m:s	m:s	m:s 5 532,7 538,3 547,2	kg 4,000 5,000 5,000 9,800	m:s 494,2 477,4 458,9 459,0	H.S 860.9 889.8 838.8 844.9	#84,5 #67,9 #84,4 #87,4	11.5 5.45.5 5.38.4 5.36.8 5.05.9	1,500 1,750 1,500 1,500	M:8 320,7 499,7 488,8 467,0
2,000	829,	426,8	387,9	455,6	1,500	546,9	436,9	546,0	488,7	1,000	405,8

Tableau des vitesses initiales des balles de fusil dans diverses armes à feu portatives, déterminées

an moyen du pendule balistique.	balistique		4	,		
DÉSIGNATION DES ARMES.	CALIBRE de l'arme.	Longveur de l'arme.	rotos de la charge.	Poros de la balle.	viteses de de la balle.	
Armes à canons lisses, avec la balle sphérique de 0-0167.	ន	8	20	50	m:s	
nterie, modèle 1822, tra idem	0,0480 id.	1,06 id.	2 & 0 x	#7,0 id.	4 4 80 80 80 80	
idem	žė.	id.	0,6	ij	944	
Idem idem idem	.e. :	:i::	e 6	.zi ::	994	
double de voltigeur corse.	10.0478	10.	0,0 9,0	ź : ġ	448	
Fusil de dragon, modèle 1899, transformé	0,0178	0,908	6,75	ij	388	
Idem idem idem	ä	ij	00'9	iģ	378	
Idem modèle 1842.	0,0180	0,904	6,78	jd.	378	
Mousqueton de gendarmerie, modèle 1825, transformé.	0.0178	0,788	6,78	zi.	004	
Idem idem idem	id.	ë	0,00	jė.	269	
Idem idem idem		ij.	4,30	'n	318	
rie, modele 1822, tra	Ę	0.483	05,4	z :	0 2	
rismiet we cavalene, idem idem idem idem idem idem	9,04.76 - 12,04.76	9. EG	2,00 2,00	<u> </u>	178	
Armes rayées, au pas de 2"00, avec balles oblongues.						
Fusil modèle 1849, transformé en 1857; balle eseuse.	0,0180	1,01	4,50	33	333	
Fusil de la garde, de voltigeur, balle évidée	0,0178	10,1	4,50	36	343	
Idem idem balle creuse	0,0178	101	4,30	38	828	
Carabine a tige, balle oblongue	0,0178	0,88	4,50	84	1288	
Carabine sans tige, balle creuse	0,0178	0,88	4,50	64 69	557	
Mousqueton d'artillerie sans tige, balle creuse	0,0478	0,58	2,00	22	828	
Pistolet d'officier de cavalerie, rayé, au pas de 0=54, avec balle sphérique de 0=01635, du poids de 25-6	0,0467	0.49	4,00	93,6	124	

292. Formule des vitesses initiales en fonction du poids des charges de poudre. Les tableaux qui précèdent donneront les vitesses des projectiles en usage aux diverses charges de poudre; mais, quand on fera varier le poids de la charge de poudre, le poids ou le diamètre du projectile, ou qu'il sera question de bouches à feu ayant des diamètres ou des longueurs d'âme différentes, la vitesse variera. Nous donnons ici une formule qui représentera assez exactement les variations de la vitesse, quand on partira d'une vitesse connue et d'une charge donnée, au moins dans certaines limites.

Soit 2C le calibre de l'âme, L sa longueur, 2R le diamètre du projectile, P son poids, et m le poids P augmenté de celui du chargement, non compris la poudre; μ le poids de la charge de poudre, l sa longueur, M le poids de la poudre qui remplirait l'âme, et D la densité de cette poudre; on aura $M = \pi C^2 LD$ et $l = \frac{\mu}{\pi C^2 D}$.

Lorsqu'il s'agira du canon, on prendra la densité de la poudre non tassée et on fera $D=840^k$, le mètre étant pris pour unité; lorsqu'il s'agira du tir des armes à feu portatives, on prendra la densité de la poudre tassée et l'on fera $D=950^k$; soit γ un coefficient qui dépendra de la qualité de la poudre, et log exprimant les logarithmes des tables ordinaires; la vitesse V du projectile sera donnée par la relation fondée sur la théorie du mouvement des projectiles dans les bouches à feu',

(1)
$$V = \sqrt{\gamma \cdot \frac{\mu}{m + \frac{\mu}{3}} \log \frac{M}{\mu}} - \delta \frac{C^2 - R^2}{C^2},$$

'Cours d'artillerie de M. le général Piobert; appendice, § III, par M. le général Didion. Lithographie de l'École d'application, en 1846.

à la place de $\frac{C^2 - R^2}{C^2}$ on pourra substituer $2\frac{C - R}{C}$, qui n'en diffère pas sensiblement.

Des expériences sur les vitesses initiales des boulets dans les canons ont conduit à prendre J = 700.

On déterminera y d'après l'un des cas qui s'en rapproche le plus, et on aura

(2)
$$\gamma = \frac{\left(V + \delta \frac{C^2 - R^2}{C^2}\right)^2}{\frac{\mu}{m + \frac{\mu}{3}} \log \frac{M}{\mu}}.$$

On en déduira ensuite la vitesse pour le cas dont il s'agit. Avec les poudres ordinaires de guerre, et pour les obusiers de siège et de campagne, à chambre pleine, on trouve par exemple $\gamma=1000000$; avec l'obusier de montagne, qui est à la limite inférieure des grandeurs, on a $\gamma=900000$; la valeur de γ monte jusqu'à 1200000 avec les canons. Ces nombres ne peuvent être regardés que comme approximatifs et varient avec la nature de la poudre.

293. Application au tir des armes à feu. Les formules (1) et (2) expriment que la perte de vitesse du projectile est proportionnelle au quotient de la différence des sections de l'âme et du diamètre du projectile, par la section de l'âme, ou à très-peu près au rapport de la différence des diamètres à celui de l'âme (différence qu'on appelle l'évent ou le vent), et que c'est à la vitesse corrigée de la perte totale, due à la différence des diamètres, qu'on applique les lois du mouvement des projectiles dans la bouche à feu. Mais, on laissera moins d'importance à ce terme empirique en ne comparant les vitesses dans deux cas divers qu'après avoir ramené la vitesse connue dans un cas à

ce qu'elle serait dans l'autre, à égalité d'évent. Le calcul gagne en même temps en simplicité, et il nous a donné beaucoup d'exactitude dans l'application au tir des armes à feu, comme on va le voir.

Nous conserverons les notations ci-dessus pour le tir dont on connaît la vitesse V, et nous adopterons les mêmes lettres en les affectant de l'accent, pour les éléments du tir, dont la vitesse V est la quantité qu'on cherche.

On reconnaît facilement que si la proportion de l'évent au diamètre de l'âme diminue ou augmente, la proportion des gaz perdus varie dans le même sens, et la vitesse du projectile dans le sens inverse; on admet que, tout égal d'ailleurs, l'augmentation de vitesse, dans les limites en usage, est dans un rapport constant avec la variation dans la proportion de l'évent, c'est-à-dire avec $\frac{2C-2R}{2C}-\frac{2C'-2R'}{2C'}$, et l'expérience a montré, en effet, qu'avec les armes à feu portatives on a

(3)
$$V' = V + 2000 \left(\frac{2C - 2R}{2C} - \frac{2C' - 2R'}{2C'} \right).$$

EXEMPLE. Si dans le fusil d'infanterie, avec la balle de 0^m0167, le diamètre 0^m0180 de l'âme était réduit à 0^m0178, l'évent, qui est 0^m0013 dans le premier cas, serait réduit à 0^m0011, et la vitesse qui, à la charge de 9^g, est 446^{m:s}, serait augmentée de

$$2000 \left(\frac{0{,}0013}{0{,}0180} - \frac{0{,}0011}{0{,}0178} \right) = 21 \, \mathrm{m} \cdot \mathrm{s}$$

et deviendrait 467m:s.

Si les diamètres 2C et 2R restant les mêmes, les poids μ et P et la longueur L changent, on aura

(4)
$$V' = V \sqrt{\frac{\mu'}{\mu'} \frac{(P + \frac{1}{3}\mu)\log\frac{L'}{l}}{(P' + \frac{1}{3}\mu')\log\frac{L}{l}}}$$

Dans cette formule (4) on n'a pas fait varier l avec μ , parce que les applications ont prouvé qu'on obtenait ainsi plus d'exactitude.

Si la longueur de l'âme ne change pas, le dernier facteur du numérateur et celui du dénominateur restent constants et disparaissent; si, au contraire, les poids de la charge et de la balle ne changent pas, ce sont les deux premiers facteurs qui disparaissent.

PREMIER EXEMPLE. La vitesse de la balle de fusil d'infanterie à la charge de 9°, étant $446^{\text{m}:\text{s}}$, quelle sera la vitesse à la charge de 8°? On aura $P=P'=0^{\text{k}}027$, $\mu=0^{\text{o}}009$, $\mu'=0^{\text{k}}008$, $P+\frac{1}{3}\mu=0^{\text{k}}030$, $P'+\frac{1}{3}\mu'=0^{\text{k}}02967$, L=L' et

$$V' = 446 \sqrt{\frac{0,008.0,030}{0,009.0,02967}} = 423.$$

L'expérience a donné 422^m, ce qui est aussi exact qu'on peut l'espérer.

Deuxième exemple. Quelle est la vitesse de la même balle dans le fusil de voltigeur, dont la longueur d'âme est 1^m00? On a L = 1^m06. L' = 1^m00. μ = 0^k009. l = 0^m0372. $\frac{L}{l}$ = 28.5.

$$\log \frac{L}{l} = 1.454$$
, $\log \frac{L'}{l} = 1.429$, et $V' = 446 \sqrt{\frac{1.429}{1.454}} = 442$ m:s.

Si les diamètres 2C et 2R variaient en même temps que d'autres quantités, on devrait d'abord, comme on l'a dit, tenir compte de la variation de l'évent et appliquer ensuite les autres formules.

EXEMPLE. Si la longueur du fusil d'infanterie était réduite à 0^m789 et le diamètre de l'âme à 0^m0178 (canon du fusil double de voltigeur corse), quelle serait la vitesse de la balle de 0^m0167, à la charge de 9⁶, sachant que, tirée dans le fusil d'infanterie, elle est 446^m: s?

La réduction de l'évent seule augmenterait la vitesse de $21^{m:s}$ et la porterait à $467^{m:s}$; on aurait $L = 1^m06$, $L' = 0^m789$,

$$l = 0^{-0372}$$
, $\frac{L}{l} = 28.5$, $Log \frac{L}{l} = 1.454$, $log \frac{L'}{l} = 1.226$; et comme $\mu = \mu'$, $P = P'$, on aura $V = 467 \sqrt{\frac{1.326}{1.454}} = 446$ m:s.

L'expérience ayant donné 445m:s, confirme le résultat du calcul autant qu'on pouvait l'espérer.

La table qui suit suffit pour calculer les logarithmes qui entrent dans les formules ci-dessus.

Nom- bres.	Loga- rithmes.	Diff.	Nom- bres.	Loga- rithmes.	Diff.	Nom- bres.	Loga- rithmes.	Di d .
5,0 5,5 6,0 6,5 7,0 7,5 8,0 9,5 10,0 10,5 11,0 12,5 13,0 13,5 14,0 14,5 15,0	0,699 0,740 0,778 0,813 0,845 0,875 0,903 0,929 0,954 0,978 1,000 1,021 1,041 1,061 1,079 1,097 1,114 1,130 1,146 1,161 1,176	44 38 35 32 30 28 26 25 24 22 21 20 48 48 47 46 45 45 45 45 45 45 46 46 46 46 46 46 46 46 46 46	15,0 15,5 16,0 16,5 17,0 17,5 18,0 19,5 20,0 20,5 21,0 21,5 22,0 23,5 24,0 24,5 25,0	1,176 1,190 1,204 1,217 1,230 1,243 1,255 1,267 1,279 1,290 1,301 1,312 1,322 1,332 1,342 1,352 1,362 1,362 1,371 1,380 1,389 1,398	14 14 13 13 13 12 12 12 11 11 10 10 10 10 9 9	25,0 26,0 27,0 28,0 29,0 30,0 31,0 32,0 35,0 36,0 37,0 38,0 40,0 41,0 42,0 43,0 44,0 45,0	1,398 1,415 1,431 1,447 1,462 1,477 1,491 1,505 1,518 1,531 1,544 1,556 1,568 1,580 1,591 1,602 1,613 1,623 1,633 1,643 1,643 1,653	17 16 16 15 15 14 14 13 13 13 12 12 12 11 11 11 10 10 10

§ III.

Des divers genres de tir.

294. Des divers genres de tir. — Tir de plein-fouet. On distingue divers genres de tir, suivant les effets qu'on veut obtenir.

Le tir direct, appelé aussi tir de plein-fouet, s'exécute ordinairement avec de fortes charges, pour obtenir de grandes vitesses initiales, diminuer les déviations (Sect. IX, § II), augmenter ainsi les chances d'atteindre, frapper avec plus de force, et produire par conséquent plus d'effet; c'est celui qu'on emploie particulièrement avec les canons, quand on se propose de frapper un objet qu'on peut apercevoir; il peut être employé à des distances d'autant plus étendues que le calibre est plus fort et la charge plus grande; celle-ci cependant ne doit pas dépasser le tiers du poids du boulet; au delà de cette charge on a à craindre la dégradation rapide des canons. Il n'y a d'exception que pour le tir en brèche, qu'on exécute à très-courte distance et à des charges plus fortes, mais qu'on limite néanmoins à celle de moitié du poids du boulet. D'après les résultats d'expériences spéciales faites en 1847, sur ce genre de tir, il paraît même possible de réduire cette charge, comme dans les autres circonstances, au tiers du poids du boulet.

Le tir à grande vitesse, qui produit des trajectoires très-étendues et s'élevant peu au-dessus du sol, présente cet avantage, qu'une petite erreur dans l'estimation de la distance, ne conduit qu'à une très-petite différence dans l'angle de projection, et à une très-petite élévation du projectile au-dessus du point à battre; par suite, elle n'empêche pas de frapper un objet d'une certaine étendue

verticale, ni ceux qui sont devant ou derrière. De plus, si le projectile rencontre le terrain en avant de l'objet à battre, il ricoche suivant un angle peu élevé et frappe avec une vitesse encore assez grande pour produire les effets destructeurs qu'on doit en attendre.

Quand un objet est placé sur un terrain favorable au ricochet, il vaut mieux chercher à atteindre le pied de cet objet que le milieu; cet avantage est surtout prononcé lorsqu'il y a de l'incertitude sur la distance; on conserve ainsi les chances de frapper par ricochet, et, de plus, la vue des points de chute sert d'indication sur la distance et permet de rectifier le pointage aux coups suivants.

L'avantage de ces ricochets est assez grand pour que sur un champ de bataille, où l'on est très-incertain sur les distances, et quand le terrain est favorable au ricochet, on tire à dessein sous un angle plus faible que celui qui est nécessaire pour frapper le but directement. De cette manière, le projectile parcourt, en faisant des bonds peu élevés, tout l'espace sur lequel peuvent se trouver des troupes. Ce genre de tir est appelé tir parallèle au terrain.

295. Tir à feu plongeant. Le tir à feu plongeant, appelé aussi tir à ricochet, est destiné à faire pénétrer, derrière un parapet, sous une certaine inclinaison au-dessous de l'horizon, un projectile qui effleure la crête du parapet, et qui, de cette manière, frappe des objets que cet épaulement couvre du feu direct et garantit ainsi des effets du tir de plein-fouet. Si le projectile frappe le terre-plein sous un angle assez petit, il se relève sous une faible inclinaison et peut parcourir, sans s'élever beaucoup, une longue branche d'ouvrage de fortification et frapper ainsi les objets qui s'y trouveraient placés. Mais, on ne doit pas compter souvent sur autant d'efficacité, parce que rarement un projectile pourra ainsi ricocher sur une branche d'ouvrage; le défenseur a en général la précaution d'y

établir des traverses en terre pour couvrir les bouches à feu et les hommes qui y sont placés. Ce genre de tir aurait néanmoins pour effet principal de détruire ces traverses.

Pour pouvoir pénétrer dans l'espace compris entre le parapet et les traverses, le projectile doit arriver en effleurant la crête sous un angle assez grand au-dessous de l'horizon.

On regarde l'angle de 10° comme la limite de ceux sous lesquels le projectile sphérique ricoche sûrement; c'est une limite supérieure d'inclinaison à laquelle on s'arrête généralement; elle est telle qu'avec les hauteurs ordinaires des parapets et des traverses, on laisse peu d'espace à l'abri des projectiles. Si, pour plonger plus près du pied de la masse couvrante, on voulait augmenter l'angle de chute, on serait forcé d'augmenter l'angle de projection, et, par suite, de diminuer la vitesse initiale. De la, résulterait des effets de choc moins considérables et surtout des déviations plus grandes et par conséquent de moindres chances d'atteindre; en un mot, moins d'efficacité dans le tir.

Au contraire, à mesure qu'on emploie une vitesse initiale plus grande, et, par suite, un angle de projection plus petit, l'angle de chute diminue et le projectile rencontre le terrain à des distances de plus en plus grandes de la masse couvrante; il laisse plus d'espace à l'abri de ses atteintes, mais ses déviations diminuent, et il frappe avec plus de force; on s'arrête ordinairement à la combinaison d'angle et de vitesse de projection qui, sur une des plus longues branches d'ouvrages, fait tomber à son extrémité le projectile qui effleure la crête du parapet. On peut prendre, pour fixer ces limites, un parapet de 2^m27 de hauteur, et une longueur de 100^m d'un terreplein horizontal à hauteur de la bouche à feu.

Avec des terre-pleins et des parapets plus élevés, des

branches inclinées vers la place ou de moindre longueur, l'angle de chute sera plus grand; cette limite donne ainsi le ricochet le plus tendu; l'autre donne au contraire le ricochet le plus mou. C'est entre ces limites qu'on se tient ordinairement, et l'on doit choisir la combinaison qui donne le tir le plus efficace.

Pour obtenir des effets plus complets contre un même ouvrage, on emploie concurremment le tir à ricochet tendu qui permet les grandes vitesses, afin de détruire les parapets et les traverses, et par là découvre les objets qu'ils sont destinés à garantir, et le ricochet mou qui laisse moins d'espace à l'abri des atteintes du projectile.

Le tir à seu plongeant peut encore être limité par la construction de la bouche à seu, c'est-à-dire par l'inclinaison qu'on peut lui donner sur son affût.

On a donné (94 et 95) le moyen de déterminer l'angle et la vitesse de projection, qui permettent de faire passer-le projectile, soit à hauteur de la crête du parapet d'un ouvrage et par un point donné du terre-plein, soit par cette même crête sous une inclinaison déterminée. Ces formules serviront à dresser des tables de tir '.

On détermine aussi les limites des hauteurs où le projectile peut arriver sous une inclinaison donnée, lorsque le plus grand angle de projection qu'on peut employer est connu d'après la construction de la bouche à feu et de l'affût.

296. Limite des hauteurs auxquelles le tir plongeant est encore possible, sous un angle de projection déterminé. Soit φ le plus grand angle de projection au-dessus de l'horizon qu'on peut obtenir de la bouche à feu montée sur son affùt, a la distance du but, b la hauteur maximum qu'il peut avoir, pour que l'inclinaison de la trajectoire

[·] Voir l'Aide-Mémoire d'artillerie de 1856.

en ce point soit θ ; appelons V la vitesse initiale cherchée, et conservons les autres notations adoptées jusqu'ici (61 et 91).

L'équation de la trajectoire étant $y = x \tan \varphi - \frac{x^2}{4h\cos^2\varphi}$ $\mathfrak{B}(x, V)$, pour que cette trajectoire passe par le point dont les coordonnées sont a et b, on devra avoir

(1)
$$b = a \tan \varphi - \frac{a^2}{4h \cos^2 \varphi} \mathcal{P}_0(a, V);$$

l'inclinaison de la trajectoire à la distance a devant être , on aura

(2)
$$\tan \theta = \tan \theta \phi - \frac{a}{2h\cos^2\theta} \delta(a, V);$$

observant que $V_1 = V \cos \varphi$ et $V^* = 2gh$, on aura

$$\frac{r^{2}}{ag}(\tan g \phi - \tan g \theta) \frac{V_{1}^{2}}{r^{2}} = \Im(a, V);$$

mettant à la place de s(a, V), son développement (64) en $F'\frac{a}{c}$, $F'\frac{a}{2c}$ et $\frac{V_i}{r}$; ordonnant par rapport à $\frac{V_i}{r}$, faisant $\frac{r^2}{ag}(\tan \varphi - \tan \theta) = Q'$; faisant encore $F'\frac{a}{c} - F'\frac{a}{2c} = n$ et $n - \left(F'\frac{a}{2c} - 1\right) = m$, on aura une équation du second degré, dont on ne prendra que la valeur positive qui sera

(3)
$$V_1 = \frac{n}{Q'-m} + \sqrt{\frac{F'\frac{a}{c}}{Q'-m} + \left(\frac{n}{Q'-m}\right)^2};$$

connaissant ainsi $\frac{V_i}{r}$, on aura la valeur de V, qui est

 $\frac{V_t}{r} \cdot \frac{r}{\cos \phi}$, on s'en servira pour en tirer la valeur de $\mathfrak{A}(x, V)$ (table XII), et, par suite, celle de b, au moyen de l'équation (1) $b = a \log \phi - \frac{a^2}{4h \cos^2 \phi} \mathfrak{A}(a, V)$.

297. Simplification. On peut arriver plus facilement à la valeur de $\frac{V_1}{r}$, en mettant l'équation (2) sous la forme

$$\frac{\mathfrak{Z}(a,V)}{\left(\frac{V_i}{r}\right)^2} = Q^t$$

ou

(4)
$$\frac{\frac{V_t}{r}}{\sqrt{3(a,V)}} = \frac{1}{r} \sqrt{\frac{ag}{\tan g \, \phi - \tan g \, \theta}},$$

et en essayant successivement, au moyen de la table XII, plusieurs valeurs de $\frac{V_i}{r}$, jusqu'à ce qu'on soit arrivé à deux valeurs consécutives, qui comprennent celle du second membre.

Si l'on avait à répéter cette opération un grand nombre de fois, il y aurait avantage à dresser une table des valeurs

de
$$\frac{\frac{V_i}{r}}{\sqrt{3(x,V)}}$$
, pour diverses valeurs de $\frac{V_i}{r}$ et de $\frac{x}{c}$, comme on l'a fait, table XVI, pour la fonction $\mathfrak{P}(x,V)$.

Cette observation s'applique également à la solution de ce problème (95): faire passer le projectile par un point donné, sous une inclinaison déterminée; car, en mettant l'équation à résoudre sous la forme

$$\frac{r^{\mathbf{a}}}{2g} \cdot \frac{\tan g \, \mathbf{a} - \tan g \, \mathbf{b}}{a} \cdot \frac{\mathbf{V}_{\mathbf{i}^{2}}}{r^{\mathbf{a}}} = 2 \mathbf{J}(a, \mathbf{V}) - \mathbf{J}_{\mathbf{b}}(a, \mathbf{V}),$$

d'où

(5)
$$\frac{\frac{V_1}{r}}{\sqrt{2\mathfrak{J}(x,V)-\mathfrak{Vb}(x,V)}} = \frac{1}{r} \sqrt{\frac{2ga}{(\tan \epsilon - \tan \epsilon)}},$$

on formerait une table des valeurs du premier membre, pour un certain nombre des valeurs de $\frac{x}{c}$, combinées avec celles de $\frac{V_i}{r}$ et analogues à la table XVI; cela fait, pour chaque cas particulier, on n'aurait qu'à calculer la valeur du second membre et chercher dans la table, pour la valeur donnée de $\frac{x}{c}$, et au moyen des parties proportionnelles, quelle est la valeur de $\frac{V_i}{r}$ correspondante. De là, on aura V et ensuite tang ϕ , en déterminant (103) l'angle de projection qui fait passer la trajectoire par le point donné.

On remarquera que généralement le projectile devant être dans la branche descendante de la trajectoire, 4 sera négatif.

298. Limite de la hauteur à laquelle on peut, en rasant la crête d'un parapet, toucher un point déterminé du terreplein. L'inclinaison sous laquelle un projectile doit plonger dans un ouvrage de fortification, peut être définie par la position d'un point du terre-plein, relativement à la crête.

Soit α la distance horizontale du second point au premier, et β sa hauteur relative au-dessous du premier; la condition que la trajectoire passe par ces deux points, donnera, en faisant $a' = a + \alpha$,

(6)
$$b = a \tan \varphi - \frac{a^3}{4h \cos^2 \varphi} \mathcal{H}(a, V);$$

$$b-\beta=a'\tan\varphi-\frac{a'^2}{4h\cos^2\varphi}\Psi_0(a',V),$$

d'où l'on déduit, en soustrayant membre à membre, pour éliminer b,

$$\beta = (a - a') \tan \varphi - \frac{a^2 \sqrt{3} (a, V)}{4h \cos^2 \varphi} + \frac{a' \sqrt{3} (a', V)}{4h \cos^2 \varphi},$$

ou en remplaçant h par sa valeur $\frac{V^2}{2a}$,

(7)
$$\frac{2r^2}{g}(\beta + \alpha \tan \varphi) \cdot \frac{\mathbf{V_i}^2}{r^2} = \alpha^2 \mathfrak{B}(\alpha, \mathbf{V}) - \alpha'^2 \mathfrak{B}(\alpha', \mathbf{V}).$$

En observant l'analogie qu'il y a entre la forme de cette équation et de celle qui a été déjà donnée pour un cas semblable (94), on verra, qu'en développant les valeurs des fonctions $\mathfrak{A}(a,V)$, $\mathfrak{A}(a',V)$, en conservant les notations déjà données (92), $N=F\frac{a}{c}-F\frac{a}{2c}$, $M=N-(F\frac{a}{2c}-1)$, $N'=F\frac{a'}{c}-F\frac{a'}{2c}$, $M'=N'-(F\frac{a'}{2c}-1)$, et en faisant $Q''=\frac{2r^2}{g}(\beta+\alpha\tan\varphi)$, on aura une équation du second degré en $\frac{V_1}{r}$; en ne prenant que la valeur positive, on aura

(8)
$$\frac{V_{1}}{r} = \frac{a'^{2}N' - a^{2}N}{Q'' - (a'^{2}M' - a^{2}M)} + \sqrt{\frac{a'^{2}F\frac{a'}{c} - a^{2}F\frac{a}{c}}{Q'' - (a'^{2}M' - a^{2}M)} + \left(\frac{a'^{2}N' - a^{2}N}{Q'' - (a'^{2}M' - a^{2}M)}\right)^{2}}.$$

Ayant ainsi la valeur de $\frac{V_1}{r}$, on aura celle de V qui est

 $\frac{V_1}{r} \cdot \frac{r}{\cos \varphi}$; on s'en servira également pour avoir la valeur de w(a, V), et déduire la valeur de b de l'équation (6).

§ IV.

Tables de tir.

299. Calcul des tables de tir. L'emploi des formules de balistique permet de dresser des tables de tir des bouches à feu pour toutes les circonstances du service, en s'appuyant sur les résultats d'expériences plus ou moins étendues; nous les appliquerons successivement aux tables de tir de plein-fouet, aux tables de tir des mortiers et aux tables de tir à feu plongeant.

300. Tables de tir de plein-fouet. Les tables de tir de plein-fouet ont pour objet de donner l'angle de projection ou la hausse à employer, pour qu'avec une charge de poudre ou avec une vitesse initiale donnée, on atteigne le but.

On doit distinguer plusieurs cas, suivant les éléments qu'on possède.

1º On connaît les dimensions de la bouche à feu, celles du projectile, son poids et celui de la charge de poudre qu'on doit employer.

On déterminera la vitesse initiale qui résulte de cette charge, au moyen de la formule et des résultats les plus approchants du tableau que nous avons donnés (290 et 292) entre les vitesses et le poids des charges de poudre. On tiendra compte de l'angle moyen de relèvement au sortir de la bouche à seu. On cherchera de plus à estimer, par comparaison avec ce qu'on a reconnu dans des circonstances semblables, la force déviatrice, supposée constante, que produit ordinairement le mouvement de rota-

tion autour d'un axe horizontal, et l'on pourra le faire comme dans le tir des canons rayés, mais avec un degré d'intensité beaucoup moindre.

Au moyen de ces données, on calculera les angles de projection pour les diverses distances inscrites dans la table, au moyen des formules données (97); ensuite, au moyen des dimensions extérieures de la bouche à feu, on en déduira les hausses. Celles-ci laisseront peut-être quelqu'incertitude, comme les éléments qui ont servi à les calculer, et devront être rectifiées si les résultats du tir en font postérieurement reconnaître la nécessité.

2º Lorsque l'on connaît, par des expériences directes, soit la vitesse initiale, soit le relèvement au sortir de la bouche à seu, on prendra ces quantités de présérence aux précédentes.

3º Lorsque l'on connaîtra, par le tir d'un nombre suffisant de coups, la portée sous une inclinaison déterminée, on s'en servira pour calculer la vitesse initiale au moyen de l'angle de projection; si on le peut, on tiendra compte de la valeur de la force déviatrice verticale estimée par comparaison; ensuite on calculera les angles de projection et les hausses. Si la vitesse initiale qu'on trouve ainsi, paraissait s'écarter notablement de celle qu'on présume être la véritable, soit par comparaison avec les vitesses mesurées directement au moyen d'un pendule balistique, soit par des observations de durées du trajet suffisamment précises, on adopterait cette dernière vitesse et on déterminerait au contraire la force déviatrice verticale qui, sous l'inclinaison de la bouche à feu, produit la portée moyenne observée.

4º Si l'on connaît deux points de la trajectoire moyenne suffisamment éloignés entre eux, l'on s'en servira pour déterminer l'angle de projection et la vitesse initiale qui font passer la trajectoire par ces deux points (94 et 95); le premier, comparé à l'inclinaison de la bouche à feu donnera l'angle de relèvement au départ.

Si la vitesse initiale paraissait s'éloigner notablement de la vitesse véritable, on adopterait celle qu'on croit la plus exacte, et on déterminerait (220) la force déviatrice verticale, qui ferait passer la trajectoire par les deux points connus.

Si les données sont les portées sous deux angles de projection, on rapportera les points de chute par abscisses et par ordonnées orthogonales à une même ligne droite fixée de position relativement à l'axe de la bouche à feu; on aura deux points de la trajectoire et on continuera l'opération comme on vient de le dire.

5º Lorsque l'on connaît trois points de la trajéctoire moyenne, on détermine l'angle et la vitesse de projection qui fait passer la trajectoire par les deux premiers (94). Si l'on a des raisons de croire que la vitesse initiale s'écarte de la véritable, on modifiera celle qu'on a trouvée de manière à s'en rapprocher, et on l'emploiera pour déterminer l'angle de projection et la force déviatrice (220) qui fait passer le projectile par les deux premiers points.

Si la trajectoire ainsi déterminée ne passe pas par le troisième point et qu'elle s'en écarte de quantité assez notable, on fera varier la force déviatrice pour satisfaire à cette condition (220 et 222).

On ferait de même pour les points suivants, si l'on en connaissait un plus grand nombre.

Si les données sont les portées correspondantes à des inclinaisons différentes, on rapportera les points de chute à une même ligne droite fixée de position avec l'axe de la bouche à feu, et on les regardera comme les points d'une même trajectoire; cela fait, on continuera comme on vient de le dire.

Avec ces éléments, on calculerà les ordonnées des di-

vers points intermédiaires qui ne sont pas donnés par l'observation et qu'on veut insérer dans les tables; on calculera les angles de projection relatifs, et l'on en déduira les hausses qui s'y rapportent.

Par ce moyen, on pourra déterminer des tables qui seront conformes à des résultats d'expériences trèsétendues et avec tout le degré de précision que ces expériences comportent.

Les différences entre les portées d'un coup à l'autre, ou entre les élévations du projectile, feront voir d'ailleurs, par l'application des principes des probabilités, les différences qu'on peut admettre entre les résultats des formules et les portées ou les hauteurs observées.

Dans chacun des cas cités, on pourra calculer les inclinaisons de la trajectoire ou les angles de chute, la durée des trajets et les vitesses du projectile. Les vitesses et les durées ne seront pas influencées, comme dans certaines tables, par les causes déviatrices qui affectent les trajectoires seulement et qui, par les moyens de calcul employés, se traduisaient en erreurs considérables sur les vitesses et sur les durées.

301. Tables de tir à feu plongeant. Les tables de tir à feu plongeant ont pour objet de donner, d'une part, l'angle de projection ou la hausse et, d'autre part, la vitesse initiale ou la charge de poudre qui permettent, soit d'atteindre un point proposé du terre-plein d'un ouvrage de fortification, soit de pénétrer dans cet ouvrage, sous une inclinaison déterminée au-dessous de l'horizon; ces tables doivent être établies pour diverses distances et pour des hauteurs plus ou moins grandes au-dessus de la bouche à feu, à la condition d'effleurer la crête de son parapet.

Après avoir déterminé, comme on l'a indiqué précédemment (298), les vitesses initiales correspondantes à un certain nombre de charges différentes de poudre, on déterminera, pour chacune d'elles, les vitesses initiales et les relèvements moyens des projectiles au départ.

L'angle de relèvement sera supposé indépendant du poids des charges de poudre, comme l'expérience l'a montré (226).

Si les vitesses initiales calculées différaient d'une manière notable des vitesses initiales déterminées directement pour les mêmes charges de poudre, on les modifierait en introduisant une force déviatrice verticale g^t , ajoutée à la pesanteur, et telle que le rapport $\frac{g + g^t}{V^2}$ ne changeât pas sensiblement, ou bien on introduirait une force déviatrice comme celle du vent, mais supposée verticale (Section VI); on pourra regarder, pour plus de simplicité, la force déviatrice g^t comme indépendante du poids des charges de poudre. On se servira alors de cette quantité pour déterminer de nouveau les vitesses qui correspondent à chacune des séries d'expériences avec les diverses charges.

Si les vitesses ne présentaient pas avec les charges une relation régulière, ce qu'on reconnaîtra facilement en la représentant par une courbe, on modifierait un peu les premières, et on aurait une relation régulière des vitesses aux charges de poudre; on en formera une table.

La table devra être calculée pour des distances suffisamment rapprochées, de 50^m en 50^m, par exemple, et dans les limites où l'on peut employer ce genre de tir; les hauteurs, variant de 5^m en 5^m, seront comprises dans les limites qui peuvent se rencontrer; et, les points touchés du terre-plein seront en nombre suffisant dans les limites utiles (295). Les combinaisons qui résultent de ces éléments divers, donnent lieu chacune à un système particulier d'angle de projection et de vitesse initiale. On traduira les angles de projection en hausses relatives à la crête du parapet, au moyen d'une table calculée à cet effet pour la bouche à feu (281), et, les vitesses de projection en poids des charges de poudre, au moyen de la table dont on a parlé paragraphe II.

A cette table, il sera utile de joindre les durées du trajet pour chacun des cas que l'on a considéré; c'est une donnée souvent nécessaire.

Le calcul de ces tables ne s'applique qu'au tir des canons et des obusiers de fort calibre. On l'appliquerait de même au tir des mortiers, en restant dans les limites plus restreintes des angles entre lesquelles on en fait usage.

302. Tables de tir des mortiers. Les mortiers ne se tirent ordinairement que sous un très-petit nombre d'angles différents, savoir : 30°, 60°, et un angle égal à 45°, ou un peu moindre; les tables devront donner la relation des portées aux poids des charges de poudre, pour chacun des angles adoptés.

Si dans l'expérience l'on se borne à une série de charges différentes sous un même angle de projection, on en déduira les vitesses initiales au moyen des formules données (86, 87), et ensuite les portées sous les autres angles de projection.

Il est important de tenir compte de l'angle de relèvement au départ, qui est plus grand avec les âmes courtes de ces bouches à feu qu'avec celles des obusiers et des canons (225, 226); par des expériences spéciales, nous avons trouvé que cet angle était d'environ $\frac{2}{3}$ de degré. On pourra déduire l'angle de relèvement au-dessus de l'axe du mortier des durées des trajets qui sont faciles à observer et qui, sans ce relèvement, ne s'accorderaient pas avec celles qui résultent d'un angle de départ égal à celui de l'axe du mortier avec l'horizon.

Il est très-important de joindre à ces tables les durées des trajets; on les calculera facilement par les formules qui ont été données (64).

303. Tables de tir déterminées graphiquement. On peut, par un procédé graphique particulièrement applicable au tir sous de petits angles de projection, déterminer les angles de projection et les hausses pour une vitesse ou pour une charge de poudre donnée.

Soit OA (Fig. 58) une ligne qui représente l'axe de la bouche à feu; celle-ci pourrait être inclinée au-dessus de l'horizon, mais pour plus de simplicité nous la supposerons horizontale. On déterminera les ordonnées correspondantes aux distances de $50^{\rm m}$ en $50^{\rm m}$, ou à d'autres intervalles égaux; soit $0m_1$, $0m_2$, $0m_3$... ces distances, prises à une certaine échelle, de $0^{\rm m}001$ pour $1^{\rm m}$, par exemple; par chacun des points m_1 , m_2 ..., on menera des verticales sur lesquelles on portera les abaissements $m_1 M_1$, $m_2 M_2$..., dus à la pesanteur et donnés par la formule $y = \frac{ga^2}{2V^2}$ ${\rm Th}(a, V)$; par les extrémités ${\rm M}_1$, ${\rm M}_2$..., on tracera une courbe, elle représentera la trajectoire.

Si l'on a reconnu que le projectile éprouve, en sortant de l'âme, un certain relèvement (225, 226), on tracera une ligne OA' faisant avec l'axe un angle A'OA égal à cet angle de relèvement initial exprimé par sa tangente trigonométrique, comme on l'indiquera plus loin, et ce sera par rapport à cette ligne OA' qu'on portera les valeurs y calculées.

Pour rendre les différences plus sensibles, on prendra les ordonnées à une échelle cinq fois plus grande, ou, quand les vitesses sont considérables, dix fois plus grande que l'échelle des abscisses. De O en D, on portera la longueur de la bouche à feu, et aux points O et D, on élèvera deux perpendiculaires OB et DC, respectivement égales aux rayons du bourrelet et de la plate-bande de culasse, l'on joindra CB. Cette ligne représentera la ligne de mire.

Mais, pour tracer le prolongement de cette ligne avec plus d'exactitude, on menera par le point B la ligne KBP, parallèle à l'horizontale OA; sur cette ligne, on prendra BG égale à $\frac{1}{5}$ de la longueur véritable de la bouche à feu, comptée du derrière de la plate-bande de culasse au sommet du bourrelet dans les canons, ou au devant de la plate-bande de la bouche, dans les obusiers; au point G, on élèvera la perpendiculaire GH égale à la vraie différence R-r des rayons; le point H se trouvera sur le prolongement de la ligne de mire; cela résulte de ce que CK est relativement à BK, dans un rapport cinq fois plus grand, comme GH l'est relativement à BG.

La ligne de mire coupe la trajectoire en L₁; si l'on mène une verticale L₁l, la distance Ol estimée à l'échelle des abscisses, sera la portée de but en blanc.

Pour un point quelconque M, ou pour une distance Om, par exemple, la partie LM de la verticale comprise entre la trajectoire et la ligne de mire, représentera, à l'échelle des ordonnées, la quantité dont cette ligne de mire passe au-dessus de la trajectoire, et, par conséquent, la quantité dont on doit viser au-dessus du but pour l'atteindre. Pour les points en deçà du point L, comme à la distance Om, la quantité L, M, indiquera la quantité dont il faudra pointer au-dessous du but pour l'atteindre.

Pour déterminer la hausse à la distance Om, par exemple, on tirera la ligne BM; elle interceptera la longueur HN sur la ligne GH prolongée; celle-ci sera la hausse en véritable grandeur; et, si l'on a divisé le prolongement HN en millimètres, on aura immédiatement l'expression des hausses en unités de cette grandeur.

304. Angles de projection. On peut mesurer les angles de projection relatifs, c'est-à-dire les angles que fait l'axe de la bouche à feu avec la ligne qui va de la bouche à feu au but. Pour cela, à partir du point O sur OA, on

prendra pour rayon des tangentes trigonométriques une longueur telle que la tangente de 1° à l'échelle des ordonnées soit de 60 millimètres (ou de 30, suivant les échelles). L'échelle des abscisses étant de $0^{m}001$ pour 1^{m} , on prendra $0t = 687^{m}3$; on élèvera une perpendiculaire sur laquelle on prendra $t1^{\circ} = 687^{m}3 \times 5 \times \tan 1^{\circ}$, laquelle quantité est égale à $0^{m}060$; on portera 60 divisions égales à 1^{mm} ; on prendra de même $t2^{\circ} = 687^{m}3 \times 5 \times \tan 2^{\circ}$, et ainsi de suite; les divisions continueront à être sensiblement de 1^{mm} , jusqu'à 4° et 5° ; au delà, les intervalles de 1° seront très-peu différents; il sera d'ailleurs très-facile d'opérer les divisions exactes.

Pour avoir l'angle de projection relatif à la distance de Om, par exemple, on tirera la ligne droite MO, elle coupera en T la ligne des tangentes tT, et la partie tT indiquera en degrés et minutes l'angle de projection MOA, et ainsi des autres. On se fonde ici sur ce que les angles de projection au-dessus de la ligne qui va au but, sont indépendants de la hauteur de ce but, et sur ce que, quand on mesure les angles par leurs tangentes, celles-ci peuvent être prises à une échelle plus grande et égale à celle des ordonnées, sans qu'il y ait rien de changé dans leurs relations mutuelles et dans les abscisses des points d'intersection.

305. Angles de chute sur le sol. On obtiendra facilement les angles de chute sur le sol.

Supposons d'abord le terrain plan, et soit r (Fig. 58) la position du centre des tourillons; par ce point, on menera une verticale et on prendra, à l'échelle des ordonnées, rS_0 égal à la hauteur des tourillons au-dessus du sol.

Pour avoir l'angle de chute, à la distance Om, par exemple, on joindra le point S et le point M de la trajectoire; au point M, on menera à la trajectoire une tangente MQ, l'inclinaison des lignes QM et SM sera celle qu'il s'agit de mesurer.

Pour le faire, on menera, par le point O, la ligne OU, parallèle à QM, elle interceptera sur l'échelle des tangentes la quantité tU qui représentera, en degrés et minutes, l'angle que fait, avec l'axe de la bouche à feu, la tangente à la trajectoire en M. Par le même point O, on menera Ou parallèle à SoM, tu représentera l'angle que fait le sol avec l'axe de la bouche à feu; la différence uU entre les deux angles représentera donc, en degrés et minutes, l'angle de chute cherché.

Cette construction s'applique au tir des batteries de côte.

Si la surface du terrain présentait plusieurs plans différemment inclinés ou des ondulations, on tracerait le profil de ce terrain à l'échelle des ordonnées rapportées à l'axe prolongé OA de la bouche à feu, dans sa position horizontale. Soit So, S, S,...... S le profil, on menera au point S une tangente au profil du terrain en ce point. Cette ligne SS' coupera la verticale des tourillons en S', et ce sera comme si rS' représentait la hauteur des tourillons au-dessus du plan. Cela posé, par le point O, on meneraune parallèle OJ à cette ligne, et la partie JU représentera en degrés et minutes l'angle de chute cherché.

Les constructions et les mesures d'angles que nous avons indiquées sont fondées, comme on l'a dit, sur ce qu'on ne change pas les relations entre les tangentes des inclinaisons, quand on change l'échelle des hauteurs.

306. Tracé des trajectoires moyennes d'après les résultats de l'expérience. On pourra tracer directement la trajectoire et sans en calculer les ordonnées, lorsque l'on aura les portées moyennes observées pour un certain nombre d'inclinaisons ou de hausses différentes.

Pour cela, on tracera par rapport à l'axe de la bouche à feu, et comme on l'a dit (303), la longueur OD (Fig. 58) et les deux demi-diamètres OB du bourrelet et DC de la

plate-bande de culasse, aux échelles adoptées pour les ordonnées. On prendra OG d'une grandeur telle quelle soit, avec la longueur véritable de la bouche à feu, dans le rapport des échelles; puis GH égal à la différence réelle des deux demi-diamètres OB et DC. On tracera BH, puis l'échelle des hausses HN; cela fait, on prendra HN égal à une hausse donnée; on tirera la ligne BN, on portera Om égal à la portée observée, et par le point m, on tracera une verticale; celle-ci rencontrera en M la ligne BN prolongée. Le point d'intersection M de ces lignes, donnera un point de la trajectoire.

En opérant de la même manière pour d'autres distances, on pourra tracer la trajectoire entière, et terminer comme précédemment. Ce procédé permettra aussi de rectifier des résultats d'observations qui présenteraient des irrégularités; telles seraient, par exemple, des observations faites pour un assez grand nombre de hausses différentes, mais répétées un trop petit nombre de fois chacune.

On pourra compléter les données qui se rapportent au tir de la bouche à feu, en calculant les vitesses du projectile aux diverses distances que l'on considère, et en les portant sur les ordonnées correspondantes à une échelle prise arbitrairement, mais assez grande, et en faisant passer une courbe par ces points; l'ordonnée de cette courbe à un point quelconque, donnera la vitesse du projectile à la distance de la bouche à feu à ce point.

On opérera de même pour les durées du trajet.

§ V.

Pointage, vitesses, formules et tables de tir relatives aux canons rayés.

Ce qui vient d'être dit dans les paragraphes I, II, III et IV se rapporte aux projectiles sphériques tirés dans les canons à âmes lisses. Il y a quelques modifications à y apporter lorsqu'il s'agit de projectiles oblongs tirés dans des canons rayés en hélice. Nous examinerons successivement le pointage, les vitesses initiales, les formules et les tables de tir.

307. Pointage. Le pointage doit être modifié pour tenir compte de la dérivation constante vers la droite.

Nous avons reconnu que la dérivation latérale et la dérivation verticale présentaient entre elles un rapport à peu près constant. Si d'un autre côté la dérivation verticale d'un projectile peut être représentée par un terme proportionnel à l'abaissement dû à la pesanteur, il en résultera que l'abaissement final, égal à la différence des deux effets, sera proportionnel à la dérivation latérale; soit i le rapport de ces deux quantités.

Si l'on détermine la hausse verticale correspondant à une portée donnée, on verra que pour corriger la dérivation, il faudra pointer le canon, sur la gauche, de la quantité nécessaire pour ramener le projectile dans le plan vertical du but; et, comme la dérivation est une fraction i de l'abaissement total, la hausse latérale sera également la fraction i de la hausse verticale. Il en sera de même pour les diverses portées.

Pour corriger la dérivation latérale en même temps qu'on relève le canon, il suffit donc d'incliner vers la gauche l'instrument qui donne la hausse et de prendre la fraction *i* pour tangente de l'inclinaison sur le plan

vertical de projection perpendiculaire à l'axe des tourillons supposé horizontal.

C'est ce qui a été mis en pratique, avec succès, pour les canons rayés en France, et la fraction i a été égale à $\frac{1}{10}$ pour le canon rayé de 4 et de $\frac{1}{12}$ dans d'autres cas.

Mais, d'après ce qu'on a vu, la dérivation est plus rapide que celle qui résulte de la formule dont il est parlé; il suit de là que la correction due à la hausse inclinée ne sera suffisamment exacte que dans une partie de l'étendue du tir et que l'on sera forcé, aux grandes distances, de modifier la position du point de visée par un petit mouvement latéral, ce qui est facilement obtenu.

308. Vitesses initiales. Les vitesses initiales des projectiles oblongs tirés dans les canons rayés en hélice sont en général plus faibles que celles que l'on peut obtenir des projectiles sphériques dans les canons à âme lisse. Les projectiles sphériques, en effet, roulant dans la bouche à feu, n'éprouvent que la très-faible résistance qui provient du contact de l'âme, on peut donc leur imprimer une très-grande vitesse sans détériorer sensiblement la bouche à feu; dans les canons rayés, au contraire, l'hélice inclinée présente un obstacle très-résistant qui force le projectile à prendre un mouvement de rotation; par suite de la limite de pression que peuvent supporter les métaux respectifs du projectile et du canon en contact, il faut que la pression des gaz contre le projectile soit moins grande que dans le tir à boulets roulants. Aussi, le rapport du poids de la charge de poudre à celui du projectile est-il moindre que la moitié de celui qui se rapporte aux boulets sphériques; mais il s'éloigne peu de celui qui est en usage avec les obus.

Les vitesses des divers projectiles oblongs n'ont pas encore été mesurées, et nous avons donné au paragraphe II celles qui l'ont été. Cette vitesse diminue moins rapidement, durant le trajet dans l'air, que celle des projectiles sphériques, comme on l'a fait voir (57). La vitesse de rotation du projectile diminue encore moins rapidement que la vitesse de translation.

309. Des divers genres de tir. Les canons rayés sont employés spécialement pour le tir de plein-fouet. Les projectiles possèdent dans ce cas, comparativement au tir des boulets sphériques, beaucoup plus de justesse; ils produisent des pénétrations plus considérables et des entonnoirs moins évasés; comme ces projectiles frappent toujours par la pointe, ils peuvent être munis d'un artifice qui leur fait faire explosion en arrivant sur l'obstacle. Mais lorsque le projectile oblong, la pointe en avant, rencontre un obstacle qui présente une surface peu inclinée au-dessus de l'horizon, il arrive que la partie antérieure est arrêtée et que la partie postérieure continue à se mouvoir; alors, le projectile oblong se redresse, glisse sur l'obstacle, sous un angle plus ou moins élevé au-dessus de l'horizon, et produit souvent un bond très-étendu.

En même temps, la résistance que présente l'obstacle au mouvement de rotation produit sur le projectile une pression dans le sens opposé au mouvement de rotation de la partie en contact, c'est-à-dire de gauche à droite, et le projectile, dans son ricochet, dévie en même temps sur la droite d'une quantité souvent considérable, et parfois de 60°.

Cette circonstance empêche qu'on puisse employer les projectiles oblongs, comme les projectiles sphériques, pour le tir parallèle au terrain ou pour le tir dit à ricochet sur les longues faces d'ouvrages. Mais ces projectiles peuvent être employés avec un grand avantage au tir plongeant, à cause du peu de déviation qu'ils présentent d'un coup à l'autre, même lorsqu'on les tire avec la faible charge qu'exige la condition de plonger dans l'ouvrage

à battre. On peut leur faire porter une assez grande quantité de poudre pour produire un grand effet d'explosion, et cette explosion peut être réglée de manière à avoir lieu au moment du choc.

310. Formules et tables de tir. — Tir de plein-fouet. Le tir plongeant des projectiles oblongs des canons rayés donne lieu à la solution de problèmes analogues à ceux qui ont été résolus pour le tir des projectiles sphériques (sect. IV). Ces solutions ne présenteront pas de difficultés, en général, lorsqu'on connaîtra la loi de la dérivation.

En prenant, pour représenter la trajectoire des projectiles oblongs tirés dans les canons rayés, l'hypothèse d'une force déviatrice constante, comme la pesanteur (art. 264, éq. 1), on aura, en conservant les notations connues:

(1)
$$y = x \operatorname{tang} \varphi - \frac{g - g'}{2} \frac{x^2}{V^2} \operatorname{db}(x, V).$$

Cette équation ne diffère de celle de la trajectoire des projectiles sphériques qu'en ce que g est remplacé par g-g'; elle ne donnera donc lieu à aucune difficulté pour la solution des divers problèmes sur le tir, pourvu que l'on connaisse la valeur de g' qui se rapporte au projectile donné.

On peut suivre une seconde hypothèse, celle de l'assimilation de la dérivation à celle que produit le vent; et, en adoptant la forme la plus générale, c'est-à-dire en remplaçant c par $\frac{c}{n}$ ou $\frac{x}{c}$ par $\frac{nx}{c}$, n étant une quantité à déterminer par l'expérience, on aura pour l'équation de la trajectoire

(2)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V^2} vb(x, V) + \frac{nWx^2}{4cV} (1 + V_0) F \frac{nx}{2c}$$

Cette équation peut se mettre sous la forme

$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V_1^2} \psi_b(x, V) - \frac{gx^2}{2V_1} \frac{nrW}{2gc} V_o(1 + V_o) F \frac{nx}{2c}$$

ou

(2*)
$$y = x \operatorname{tang} \varphi - \frac{g}{2} \frac{x^{1}}{V_{1}^{2}} \left[\operatorname{V}_{0}(x, V) - \frac{nrW}{2gc} \operatorname{V}_{0}(1 + \operatorname{V}_{0}) \operatorname{F} \frac{nx}{2c} \right].$$

311. Simplification. Sous cette forme, on voit que cette équation ne diffère de l'équation de la trajectoire des projectiles sphériques qu'en ce que la fonction $\mathfrak{L}(x, V)$, de $\frac{x}{v}$ et de V_0 ou $\frac{V_1}{r}$, est remplacée par l'excès de cette fonction sur $\frac{nrW}{2gc}V_0(1+V_0)F\frac{nx}{2c}$ qui est également fonction de $\frac{x}{c}$ et de V_0 . Cette quantité est donc une fonction non-seulement de $\frac{x}{c}$ et de V_0 , mais encore de $F\frac{nx}{2c}$; on pourra par conséquent, pour la simplicité des formules, la représenter par l'expression analogue $\mathfrak{L}(x,V,F\frac{nx}{2c})$ et écrire

(3)
$$\psi_b(x, V) = \frac{nrW}{2ac}V_o(1 + V_o)F\frac{nx}{2c} = \psi_b\left(x, V, F\frac{nx}{2c}\right),$$

et alors l'équation de la trajectoire devient simplement

(4)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V_1^2} \psi_0 \left(x, V, F \frac{nx}{2c} \right).$$

Cette simplification s'applique également à l'expression de l'inclinaison. En effet, en reprenant cette expression donnée (art. 265, éq. 7') pour le cas ou n=1, et en y substituant $\frac{n}{c}$ à $\frac{1}{c}$, pour arriver au cas plus général que

nous considérons, elle devient

$$\tan \theta = \tan \varphi - \frac{gx}{V_1^2} \left[\Im(x, V) - \frac{nrW}{2_b} V_0 (1 + V_0) F^{\dagger} \frac{nx}{2c} \right].$$

On remarquera que le facteur de $\frac{gx}{V_1^2}$ est composé avec 5(x, V) et $F'\frac{nx}{2c}$, comme le précédent (art. 310, éq. 2°) l'est avec $v_0(x, V)$ et $F\frac{nx}{2c}$; d'après cela, et par analogie, on fera

(5)
$$3(x, V) - \frac{nrW}{2ac} V_0 (1 + V_0) F' \frac{nx}{2c} = 3 \left(x, V, F' \frac{nx}{2c} \right).$$

Alors, l'expression de l'inclinaison de la trajectoire du projectile oblong d'un canon rayé est

(6)
$$\tan \theta = \tan \varphi - \frac{gx}{V_1^2} \Im\left(x, V, F' \frac{nx}{2c}\right).$$

Cette simplification permettra de résoudre divers problèmes sur le tir, par les mêmes méthodes que pour les projectiles sphériques; il y a exception pour ceux qui comportaient l'emploi des tables spéciales XV, XVI, lesquelles ne se rapportent qu'au facteur $\mathfrak{A}(x, V)$ seul.

312. La position du but étant connue, déterminer, soit la vitesse initiale, soit l'angle de projection. Considérons d'abord le cas où le but n'est pas à hauteur de la bouche à feu. Soit a la distance horizontale du but et b sa hauteur verticale au-dessus du point de départ : de ces deux choses, la vitesse initiale et l'angle de projection, l'une étant connue, déterminer l'autre.

Vitesse initiale. Puisque le projectile doit atteindre le but, on devra avoir $b = a \tan \varphi - \frac{g}{2} \frac{a^2}{V_1^2} \operatorname{sk}(a, V, F \frac{na}{2c})$;

divisant par a, et remplaçant $\frac{b}{a}$ par tange, on aura

(7)
$$\tan \varphi - \tan \varphi = \frac{ga}{2V^2} \operatorname{vs}\left(a, V, F\frac{na}{2c}\right),$$

d'où l'on tirera

(8)
$$V_0^2 = \frac{ga}{2r(\tan g \varphi - \tan g \varepsilon)} vb \left(a, V, F \frac{na}{2c}\right).$$

On pourrait développer $\mathfrak{L}\left(a,V,F\frac{na}{2c}\right)$ en fonction de V_o et résoudre l'équation du deuxième degré en V_o , de la même manière qu'on l'a déjà fait (92, éq. 7) pour les projectiles sphériques; mais, il sera plus simple et suffisamment exact de se servir d'une valeur approchée de V_o ou de V_o pour calculer $\mathfrak{L}\left(a,V,F\frac{na}{2c}\right)$ et de la porter dans l'équation (8), pour trouver la valeur plus exacte de V_o et par suite celle de V, sauf à se servir de cette seconde valeur pour déterminer la vitesse par une nouvelle opération avec toute l'exactitude désirable.

Angle de projection. Si dans l'équation (7), connaissant V, on veut se servir d'une valeur approchée de φ, on en tirera tang φ — tang ε et de là φ avec assez d'exactitude; au besoin on se servirait de cette valeur, considérée comme approchée, pour déterminer une valeur définitive de φ qui présenterait alors toute l'exactitude désirable.

313. Vitesse et angle de projection d'un projectile qui doit passer par deux points donnés. Pour résoudre cette question, on pourrait opérer comme il est indiqué pour les projectiles sphériques (art. 94), et l'on arriverait à une valeur explicite de φ et de V qui présenterait une très-grande complication. On peut arriver très-simplement à la forme des équations (14) et (15); pour cela,

partir de deux valeurs approchées de V et de φ pour calculer les valeurs de $\Re\left(x, V, F\frac{nx}{2c}\right)$; l'on aura alors deux expressions analogues aux formules 14 et 15 de l'art. 94.

En effet, en remarquant que l'expression de l'ordonnée d'un projectile oblong ne diffère de celle de l'ordonnée d'un projectile sphérique qu'en ce que le facteur $\mathfrak{B}(x, V)$ est remplacé par $\mathfrak{A}\left(x, V, F\frac{nx}{2c}\right)$, on arrive immédiatement à la solution. En désignant par a et b, l'abscisse et l'ordonnée du premier point, par a' et b' celles du second point, et conservant les notations ordinaires, on aura pour l'angle et la vitesse de projection

(9)
$$\tan \varphi = \frac{a' \operatorname{W}_b\left(a', V, F\frac{na'}{2c}\right) \frac{b}{a} - a \operatorname{W}_b\left(a, V, F\frac{na}{2c}\right) \frac{b'}{a'}}{a' \operatorname{W}_b\left(a', V, F\frac{na'}{2c}\right) - a \operatorname{W}_b\left(a, V, F\frac{na}{2c}\right)},$$

et

(10)
$$V_{i}^{2} = \frac{g}{2} \frac{a' \operatorname{vb}\left(a', V, F \frac{na'}{2c}\right) - a \operatorname{vb}\left(a, V, F \frac{na}{2c}\right)}{\frac{b}{a} - \frac{b'}{a'}}.$$

314. Vitesse et angle de projection d'un projectile qui doit passer par un point donné sous une inclinaison déterminée. On opérera comme il est indiqué pour les projectiles sphériques (art. 95) et l'on arrivera à deux expressions analogues aux deux équations 19 et 20, qu'on résoudrait, par approximation, comme on vient de le dire; mais, en remarquant que l'expression de l'inclinaison de la trajectoire des projectiles oblongs ne diffère de celle des projectiles sphériques qu'en ce que (art. 264, éq. 7) le coefficient s(x, V) doit être remplacé par $s(x, V, F, \frac{na}{2c})$,

on peut écrire immédiatement la valeur de tango et de V,

(11)
$$\tan \varphi = \frac{25\left(a, V, F'\frac{na}{2c}\right) \tan \varphi - \Re\left(a, V, F\frac{na}{2c}\right) \tan \varphi}{25\left(a, V, F'\frac{na}{2c}\right) - \Re\left(a, V, F\frac{na}{2c}\right)},$$

et

(12)
$$V_{i}^{2} = \frac{ga}{2} \frac{25\left(a, V, F'\frac{na}{2c}\right) - V_{b}\left(a, V, F\frac{na}{2c}\right)}{\tan g \epsilon - \tan g \theta}.$$

315. Solution des divers problèmes lorsque le but est à hauteur de la bouche à feu. Si le but est à hauteur de la bouche à feu : de ces trois choses, la portée, la vitesse et l'angle de projection, deux étant connues, déterminer la troisième.

Désignant la portée par X et faisant y = 0 dans l'équation (1); divisant ensuite par X, on aura

(13)
$$2h\sin 2\varphi = X \cdot \eta_0 \left(X, V, F \frac{nX}{2c}\right).$$

Vitesse initiale. On pourrait développer $\mathfrak{K}(X, V, F \frac{nX}{2c})$

en fonction de $\frac{X}{c}$ et de $\frac{V}{r} = V_o$, et, résolvant l'équation du deuxième degré en V_o , on en tirerait la valeur de V_o , puis celle de V. Mais on évitera la complication que présenterait cette solution, en prenant pour V une valeur approchée, s'en servant pour calculer $V_o = \frac{V_r}{r}$ et de là déter-

minant
$$2h$$
 ou $\frac{V^2}{q}$, puis V,

(14)
$$V^{2} = \frac{gX}{\sin 2\varphi} v_{b} \left(X, V, F \frac{nX}{2c}\right).$$

Angle de projection. La même équation donnera pour valeur de $\sin 2\varphi$,

(15)
$$\sin 2\varphi = \frac{X}{2h} v_b \left(X, V, F \frac{nX}{2c} \right),$$

et au moyen d'une valeur approchée φ on déterminera $\mathfrak{S}(X, V, F\frac{nX}{2c})$; par ce moyen, on aura une valeur assez exacte de $\sin 2\varphi$ et par suite de φ .

Portée. La même équation (9) donne

(16)
$$X = \frac{2h\sin 2\varphi}{\sqrt{\sqrt{X, V, F\frac{nX}{2c}}}}.$$

Au moyen d'une valeur approchée de X on déterminera $\frac{X}{c}$ et $F\frac{nX}{2c}$ et par suite le terme du dénominateur; de là, on retirera une première valeur approchée, qui pourra servir, s'il en est besoin, à trouver une seconde valeur de X qu'on prendra pour la valeur définitive.

316. Tables de tir. Dans la construction des tables de tir pour les canons rayés, il y a, comparativement à celles des canons lisses, à ajouter une table des dérivations dont on devra tenir compte avec soin. Les tables du tir plongeant seront souvent employées à cause de la grande justesse qu'on peut obtenir de ce tir. On pourra particulièrement dresser ces tables d'après un tracé des trajectoires moyennes; ce tracé est plus facile à exécuter d'après l'expérience, à cause des moindres déviations des projectiles d'une part, et à cause de l'incertitude que peuvent laisser les formules de dérivations de l'autre; mais il faudrait avoir des trajectoires aux diverses vitesses.

En résumé, la solution des problèmes qu'offrira le tir des canons rayés ne présente pas de grandes difficultés; elle exige seulement, pour chaque sorte de projectiles, la détermination des coefficients qui déterminent la loi des dérivations.

ADDITION A L'ARTICLE 81.

DEUXIÈME APPLICATION. Déterminer la trajectoire d'une bombe de 0^m27, projetée sous l'angle de 45°, avec une vitesse initiale de 130^m s1.

Conservant les données adoptées : A = 0.027, $\frac{1}{r} = 0.0023$, $g = 9^m809$, on aura $V = 130^m$; sl. $\varphi = 45^\circ$, $c = 1655^m$; considérant successivement les arcs de 45° à 30° , de 30° à $30^$

Incli- naison de la trajec-	Rapport α.	Projection de l'arc		Durée du trajet	Vitesse du projec- tile	projectile		Durée đu trajet
toire 0.		zontale .v.	y_1	t,	v.	x.	y.	t.
+.45° + 30° - 30° - 45° - 55°	1,2772 1,0531 1,2772 1,5750	m 312,30 586,84 161,59 140,22	m 249,50 24,62 — 126,57 — 169,43	s 3,53 8,40 2,67	m:s 130,1 91,4 73,5 83,6	s 0,00 312,30 899,14 1060,73 1200,95	m 0,00 249,50 274,12 147,55 -21,88	m 0,00 3,53 11,93 14,60
—45° — 54°27′	,	132,19	147.55	2,33	83,6 97,50	1060,73 1192,82	147,55 0,00	14,60 16,93

D'après ces résultats, au point de chute sur le plan horizontal, on a $X = 1192^{m}82$, $v = 97^{m}:s30$, $\theta = 54°27'$, t = 16°93.

En considérant la trajectoire sans divisions partielles; prenant $\alpha=1.14777$, correspondant à l'arc de $+45^{\circ}$ à -45° , on trouve, pour le point de chute, $X=1198^{m}3$, $v=98^{m:s}10$, $0=54^{\circ}25'$, $t=16^{\circ}91$. Les differences ne sont ainsi que de $5^{m}5$ sur la portée ou $\frac{1}{217}$ de l'étendue du jet, $0^{m:s}6$ sur la vitesse, $0^{\circ}2'$ sur l'angle de chute, $0^{\circ}2$ sur la durée; ces différences sont toutes très-faibles.

RÉSUMÉ

DES

FORMULES DE BALISTIQUE.

En donnant ici un résumé des formules de balistique, on a pour but d'en faire saisir l'ensemble et d'en rendre les applications plus faciles; joint aux tables numériques qui le suivent, il facilitera la solution des principales questions qu'on peut avoir à résoudre et fera l'office d'un aidemémoire. Les numéros qui y sont insérés, sont ceux des articles du Traité ou des tables.

Dans tout ce qui suivra, on suppose que le mètre est pris pour unité de mesures linéaires, le kilogramme pour unité de poids; par conséquent, la densité sera représentée par le poids en kilogrammes du mètre cube de la matière dont il s'agit. La seconde sexagésimale est prise pour unité de temps, et les vitesses sont exprimées en mètres parcourus dans une seconde. Les angles sont exprimés en degrés nonagésimaux. La table I donne les sinus, cosinus, tangentes naturels des angles, avec le degré d'approximation dont on peut avoir besoin dans les applications. La table II, qui est placée à la suite de la table III, permet de passer facilement du sinus du double d'un angle

au double de la tangente de cet angle, ce qui sert pour le calcul des hausses. La table VII donnera les logarithmes hyperboliques, dont on a besoin dans plusieurs cas.

SECTION I.

Mouvement des projectiles dans le vide.

- 3. Les formules du mouvement dans le vide s'éloignent d'autant moins de la vérité, que la vitesse du projectile est moins considérable, que son calibre et sa densité sont plus grands. Appliquées au tir des bombes, aux distances ordinaires, elles donnent la solution de tous les problèmes, très-simplement et avec une approximation qui peut souvent suffire. Elles sont plus particulièrement approchées dans le cas du tir du globe du mortier éprouvette.
- 4. Définitions. V est la vitesse initiale du projectile, h la hauteur due à cette vitesse, g la pesanteur ou la vitesse acquise après une seconde par un corps tombant dans le vide. On a $V^2 = 2gh$ (voyez table III, la relation de h à V). En France, la valeur moyenne de g est $g = 9^m809$ (202). Soit encore φ l'angle de projection au-dessus du plan horizontal, x et g les coordonnées horizontales et verticales d'un point quelconque g de la trajectoire, g la vitesse du projectile en ce point, g l'inclinaison de la tangente, g le temps écoulé depuis l'origine du mouvement; on a les relations suivantes:
 - 5. Équation de la trajectoire.

(3)
$$y = x \tan \varphi - \frac{x^2}{4h \cos^2 \varphi}.$$

7, 8. Amplitude du jet X sur un plan horizontal et hauteur Y.

(4)
$$X = 2h\sin 2\varphi$$
; $Y = h\sin^2\varphi$.

- 10. Angle de plus grande portée. Il a lieu sous 45°, alors X = 2h; $Y = \frac{1}{2}h$, $V = \sqrt{gX}$. Sous les angles de projection également éloignés de 45°, les portées sont égales (9).
- 13. Vitesse du projectile en un point quelconque de sa trajectoire. $v = \sqrt{2g(h-y)}$; le minimum est au sommet et égal à $V\cos\phi$.
 - 14. Inclinaison de la trajectoire.

(5)
$$\tan \theta = \tan \theta - \frac{x}{2h\cos^2 \theta}.$$

15. Durée du mouvement. $t = \frac{x}{V_{COS}}$

Durée totale (6).
$$T = \frac{V \sin \varphi}{\frac{1}{2}g} = \sqrt{\frac{X \tan \varphi}{\frac{1}{2}g}}$$
; sous 45°,

$$T_i = \sqrt{\frac{X}{\frac{1}{2}g}}$$
. En général, $T = T_i \sqrt{\tan g \varphi}$.

16, 17. La position du but étant donnée, trouver, soit la vitesse initiale, soit l'angle de projection. Nommons a et b les distances horizontale et verticale du point, et ϵ l'angle d'élévation du but, faisons tang $\epsilon = \frac{b}{a}$; on aura

(7)
$$h = \frac{a}{4\sin(\varphi - \epsilon)} \cdot \frac{\cos \epsilon}{\cos \varphi}, \quad V = \sqrt{\frac{ag}{2\sin(\varphi - \epsilon)} \cdot \frac{\cos \epsilon}{\cos \varphi}};$$

(9)
$$\tan \varphi = \frac{2}{a} \left(h \pm \sqrt{h(h-b) - \frac{a^2}{4}} \right).$$

21. Vitesse et angle de projection d'un projectile qui doit passer par deux points donnés. a et b sont les distances horizontale et verticale du premier point; a' et

b' celles du second; on aura

$$\tan \varphi = \frac{a'\frac{b}{a} - a\frac{b'}{a'}}{a' - a}; \quad V = \frac{1}{\cos \varphi} \sqrt{\frac{g}{2} \frac{a' - a}{\frac{b}{a} - \frac{b'}{a'}}}.$$

22. Vitesse et angle de projection d'un projectile qui doit arriver à un point déterminé sous une inclinaison donnée avec l'horizontale. a et b étant les coordonnées du point donné et θ l'angle d'inclinaison; faisant tang: $=\frac{b}{a}$, on aura

$$tang \varphi = 2tang \epsilon - tang \varphi; \quad V = \frac{1}{\cos \varphi} \sqrt{\frac{g}{2} \frac{a}{tang \epsilon - tang \theta}}.$$

SECTION II.

Résistance de l'air.

30. Lorsque la vitesse d'un corps dans l'air est faible, qu'elle ne dépasse pas 8 à 10^m par seconde, la résistance de l'air est sensiblement proportionnelle à la densité du fluide, à la superficie S de la projection du corps sur un plan perpendiculaire à la direction du mouvement, et au carré de la vitesse V du mobile; de sorte que J étant le poids du mètre cube du fluide, g la pesanteur (202), et k un coefficient constant pour un même solide ou pour des solides semblables, la résistance p, en kilogrammes, a pour expression dans le mouvement uniforme et rectiligne,

$$\rho = \frac{k\delta SV^2}{2g} = k\delta Sh.$$

31. Dans le mouvement varié, la masse de la poupe

fluide qui accompagne le corps, agit comme si elle était ajoutée à celle de ce corps; elle est négligeable relativement à celle des projectiles en fonte de fer.

- 40. Pour un plan mince des dimensions des projectiles et dans le mouvement rectifigne, on aurait, d'après M. Poncelet, k = 1,30, lorsque le corps est en mouvement et le fluide en repos.
- 42. La valeur de k varie avec la forme antérieure du corps, avec sa forme postérieure et avec sa longueur.
- 43. Pour des sphères animées de vitesses qui ne dépassent pas 8 à 9^m dans l'air, à la densité ordinaire, on a k = 0.54.

52 à 55. Lois de la résistance de l'air sur des projectiles animés de grandes vitesses. La résistance de l'air croît plus rapidement que le carré de la vitesse; on en représente assez exactement la loi, en ajoutant un terme proportionnel au cube de la vitesse, ce qui lui donne pour expression $\rho = A\pi R^2 v^2 (1 + \frac{v}{\pi})$.

D'après les expériences de Metz, sur des boulets de 0^m12 à 0^m15 de diamètre, et les expériences de Hutton, en Angleterre, la densité moyenne de l'air étant 1,2083, en nommant R le rayon du projectile, on aurait A=0,0270

et
$$\frac{1}{r} = 0,0023$$
, ou $r = 435^{\text{m} \cdot \text{s}}$, et par conséquent

$$\rho = 0.0270 \, \text{m} \, \text{R}^2 v^2 (1 + 0.0023 \, r),$$

ou

$$\rho = 0.0270 \, \text{cm} \, \mathrm{R}^2 v^2 \left(1 + \frac{v}{435} \right).$$

Avec les projectiles oblongs tirés dans les canons rayés, au lieu de A=0.0270, on aura (57) A=0.018, pour les projectiles terminés par un plan, et A=0.020, pour les balles creuses à la partie postérieure.

56. Limite des vitesses que les projectiles peuvent acquérir par l'effet de leur chute dans l'air. Cette vitesse étant v, en faisant $\frac{1}{2c} = \frac{g}{P} A_{\pi} R^2$, ou $c = \frac{1}{2g} \frac{P}{A_{\pi} R^2}$, et $c = \frac{2}{3} \frac{RD}{gA}$, pour les projectiles sphériques seulement, on aura

(8)
$$v^2\left(1+\frac{v}{r}\right)=2gc,$$

d'où l'on retirera v.

58. Densité de l'air. La hauteur de la colonne de mercure qui fait équilibre à la pression de l'atmosphère, étant H, la température en degrés centigrades t, le degré de saturation, par rapport à l'état de saturation complète s, on aura

$$\delta = 1,2991 \cdot \frac{H}{0,760} \cdot \frac{1 - 0,0025295s}{(0,00375 + 0,000426s)t} \text{ (Voyez table IV)}.$$

La valeur de s peut être obtenue par divers procédés. Si l'on suppose $s = \frac{1}{2}$, on a la formule donnée par Laplace:

$$\delta = 1,2991 \cdot \frac{H}{0,760} \cdot \frac{0,998735}{1 + 0,0040t}.$$

SECTION III.

Mouvement des projectiles dans l'air sous des angles de projection quelconques.

60. Soit V et φ la vitesse initiale et l'angle de projection, $V_1 = V\cos\varphi$ la composante horizontale de cette vitesse, et h la hauteur due à la vitesse V, g étant la pesanteur, $V^* = 2gh$, P le poids du projectile supposé sphérique, D sa densité, x et y l'abscisse et l'ordonnée d'un point quelconque de la trajectoire, \emptyset l'inclinaison de la trajectoire en ce point, t le temps écoulé.

La résistance de l'air étant $\rho = A\pi R'v' \left(1 + \frac{v}{r}\right)$, on fera $\frac{1}{2c} = A\pi R' \frac{g}{P}$. (Voir table VI, les valeurs de c et de $\frac{1}{c}$, pour les projectiles en usage.)

63, 64, 65. Équation finie d'un arc de trajectoire. Un arc quelconque de la trajectoire, commençant sous un angle \mathfrak{o} et se terminant sous un angle \mathfrak{o} , le rapport de l'arc à sa projection étant \mathfrak{a} (Voyez table V, les rapports pour des arcs de parabole osculatrice); prenez la valeur de $\frac{x}{c}$ (Voyez table VI), calculez $\frac{\alpha x}{c} = z$ et $\frac{\alpha V_1}{r} = V_0$, avec quatre décimales pour les calculs très-exacts, et avec trois décimales dans d'autres cas.

Représentons en général $\frac{e^z-1}{z}$ par F'(z), et $2\frac{e^z-z-1}{z^2}$ par F(z) (Tables VII, VIII, IX); e=2,718281828; on fait

$$(1 + V_0)^2 Fz - 2V_0 (1 + V_0) F\frac{z}{2} + V_0^2 = \mathfrak{F}(x, V),$$

$$(1 + V_0)^2 F'z - 2V_0 (1 + V_0) F'\frac{z}{2} + V_0^2 = \mathfrak{F}(x, V)$$
(Tables X et XII);
$$(1 + V_0) F'\frac{z}{2} - V_0 = \mathfrak{D}(x, V),$$

$$(1 + V_0) e\frac{z}{2} - V_0 = \mathfrak{D}(x, V) \text{ (Tables XI et XIII)}.$$

L'équation d'un arc de la trajectoire compris entre les deux limites qui déterminent a (Table V), sera

(7)
$$y = x \tan \varphi - \frac{x^3}{4h \cos^2 \varphi} \Re(x, V),$$

ou

$$y = x \operatorname{tang} \varphi - \frac{g}{2} \cdot \frac{x^2}{V_1^2} \operatorname{Vb}(x, V);$$

l'inclinaison en un point quelconque, dont l'abscisse est x, sera

(8)
$$\tan \theta = \tan \varphi - \frac{x}{2h\cos^2\varphi} \mathfrak{J}(x, V) = \tan \varphi - \frac{gx}{V^2} \mathfrak{J}(x, V);$$

la durée t du trajet et la vitesse v du projectile seront :

(11)
$$t = \frac{x}{V \cos \varphi} \mathfrak{D}(x, V),$$
 (13) $v = \frac{V}{\mathfrak{D}(x, V)} \cdot \frac{\cos \varphi}{\cos \theta}.$

Ces expressions ne diffèrent de celles qu'on aurait dans le vide, que par les fonctions représentées par les caractéristiques &, 5 et D, O.

77. Choix des points de division d'une trajectoire en plusieurs arcs. Lorsqu'on veut déterminer avec beaucoup de précision une trajectoire étendue, on la divise en plusieurs arcs partiels. Les différences des inclinaisons aux points de division doivent être prises d'autant moins grandes, que ces points s'éloignent plus du sommet. On obtiendra déjà une grande exactitude, en embrassant les arcs de 0° à 30°, de 30° à 45°, de 45° à 55°, de 55° à 60°.

Pour déterminer, dans cette hypothèse, une trajectoire commençant sous l'angle de projection $\varepsilon=45^\circ$, on déterminera le rapport α pour l'arc de 45° à 30° , au moyen des valeurs de $\xi(\phi)$ (Table V, $1^{\rm re}$ partie), par la formule $\alpha' = \frac{\xi(45^\circ) - \xi(30^\circ)}{\tan g 45^\circ - \tan g 30^\circ}, \text{ ou on la prendra toute calculée}$ dans la troisième partie de la même table; on aura alors, de 45° à 30° , $\alpha' = 1,2772$; de 30° à 0° ou de 30° à -30° , $\alpha'' = 1,0531$, de -30° à -45° , $\alpha''' = \alpha'$.

Soit 2R le diamètre du projectile (en mètres), P son poids (en kilogrammes), V sa vitesse initiale, l'air ayant la densité ordinaire, on calculera c et $\frac{1}{c}$. (S'il s'agit de projectiles ordinaires, on prendra dans la table VI, les

valeurs de c ou de $\frac{1}{c}$); on calculera aussi $V_c = V \cos \varphi$,

$$V_0 = \frac{\alpha V_1}{r}$$
; de même $h_i = h \cos^2 \varphi = \frac{V_1^2}{2g}$ (à prendre directement dans la table III, au mòyen de la valeur de V_1).

78, 79. La projection x' de l'arc limité aux inclinaisons φ et θ (pour l'exemple $\varphi = 45^{\circ}$, $\theta = 30^{\circ}$), sera déterminée par l'équation

(1)
$$\frac{\alpha x'}{c} \mathfrak{J}(x, V) = (\tan \varphi - \tan \theta) \frac{x'}{c} 2h \cos^2 \varphi = p.$$

On trouvera la valeur de $\frac{\alpha x'}{c}$, au moyen de la valeur p du second membre, et de la table XIV, pour la valeur donnée de $V_0 = \frac{\alpha V_1}{r}$; connaissant la valeur de $\frac{\alpha x'}{c}$, on la multipliera par $\frac{c}{a}$ et on aura x'.

Ayant déterminé l'abscisse x', on aura la projection horizontale de la vitesse à la fin de l'arc, et la durée t' du trajet, par les formules

$$V_{i'} = \frac{V_{i}}{\mathcal{D}(x', V)}, \qquad t' = \frac{x'}{V_{i}} \otimes (x', V).$$

L'ordonnée y' de l'extrémité de l'arc sera donnée par l'équation

$$y' = x' \tan \varphi - \frac{g}{2} \cdot \frac{x'^2}{V_1^2} \Re(x', V).$$

On opérera de même pour les autres arcs, on obtiendra ainsi x'', y'', t'' et V_i'' ; puis, x''', y''', t''' et V_i''' , etc.

La portée totale sera donc x' + x'' + x''', l'élévation du dernier point y' + y'' + y''', la durée totale t' + t'' + t''',

et la vitesse à l'extrémité du troisième arc sera $V_1^m \frac{1}{\cos \theta}$; ici $\theta = 45^{\circ}$.

- 81. Trajectoire des bombes aux distances ordinaires. Dans le cas du tir des bombes, aux distances ordinaires, la trajectoire peut être considérée comme un seul arc. La solution des divers problèmes est alors très-facile.
- 82. Portées. La portée x sur un plan horizontal à une hauteur b au-dessus de la bouche du mortier est donnée par l'équation

$$\frac{c}{a} \tan \varphi \, \frac{\alpha x}{c} - \frac{c^{a}}{4h\alpha^{a}\cos^{a}\varphi} \left(\frac{\alpha x}{c}\right)^{a} \Re\left(x, V\right) = b,$$

dans laquelle $\frac{\alpha x}{c}$ est l'inconnue; il y aura deux solutions, mais on ne prendra que la valeur positive. La valeur de α se déduira de l'angle de projection φ seul.

83. Si le point de chute doit être sur le plan horizontal, la valeur de $\frac{\alpha x}{c}$ sera donnée par l'équation

$$\frac{\alpha x}{c} \operatorname{VS}(x, V) = 2h \frac{\alpha}{c} \sin 2\varphi = p.$$

La table XV donne les produits tout formés de $\frac{\alpha x}{c}$ & (x, V);

on multipliera $\frac{\alpha x}{c}$ par $\frac{c}{\alpha}$ pour avoir x.

84. Vitesse initiale d'un projectile qui doit avoir une portée déterminée X sur un plan horizontal. On l'obtient très-simplement au moyen de l'équation

$$\frac{\mathbf{V}_o}{\sqrt{\mathbf{v}_b(x,\mathbf{V})}} = \frac{\alpha}{r} \sqrt{\frac{g\mathbf{X}}{2\tan g}} = q,$$

et au moyen de la table XVI.

86. Projectile qui doit passer par un point donné. — Vitesse initiale. Soit ϕ l'angle de projection, a la distance horizontale du but, b sa hauteur et $\frac{b}{a} = \tan g \epsilon$, on aura

$$\frac{V_o}{\sqrt{v_b(a,V)}} = \frac{a}{r} \sqrt{\frac{ag}{2(\tan q \, \phi - \tan g \, \epsilon)}},$$

et l'on opérera comme on l'a dit (84).

88. Angle de projection. Soit V la vitesse initiale, on cherchera une valeur approchée de φ ; on s'en servira pour calculer α , $\frac{\alpha V_i}{r}$ et $\frac{\alpha x}{c}$; de là, $\mathfrak{B}(\alpha, V)$ et faisant $h_i = \frac{h}{\mathfrak{B}(\alpha, V)}$, on résoudra l'équation du deuxième degré.

(11)
$$\tan \varphi = \frac{2}{a} \left(h_i \pm \sqrt{h_i(h_i - b) - \frac{a^2}{4}} \right).$$

La recherche de chacune des deux valeurs doit être distincte à cause des valeurs différentes de a.

Si le but est à hauteur de la bouche à feu, on aura simplement

(12)
$$\sin 2\varphi = \frac{X}{2h} \mathfrak{G}(x, V).$$

89. Angle et vitesse de chute, durée du trajet.

$$tang\theta = tang \varphi - g \frac{x}{V^2 \cos^2 \varphi} \Im(x, V),$$

$$v = \frac{V\cos\varphi}{\mathfrak{V}(x,V)\cos\theta}, \qquad t = \frac{X}{V\cos\varphi}\mathfrak{Q}(x,V).$$

SECTION IV.

Monvement des projectiles sons les petits angles de projection.

- 91. Simplifications. Les formules de la section III sont applicables au cas du tir sous les petits angles en y faisant a égal à l'unité; elles se simplifient beaucoup et donnent la solution de plusieurs problèmes qui ne se rencontrent pas dans le tir sous les grands angles; elles sont applicables jusque sous les angles de 15° à 16° au-dessus de l'horizon que permettent le tir des canons et des obusiers et sous ceux que comportent les mortiers dans le cas particulier du tir plongeant.
- 92. Solution des divers problèmes, lorsque le but n'est pas à hauteur de la bouche à feu. Vitesse initiale. a et b étant la distance et la hauteur du but, faisant $\frac{b}{a} = \tan g \epsilon$; la solution la plus simple est donnée par la résolution, au moyen de la table XVI, de l'équation

(9)
$$\frac{V_o}{\sqrt{\sqrt{\eta_b(a,V)}}} = \frac{1}{r} \sqrt{\frac{ga}{2(\tan g \, \varphi - \tan g \, \epsilon)}} = q.$$

93. Angle de projection. Cet angle sera donné par la plus petite valeur de l'équation (10) ci-après, dans laquelle $h' = \frac{h}{10 h(x, V)}$:

(10)
$$\tan \varphi = \frac{2}{a} \left(h' - \sqrt{h'(h'-b) - \frac{a^2}{4}} \right).$$

On aurait une valeur plus simple, mais un peu moins approchée, et partant de la valeur de V au lieu de $V\cos\varphi$

537

dans la valeur de $\mathfrak{G}(x, V)$, et au moyen de l'équation

$$\tan \varphi = \tan \varphi + \frac{g}{2} \frac{\alpha}{V^2} \Re (\alpha, V).$$

94. Vitesse et angle de projection d'un projectile qui doit passer par deux points donnés. Soient a et b les distances horizontale et verticale du premier point, a' et b' celles du second, on prendra des valeurs approchées de V et de φ pour déterminer $\mathfrak{A}(a, V)$, $\mathfrak{A}(a', V)$, et l'on aura

(14)
$$\tan \varphi = \frac{a' \operatorname{Vb}(a', V) \frac{b}{a} - a \operatorname{Vb}(a, V) \frac{b'}{a'}}{a' \operatorname{Vb}(a', V) - a \operatorname{Vb}(a, V)},$$

(15)
$$V = \frac{1}{\cos \varphi} \sqrt{\frac{\overline{g}}{2}} \frac{a' \operatorname{Vb}(a', V) - a \operatorname{Vb}(a, V)}{\frac{b}{\overline{a}} - \frac{b'}{\overline{a'}}}.$$

(Voir au texte la solution rigoureuse.)

95. Vitesse et angle de projection d'un projectile qui doit passer par un point donné, sous une inclinaison déterminée. Soient a et b les distances horizontale et verticale du point et θ l'angle d'inclinaison, on prendra des valeurs approchées de V et de φ pour déterminer $\mathfrak{L}(a, V)$ et $\mathfrak{I}(a, V)$, et l'on aura

(19)
$$\tan \varphi = \frac{2\mathfrak{Z}(a, V) \tan \varphi - \mathfrak{Y}(a, V) \tan \varphi}{2\mathfrak{Z}(a, V) - \mathfrak{Y}(a, V)},$$

puis

(20)
$$v = \frac{1}{\cos \varphi} \sqrt{\frac{1}{2} g a \frac{25(a, V) - v_b(a, V)}{\tan \varphi - \tan \varphi}}.$$

(Voir au texte la solution rigoureuse.)

97. Solution des divers problèmes, lorsque le but est à hauteur de la bouche à feu. — Vitesse initiale. Ayant la

portée X et l'angle de projection , on aura la valeur de Vo au moyen de la table XVI et de l'équation

(21)
$$\frac{V_o}{\sqrt{V_b(x,V)}} = \frac{1}{r} \sqrt{\frac{gX}{2\tan g\phi}} = q.$$

98. Angle de projection. Ayant la portée X et la vitesse initiale V, on aura l'angle de projection φ en prenant simplement pour V, la valeur de V, ou en substituant à φ une valeur approchée dans $V\cos\varphi$, et au moyen de l'équation

(26)
$$\sin 2\varphi = \frac{gX}{V^2} \mathfrak{V}_b(x, V).$$

99. Portée. Ayant l'angle de projection ϕ et la vitesse initiale V, on aura la portée X à l'aide de la table XV et au moyen de l'équation

(27)
$$\frac{X}{c} \mathfrak{V}_b(x, V) = \frac{V^s}{g} \frac{\sin 2\varphi}{c} = p.$$

100. Angle de chute sur un plan horizontal. Il est donné indépendamment de l'angle de projection par l'équation

$$-\tan\theta = \frac{\frac{1}{2}gX}{V_{\perp}^2}[2\mathfrak{I}(X,V) - \mathfrak{G}(X,V)].$$

ll est toujours plus grand que l'angle de projection (101). 102. *Inclinaison, durée, vitesse*. Dans chacun des problèmes ces quantités sont données par les formules

$$\tan \theta = \tan \theta - \frac{a}{2h\cos^2 \theta} \Im(a, V),$$

$$t = \frac{a}{V\cos \theta} \Im(a, V) \quad \text{et} \quad v = \frac{V}{\mathfrak{D}(a, V)} \cdot \frac{\cos \theta}{\cos \theta}$$

103. Dans le tir habituel des canons et des obusiers,

l'angle de projection, rapporté à la ligne qui va de la bouche à feu au but, est sensiblement indépendant de l'élévation de ce point. L'angle d'élévation du but étant ϵ et l'angle de projection φ , l'angle de projection relatif au but sera $\varphi - \epsilon = \varphi$, et l'on aura

$$tang \varphi_i = \frac{\dot{a}}{4h} \mathfrak{B}(a, V).$$

104. Mouvement des projectiles, abstraction faite de la pesanteur. Alors le mouvement est en ligne droite.

Quand un projectile passe de la vitesse V à la vitesse v, la longueur du trajet étant x, on a les relations ci-après :

(35)
$$x = 2c\log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)},$$

(36)
$$t = 2c \left(\frac{1}{v} - \frac{1}{V} - \frac{1}{r} \log \frac{V\left(1 + \frac{v}{r}\right)}{v\left(1 + \frac{V}{r}\right)} \right),$$

(37)
$$2c = \frac{t}{\frac{1}{v} - \frac{1}{v} - \frac{1}{r} \log \frac{\frac{1}{v} + \frac{1}{r}}{\frac{1}{v} + \frac{1}{r}}$$

La caractéristique log indique des logarithmes népériens, table VII.

109 à 114. Circonstances dans lesquelles on peut regarder la résistance de l'air comme proportionnelle au carré de la vitesse. — Simplifications.

SECTION V.

Mouvement des projectiles, en supposant la résistance de l'air proportionnelle au carré de la vitesse du mobile.

(Voir au texte 115 à 150 et se reporter de préférence aux sections III et IV, pour les applications ordinaires.)

SECTION VI.

Tracé des trajectoires et solution graphique de divers problèmes de balistique.

(Voir au texte, comme il suit.)

151 à 155. Tracé des trajectoires des bombes. — 156 à 159. Tracé des trajectoires sous de petits angles de projection. — 159. Inclinaison. — 160. Durée, vitesse. — 162 à 170, Solution graphique de divers problèmes.

SECTION VII.

Lois de la pénétration des projectiles dans les milieux résistants.

175. Soit 2R le diamètre d'un projectile sphérique, D sa densité, V sa vitesse à l'instant où il commence à pénétrer dans le milieu pénétrable, v sa vitesse à un instant quelconque de la pénétration, α et β deux coefficients déterminés par l'expérience, pour chaque milieu résistant, ρ la résistance que le mobile éprouve à chaque instant, E la profondeur de la pénétration totale et T la durée de cette pénétration, on aura

$$\rho = \varpi R^2 \alpha \Big(1 + \frac{\beta}{\alpha} v^2\Big); \qquad E = \frac{P}{2\varpi R^2 \sigma \beta} \cdot \log \Big(1 + \frac{\beta}{\alpha} V^2\Big) \,. \label{eq:rho_prob}$$

Avec les boulets de fonte, on a moyennement D=7032.

176. En faisant $\frac{7032.2,3026}{3g.\beta}$ ou $\frac{550,2}{\beta} = K$ et $\frac{\beta}{\alpha} = \frac{1}{u^2}$, on aura, pour les boulets,

$$E = K.2R.Log \left[1 + \left(\frac{V}{u}\right)^{2}\right];$$

pour un obus de même diamètre, animé de la même vitesse, mais dont le poids serait P, ou la densité D, on aurait

$$E_t = E \frac{P_t}{P}$$
 ou $E_t = E \frac{D_t}{D}$.

Les pénétrations croissent proportionnellement au produit des calibres par les densités. Quand les vitesses initiales sont faibles, les profondeurs de pénétration croissent sensiblement comme le carré de ces vitesses; dans les autres cas, elles croissent moins rapidement.

177. Pénétration des projectiles oblongs dans les milieux résistants. En admettant que la résistance à la pénétration des projectiles oblongs n'est que les deux tiers de celle que présente ces projectiles sphériques de même diamètre, on aurait pour la pénétration totale

$$E_{t} = \frac{3}{4} \frac{P}{\varpi R^{2} q \beta} \cdot 2,3026 \log \left(1 + \frac{\beta}{\alpha} V^{2}\right).$$

178. Détermination des coefficients. Pour déterminer les coefficients, il faut connaître les pénétrations pour deux vitesses différentes résultant chacune d'un assez grand nombre de coups. Soit V et V' les vitesses, E, E' les pénétrations correspondantes; au moyen de l'équation

$$\frac{E}{E'} = \frac{\operatorname{Log}\left(1 + \frac{\beta}{\alpha} V^{2}\right)}{\operatorname{Log}\left(1 + \frac{\beta}{\alpha} V'^{2}\right)},$$

et de plusieurs essais successifs, on déterminera $\frac{\beta}{\alpha}$ ou $\frac{1}{u^2}$, on aura ensuite β au moyen de l'équation

$$\beta = \frac{2}{3} \cdot \frac{\text{RD}}{gE} 2,3026 \text{ Log} \left(1 + \frac{\beta}{\alpha} V^2\right),$$

et de là,

$$K = \frac{500,2}{8}.$$

180 à 182. Valeurs de K et de u pour les principaux milieux résistants.

183. Forme du vide. r étant le rayon de l'entonnoir à une distance e, et ϵ la base des logarithmes hyperboliques, on a

$$r = R\left(1 + \frac{\beta}{\alpha}V^2\right)^{\frac{1}{2}} \times \epsilon^{-\frac{\sigma R^2 g \beta e}{P}}.$$

184. Durée de la pénétration.

$$\mathbf{T} = \frac{2\mathbf{E}}{u} \cdot \frac{\arctan\left(\frac{\mathbf{V}}{u}\right)}{\log\left[1 + \left(\frac{\mathbf{V}}{u}\right)^{2}\right]}.$$
 [Les log. sont hyperboliques (Tab. VII).]

Pour calculer arc tang $\frac{V}{u}$, on cherchera l'angle dont la tangente est $\frac{V}{u}$ (Table I); cet angle étant représenté par un nombre a de degrés nonagésimaux, la valeur de l'arc sera $\frac{a}{480}3,1416$.

On a aussi, sans qu'il soit nécessaire de connaître la profondeur de pénétration, pour les boulets de fonte,

$$T = \frac{K}{u} \cdot \frac{2R}{1,1513} \arctan \frac{V}{u}.$$

Pour les obus, on devra multiplier cette durée par le rapport direct des poids ou des densités.

SECTION VIII.

Vitesse des projectiles.

200. Mesure des vitesses au moyen du pendule balistique. Soit P le poids du pendule, b celui du projectile, V sa vitesse au moment où il frappe le pendule, i la distance du point frappé à l'arête inférieure des couteaux, D la distance du centre de gravité à cette même arête, K la longueur du pendule simple synchrone, a l'angle de recul du pendule par l'effet du projectile, et g la pesanteur, on aura

(2)
$$v = \frac{\sqrt{(PDK + bi^2)(PD + bi)g}}{bi} 2 \sin \frac{1}{2} \alpha.$$

Si l'amplitude du mouvement du pendule était mesurée par la grandeur C de la corde, sur un arc d'un rayon R, on substituerait $\frac{C}{B}$ à $2\sin\frac{1}{2}\alpha$.

201. Si, dans une seconde expérience, le poids de la matière dont on remplit le récepteur balistique, est augmenté d'un poids p et que le poids b du boulet dépasse le poids normal b, de la quantité b', de façon qu'on ait b = b + b', on aura

(3)
$$v = \frac{\beta}{bi} [1 + \gamma (p+b')] \sin \frac{1}{2} \alpha,$$

dans laquelle β et γ , calculées une fois pour toutes les expériences, sont :

$$\beta = 2\sqrt{(\text{PDK} + b_1 i^2)(\text{PD} + b_1 i)g},$$

$$\gamma = \frac{1}{2} \left(\frac{a^2}{\text{PDK} + b_1 a^2} + \frac{a}{\text{PD} + b_1 a} \right),$$

en représentant par a la distance à l'axe des couteaux de l'axe du récepteur autour duquel le poids p est supposé également réparti.

202. La valeur de K s'obtient au moyen de la durée T d'une oscillation du pendule, par la formule connue

$$K = g \frac{T^2}{\sigma^2}$$

La durée T doit être mesurée avec beaucoup de soins, d'après une moyenne d'au moins 300 oscillations; on a = 3,14159.

En nommant λ , la latitude d'un lieu, et r le rayon moyen du méridien égal à 6366200, on aura, comme on sait,

$$g = \frac{9^{m80570}(1 - 0,002588\cos 2\lambda)}{1 + \frac{5h}{4r}}.$$

Voyez le tableau calculé des valeurs de g; sa valeur moyenne en France est $g = 9^{m}809$.

193. On obtient D, en saisant la somme des moments statiques des diverses parties du pendule, et en la divisant par la somme des poids; on obtient aussi PD, en pesant le pendule sous une inclinaison α , par un point situé à une distance α des couteaux. Si Q est le poids qui sait équilibre, on aura

$$PD = \frac{Q \times a}{\sin \alpha}.$$

209. Les vitesses étant toujours mesurées à une certaine distance x du pendule, elles doivent être ramenées à ce qu'elles seraient à la bouche à feu, et pour cela, on doit les augmenter de la quantité

$$\frac{x}{2c}\left(1+\frac{v}{r}\right)v.$$

Dans cette expression, c et r ont les significations déjà données plus haut.

210. Vitesse de recul des canons. Soit P' le poids du pendule à canon monté, p' le poids du canon seul, a' la distance de l'axe de rotation à l'axe de la bouche à feu, D' la distance du centre de gravité du pendule au même axe de rotation, K' la longueur du pendule synchrone, a' l'angle de recul du pendule, g la pesanteur et $M' = \frac{P'}{a}$.

La quantité de mouvement du recul sera

$$\frac{\mathbf{M'D'}}{a'}\sqrt{g\mathbf{K'}}\cdot 2\sin\frac{1}{2}\alpha$$
.

Si la masse M' du pendule était assujettie à se mouvoir parallèlement à elle-même, sa vitesse V' serait

$$V' = \frac{D'}{\alpha'} \sqrt{gK'} \cdot 2\sin\frac{1}{2}\alpha'.$$

Si la bouche à feu eût été seule, sa vitesse eût été

$$\frac{\mathbf{P'}}{p'} \cdot \frac{\mathbf{D'}}{\alpha'} \sqrt{g\mathbf{K'}} \cdot 2\sin\frac{1}{2}\alpha'.$$

La vitesse que devrait avoir le boulet du poids b, pour posséder la même quantité de mouvement, serait

$$\frac{\mathrm{P'}}{b} \cdot \frac{\mathrm{D'}}{a'} \sqrt{g \mathrm{K'}} \cdot 2 \sin \frac{1}{2} \alpha'.$$

Dans ces expressions, si le recul était mesuré par la corde C', sur un arc de rayon R', on substituerait $\frac{C'}{R'}$ à $2\sin\frac{1}{2}\alpha'$.

212 à 215. Application de l'électricité à la mesure des vitesses.

SECTION IX.

Béviations des projectiles.

216 à 219. La trajectoire moyenne d'un projectile, c'est-à-dire la trajectoire déterminée par les moyennes des hauteurs d'un grand nombre de projectiles tirés dans les mêmes circonstances et mesurées à diverses distances, peut être représentée avec une grande exactitude, en déterminant la vitesse et l'angle de projection qui la font passer par deux des points observés; mais alors, l'angle de projection diffère un peu de l'inclinaison de la bouche à feu; il est généralement plus grand, et la vitesse initiale déduite diffère aussi un peu de la vitesse initiale réelle, telle qu'on l'obtiendrait au moyen du pendule balistique.

Pour faire concorder la vitesse calculée avec la vitesse réelle, il y a, dans la plupart des cas, nécessité d'introduire l'action d'une certaine force verticale, dont le sens est ordinairement celui de la pesanteur.

220. Si l'on connaît la vitesse initiale V, on aura la force déviatrice g' à ajouter à la pesanteur, et l'angle de projection φ , par les formules suivantes, dans lesquelles a et b, a' et b' sont les coordonnées moyennes observées de deux points de la trajectoire :

$$\tan \mathbf{q} = \frac{\frac{b}{a} a' \mathbf{Vb} \left(a', \mathbf{V} \right) - \frac{b'}{a'} a \mathbf{Vb} \left(a, \mathbf{V} \right)}{a' \mathbf{Vb} \left(a', \mathbf{V} \right) - a' \mathbf{Vb} \left(a, \mathbf{V} \right)},$$

et

$$\frac{g+g'}{2} = \mathbf{V}_{\mathbf{i}^2} \cdot \frac{\frac{b}{a} - \frac{b'}{a'}}{\frac{a' \mathbf{V}_{\mathbf{b}}(a', \mathbf{V}) - a \mathbf{v}_{\mathbf{b}}(a, \mathbf{V})}{\mathbf{v}_{\mathbf{b}}(a', \mathbf{V}) - a \mathbf{v}_{\mathbf{b}}(a, \mathbf{V})},$$

ou

$$\frac{g+g'}{2} = \frac{\tan g + \frac{b'}{a'}}{\sqrt{b}(a', V)} \cdot \frac{V_1^2}{a'}.$$

Pour la valeur de φ qui entre dans V₁, on prendra l'inclinaison connue, d'une manière assez approchée, par l'inclinaison de la bouche à feu. L'excès de φ sur cette inclinaison indiquera le relèvement au départ; il faut en tenir compte dans les formules qui représentent la trajectoire moyenne des projectiles tirés dans des circonstances semblables.

232. Dérivation due au vent. Soit V et φ la vitesse et l'angle de projection, W la vitesse du vent, ω l'angle que sait la direction d'où vient le vent, supposée horizontale, avec la ligne qui va au but, x la distance que l'on considère, et Δ la dérivation qu'a éprouvée le projectile.

Dans le tir sous de petits angles de projection, la dérivation dans le sens du vent sera

$$\Delta = x \frac{\mathbf{W}}{\mathbf{V}_{\bullet}} [\mathbb{Q}(x, \mathbf{V}) - 1] = \frac{x^{\bullet}}{4c} \frac{\mathbf{W}}{\mathbf{V}} (1 + \mathbf{V}_{\bullet}) \mathbf{F} \frac{x}{2c}.$$

La dérivation latérale sera $\Delta \sin \omega$, la dérivation dans le sens du tir sera $\Delta \cos \omega$. (Voir le tableau relatif aux projectiles en usage.)

256. Variation dans les hauteurs et dans les portées, due à la variation de la densité de l'air. Connaissant la valeur de $\frac{x}{c}$, connaissant aussi le rapport de l'accroissement de la densité de l'air à cette densité elle-même, on aura le rapport de l'accroissement de $\frac{x}{c}$ à cette quantité. Dans les tables X et XI, on prendra, pour les valeurs données de V_0 et de $\frac{x}{c}$, l'accroissement de $\mathcal{L}(x, V)$, proportionnellement à celui de $\frac{x}{c}$; on aura ainsi $\Delta \mathcal{L}(x, V)$; la variation qui en résultera dans la hauteur de la trajec-

toire, exprimée par un signe contraire à la variation dans la densité, sera

$$-\frac{x^2}{4h\cos^2\varphi}\Delta\psi(x,V).$$

La variation dans les portées sera

$$-\frac{x\Delta \Psi_0(x,V)}{\Psi_0(x,V)-2\delta(x,V)}$$

257 à 262. On représente le mouvement réel des projectiles et les déviations, particulièrement sous les petits angles de projection, en considérant la courbe que décrit le projectile en vertu de la pesanteur et de la résistance tangentielle de l'air, comme une trajectoire normale; on la réduit à sa projection horizontale, puis, on y rapporte, à une échelle plus grande, les déviations observées ou calculées. On peut les projeter en direction et en grandeur, sur un plan supposé rester perpendiculaire à la projection horizontale de l'axe de la bouche à feu.

264. Equation de la trajectoire des boulets oblongs. — La force déviatrice étant comparée à la pesanteur. Si g'est cette force accélératrice, en sens opposé à la pesanteur, l'équation de la projection verticale de la trajectoire sera

(1)
$$y = x \operatorname{tang} \varphi - \frac{g - g'}{2} \frac{x^2}{V_1^2} \mathfrak{P}_b(x, V).$$

L'ordonnée horizontale de la trajectoire, ou la dérivation latérale, sera, en nommant g'' la force déviatrice horizontale,

$$z = \frac{g''}{2} \cdot \frac{x^2}{V_1^2} V_0(x, V).$$

L'inclinaison 0, relativement au plan horizontal, sera

(3)
$$\tan \theta = \tan \theta - \frac{(g - g')x}{V^2} \mathfrak{I}(x, V).$$

La vitesse et la durée du trajet seront

(4)
$$t = \frac{x}{V_t} \mathfrak{Q}(x, V); \quad v = \frac{V}{\mathfrak{D}(x, V)} \frac{\cos \varphi}{\cos \theta}.$$

265. Équation de la trajectoire des boulets oblongs. — La force déviatrice étant comparée à celle du vent. Soit W la vitesse supposée du vent agissant verticalement et W' celle du vent qui agirait horizontalement (généralement de gauche à droite) pour produire la dérivation horizontale z, on aura

(5*)
$$y = x \tan \varphi - \frac{g}{2} \frac{x^2}{V_1^2} \left[v_b(x, V) - \frac{Wr}{2gc} V_o(1 + V_o) F \frac{x}{2c} \right],$$

(6) $z = \frac{x^2}{4c} \frac{W'}{V_1} (1 + V_o) F \frac{x}{2c}.$

266. Formules de dérivation plus rapide. Pour obtenir une dérivation plus rapide, on peut, dans l'équation 5^* , substituer à $F\frac{x}{2c}$, soit $e^{\frac{x}{2c}}$, soit $e^{\frac{x}{c}}$, soit, en général, $F\frac{nx}{2c}$.

Application du calcul des probabilités au tir des projectiles.

269 à 272. Point d'impact moyen. — 272. Chances d'atteindre des buts de formes et de dimensions diverses. — Écart de la moyenne; écart moyen; moyen écart. — Probabilité d'atteindre des surfaces, des rectangles, des carrés, des cercles. (Voir au texte.)

273. Expression des chances d'atteindre suivant les distances. Le moyen écart z aura pour expression

$$z = \frac{nx^2}{4c} \frac{W}{V_1} (1 + V_0) F \frac{nx}{2c}$$

W et n seront déterminés d'après des résultats d'expériences.

SECTION X.

Des différentes espèces de tir, pointage, vitesse et tables de tir.

281. Calcul des hausses. Soit R le demi-diamètre du derrière de la plate-bande de culasse, r le demi-diamètre au plus grand renflement du bourrelet dans les canons ou au diamètre de la plate-bande de la bouche dans les obusiers, l la distance de ces cercles, l'angle de mire naturel étant m, on aura

$$tang m = \frac{\mathbf{R} - r}{l}.$$

282. Cet angle donne la portée du but en blanc. Soit a la distance horizontale du but, b sa hauteur au-dessus de l'axe de la bouche à feu, ϵ l'angle d'élévation du but; tang $\epsilon = \frac{b}{a}$; φ étant l'angle de projection qui convient pour atteindre ce but, $\varphi - \epsilon$ sera l'angle de projection relatif; $\varphi_1 = \varphi - \epsilon$. La hausse H à donner sera

$$H = l \tan \varphi_{i} - (R - r) + r \frac{l}{a}.$$

On pointe ainsi, sans considérer la hauteur du but. Quand les distances sont grandes, $r\frac{l}{a}$ est négligeable, et l'on a simplement

$$H = l \tan \varphi_1 - (R - r).$$

V, h et ∞ conservant les significations connues on aura aussi

$$\mathbf{H} = l \cdot \frac{a}{4h} \, \mathrm{vb} \left(a, \mathbf{V} \right) - \left(\mathbf{R} - r \right) + r \frac{l}{a}.$$

283 à 284. Q étant la quantité dont il faut pointer au-dessus du but, pour atteindre, sans donner de hausses, on a

$$\mathbf{Q} = \mathbf{H} \frac{a}{l} \quad \text{ ou } \quad \mathbf{Q} = \frac{a^2}{4h} \mathfrak{B}(a, \mathbf{V}) - \frac{a}{l} (\mathbf{R} - r) + r.$$

La même relation a lieu en deçà de la portée du but en blanc, ou, entre les quantités dont il faut pointer audessous du but et les hausses négatives.

288. Erreur de pointage provenant de l'inclinaison de l'axe des tourillons. a étant l'inclinaison des tourillons; celui de gauche étant au-dessus de l'horizon, on devra pointer de ce même côté d'une quantité E, et au-dessus du but d'une quantité e, données ci-après:

$$E = \frac{a}{l}(H + R - r)\sin\alpha, \quad e = \frac{a}{l}(H + R - r)2\sin^{2}\frac{1}{2}\alpha.$$

290, 291. Vitesse initiale imprimée par une charge de poudre donnée. Pour la poudre ordinaire de guerre et les bouches à feu en usage, on déduira la vitesse initiale des tableaux (291); pour les charges non comprises dans les tableaux, on les déduira au moyen des différences et des parties proportionnelles.

292. Lorsque les dimensions des bouches à feu et des projectiles, ou les poids de ceux-ci, différeront de ceux en usage, on tirera les vitesses de la formule ci-après, dans laquelle: μ est le poids de la charge de poudre, m celui du projectile augmenté de celui du chargement, non compris la poudre, R le rayon du boulet, C le rayon et l la longueur de l'âme, M le poids de la poudre qui remplirait l'âme et qui est $M = \pi C^2 L 840^k$;

(1)
$$V = \sqrt{\gamma \cdot \frac{\mu}{m + \frac{\mu}{3}} \log \frac{M}{\mu}} - \delta \frac{C^2 - R^2}{C^3};$$

y est un coefficient à déterminer par l'expérience, d'après une vitesse connue, pour une charge déterminée, et qui est

(2)
$$\gamma = \frac{\left(V + \delta \frac{C^3 - R^3}{C^3}\right)^2}{\frac{\mu}{m + \frac{\mu}{3}} \log \frac{M}{\mu}};$$

à la place de $\frac{C^3 - R^2}{C^3}$, on pourra substituer, sans erreur notable, $2\frac{C - R}{C}$.

293. Dans l'application au tir des armes à feu, on ramenera d'abord la vitesse à ce qu'elle serait à égalité d'évent, quand il y aura lieu, par la formule

(3)
$$V_1 = V + 2000 \left[\frac{2C - 2R}{2C} - \frac{2C' - 2R'}{2C'} \right],$$

puis on tiendra compte des différences dans les charges et dans les dimensions par la formule

$$V' = V_i \sqrt{\frac{\mu'(P + \frac{1}{3}\mu)\log\frac{L'}{l}}{\mu(P' + \frac{1}{3}\mu')\log\frac{L}{l}}}$$

Des divers genres de tir.

295. Déterminer l'angle et la vitesse de projection d'un projectile qui doit passer par deux points donnés, ou par un point donné sous une inclinaison déterminée (Voir 94 et 95).

297 et 298. Limites des hauteurs auxquelles le tir plongeant est encore possible: 1º sous une inclinaison donnée; 2º en touchant le terre-plein à une distance donnée de la crête d'un parapet. Si b est cette hauteur et a la distance horizontale, on résoudra la question au moyen de l'équation

$$\frac{\frac{V_{t}}{r}}{\sqrt{3(x,V)}} = \frac{1}{r} \sqrt{\frac{ag}{\tan g + \tan g \theta}},$$

en essayant plusieurs valeurs de $\frac{V_r}{r}$ jusqu'à ce qu'on en ait deux qui comprennent la valeur du second membre, on terminera par les parties proportionnelles. (Pour la solution directe, voyez le texte.)

(2º Voyez la formule au texte.)

Formules relatives aux projectiles oblongs et aux canons rayés.

310. 1º En regardant la force dérivatrice comme constante et égale à g', on appliquera les formules qui se rapportent aux projectiles sphériques, en y remplaçant g par g-g';

2º En assimilant la force dérivatrice à celle du vent, dans l'expression de laquelle, pour plus de généralité, on remplace $\frac{1}{c}$ par $\frac{n}{c}$; de cette façon, pour un projectile donné on aura à déterminer W et n pour satisfaire aux résultats de l'expérience; cela posé, en représentant

$$\mathfrak{V}_0(x, V) = \frac{nWr}{2gc} V_0(1 + V_0) F \frac{nx}{2c} \quad \text{par} \quad \mathfrak{V}_0\left(x, V, F \frac{nx}{2c}\right)$$

et

$$5(x, V) - \frac{nWr}{2gc} V_0 (1 + V_0) F' \frac{nx}{2c}$$
 par $5(x, V, F' \frac{nx}{2c})$,

on résoudra les divers problèmes qui se rapportent aux projectiles oblongs par les formules qui se rapportent aux projectiles sphériques (section IV), en y remplaçant

$$\mathfrak{V}_{b}(x, V)$$
 par $\mathfrak{V}_{b}(x, V, F\frac{nx}{2c})$,

et

$$\mathfrak{Z}(x, \mathbb{V})$$
 par $\mathfrak{Z}\left(x, \mathbb{V}, \mathbb{F}' \frac{nx}{2c}\right)$.

Les durées et les vitesses conservent les mêmes expressions que pour les projectiles sphériques, la valeur de c étant déterminée avec une valeur de A réduite.

FIN.

TABLES

POUR FACILITER LE CALCUL

DES

FORMULES DE BALISTIQUE.

Tables		Pages.
	Des sinus, tangentes et cosinus naturels	556
II.	Rapport du double de la tangente d'un angle au sinus du	
	double de l'angle	560
III.	Hauteurs dues à différentes vitesses	558
IV.	Densités de l'air, ou poids d'un mêtre cube d'air	560
v.	Valeurs de $\xi(\phi)$, de $\frac{\xi(\phi)}{\tan \varphi}$ et de $\alpha = \frac{\xi(\phi) - \xi(\theta)}{\tan \varphi - \tan \varphi}$	562
VI.	Valeurs de $c, \frac{1}{c}$ et ses multiples	564
VII.	Valeurs de e ^z	566
VIII.	Valeurs de F' (z)	568
IX.	Valeurs de F (z)	570
X.	Valeurs de $\mathfrak{H}(x, V)$ et $\mathfrak{I}(x, V)$, à 4 décimales	571
XI.	Valeurs de $\mathfrak{O}(x, V)$ et $\mathfrak{O}(x, V)$, à 4 décimales	586
XII.	Valeurs de $\mathfrak{G}(x, V)$ et $\mathfrak{I}(x, V)$, à 3 décimales	596
XIII.	Valeurs de $\mathfrak{O}(x, V)$, et $\mathfrak{O}(x, V)$, à 3 décimales	598
XIV.	Valeurs de $\frac{dx}{c}$ $\mathfrak{Z}(x, \mathbb{V})$	599
xv.	Valeurs de $\frac{\alpha x}{c}$ $\mathfrak{B}_{b}(x, V)$	600
XVI.	Valeurs de $\frac{V_o}{\sqrt{v_b(x,V)}}$	602

I. Table des tangentes, sinus et cosinus naturels, De 10' en 10' jusqu'à 30°, et de 1° en 1° jusqu'à 90°.

DEG.	x.	TANGENTE.	SINUS.	costnus.	DEG.	и.	TANGENTE.	SINUS,	COSINUS
0	00	0,00000	0.00000	1,0000	10	00	0,47633	0,17565	0,984
	10	0,00294	0,00291	1,0000	1 33	10	0,47933	0,17651	0,984
	20	0.00582	0,00382	1,0000	11.	20	0,18233	0,17957	0,983
	50	0,00873	0.00873	1,0000		30	0,18554	0,18224	0,985
	40	0.01164	0,01164	0,9999		40	0,48835	0,48509	0,982
	50	0,01455	0.01454	0,9999	100	50	0,19136	0,18795	0,982
1	00	0.01746	0.01745	0,9998	44	00	0,19456	0,19081	0,984
	10	0,02057	0,02036	0,9998	Mark	40	0,19740	0,19366	0,981
	20	0,02328	0.02327	0,9997		20	0,20042	0,19652	0,980
	30	0.02619	0.02618	0,9997		50	0,20345	0,19937	0,979
	40	0,02910	0,02908	0,9996		40	0,20648	0,20222	0,979
	50	0,05204	0,03299	0,9995		50	0,20952	0,20507	0,978
2	00	0.03492	0.03490	0,9994	12	00	0,21256	0,20791	0,978
-	10	0,03783	0,03781	0,9995	1	10	0,21560	0,21076	0,977
	20	0,04075	0,04071	0,9992		20	0,21864	0,21560	0,976
	50	0.04366	0,04362	0,9990		30	0,22169	0,21644	0,976
	40	0,04658	0,04653	0,9989		40	0,22476	0,21928	0,975
	50	0,04949	0,04943	0,9988		50	0,22784	0,22212	0,975
3	00	0.05244	0.05234	0,9986	13	00	0,25087	0,22495	0,974
1	10	0,05535	0,05524	0,9985	1	10	0,23393	0,22778	0,973
	20	0.05824	0,05814	0,9983		20	0,23700	0,23062	0,975
	30	0.06116	0,06105	0,9984	n o	50	0,24008	0,23545	0,972
	40	0.06408	0,06395	0.9980		40	0,24316	0,23627	0,974
	50	0,06700	0,06685	0,9978		50	0,24624	0,23910	0,971
4	00	0.06993	0,06976	0,9976	14	00	0,24933	0,24192	0,970
	10	0,07285	0.07266	0,9974	125	10	0,25242	0,24474	0,969
	20	0,07578	0,07556	0,9974	100	20	0,25552	0,24756	0,968
	30	0,07870	0.07846	0.9969		30	0,25862	0,25038	0.968
	40	0,08163	0,08136	0,9967		40	0,26172	0,25320	0,967
	50	0,08456	0,08426	0,9964		50	0,26483	0,25601	0,966
5	00	0.08749	0,08746	0.9962	45	00	0,26795	0.25882	0.965
	10	0.09042	0.09005	0,9959	100	10	0.27107	0.26165	0,965
	20	0,09335	0,09295	0,9957		20	0,27419	0,26443	0,964
	50	0,09629	0,09585	0.9954		50	0.27752	0.26724	0,963
	40	0.09923	0.09874	0.9954		40	0,28046	0.27004	0,969
	50	0,10216	0,10164	0,9948		50	0,28560	0.27284	0,962
6	00	0.10510	0.40453	0.9945	16	00	0.28675	0.27564	0,964
	10	0.40803	0,10742	0,9942		10	0,28990	0,27843	0,960
	20	0,11099	0,11051	0,9939		20	0,29305	0,28123	0,959
	50	0.41594	0,11320	0,9936		50	0,29621	0.28402	0,958
	40	0.11688	0,11609	0,9932		40	0,29938	0.28680	0.958
	50	0.11085	0,11898	0,9932		50	0,30255	0,28959	0,937
7	00	0.12278	0,12187	0,9925	17	00	0,30573	0,29257	0,956
	10	0,12374	0,12476	0,9922	.,	10	0,30894	0,29545	0,955
	20	0,12869	0,12764	0,9948		20	0,51210	0,29793	0,954
	30	0.13165	0,45055	0,9914		50	0.31530	0,30074	0,953
	40	0,13461	0.13541	0,9944		40	0.31850	0,30348	0.955
	30	0.13758	0,15629	0,9907		50	0,32171	0,30625	0,939
8	00	0.14054	0.13917	0,9905	18	00	0.32492	0,30902	0.951
	10	0,14034	0,14205	0,9899	10	10	0.52814	0,51178	0.950
	20	0,14648	0,14495	0,9894		20	0,53436	0,34454	0,949
	30	0.14945	0.14781	0,9890		50	0.33460	0.31730	0.948
	40	0.15243	0.15069	0,9886		40	0.33783	0,52006	0,947
	50	0.45540	0.15556	0.9881		50	0,34108	0,32282	0,946
9	00	0.45858	0.45645	0,9877	19	00	0,34433	0.32557	0,945
1	10	0.16137	0,13931	0,9872		10	0,34758	0,52832	0,944
	20	0,16433	0,16218	0,9868		20	0,35085	0,33106	0,943
	30	0,16754	0,16303	0,9863		30	0,55412	0,73384	0,949
	40	0,10754	0,16792	0,9858	10 -	40	0,35740	0,35655	0,941
	50	0,17533	0,17079	0,9853	1	50	0,36068	0,53929	0,940
	90	0.17633	0,17365	0,9848	20	00	0,36397	0,54202	0,959

Suite de la Table des tangentes, sinus et cosinus naturels.

_	_	سننسب						
DEG.	w.	TANGENTE.	SINUS.	COSINUS.	degrés.	TANGENTE.	SINUS.	
20	00	0,56597	0,54202	0,9397	80	0,5774	0,8000	60
	40	0,56727	0,34475	0,9887	84	0,6009	0,5450	59
ŀ	20	0,37057	0,34748	0,9877	52	0,6249	0,5299	58
	30	0,37388 -	0,35021	0,9367	33	0,6494	0,5446	57
	40	0,57720	0,85298	0,9356	54 55	0,6745	0,5592 0,5756	56 55
1	20	0,38053	0,55565	0,9346	56 56	0,7002	0,5878	54
24	00	0,38386	0,35837	0,9836	87	0,7536	0,6018	53
l l	10	0,58721 0,39055	0,36108 0,36379	0,98 2 5 0,9345	38	0,7843	0,6157	52
	20	0,59591	0,36650	0,9313	59	0,8098	0,6293	51
	50 40	0,89727	0,36921	0,9293	40	0,8391	0,6428	20
B	80	0,40065	0,87494	0,9283	41	0,8693	0,6564	49
22	00	0,40405	0,87464	0,9272	42	0,9004	0,6694	48
	10	0,40741	0,87730	0,9264	43 44	0,9825 0,9657	0,68 2 0 0,6947	47 46
	20	0,41081	0,37999	0,9250	45	1,0000	0,7074	45
	80	0,41421	0,38268	0,9289	46	1,0355	0,7493	44
	40	0,41763	0,88537	0,9228	47	1,0724	0,7814	48
	20	0,42105	0,38805	0,9216	48	1,1106	0,7434	42
23	00	0,42447	0,39078	0,9205	49	4,4504	0,7547	41
	10	0,42791	0,39844 0,89608	0,9194 0,9182	80	1,1918	0,7660	40
	20	0,43136 0,43481	0,59875	0,9182	84	1,2349	0,7774	89
	50 40	0,45481	0,40141	0,9171	52 53	4,2799	0,7880 0,7986	58 57
	50	0,44175	0,40408	0,9447	54	1,3764	0,8090	36
34	00	0,44823	0,40674	0,9185	35	1,4281	0,8492	55
	10	0,44872	0,40939	0,9123	56	1,4826	0,8290	54
ļ	20	0,45222	0,41204	0,9112	87	4,5399	0,8387	33
	80	0,45575	0,41469	0,9100	58	4,6003	0,8480	52
	40	0,45924	0,41754	0,9087	89	1,6643	0,8572	84
	50	0,46277	0,41998	0,9075	60	1,7321	0,8660	50
25	00	0,46684	0,42262	0,9063	61 62	4,8040 4,8807	0,8746 0,88 2 9	29 28
	10	0,46985	0,42525	0,9054	63	1,9626	0,8910	27
ł	20	0,47841 0,47698	0,42788	0,9038 0,9026	64	2,0504	0,8988	26
	50 40	0.48055	0,43054 0,43348	0,9018	65	2,1445	0,9063	25
	80	0,48414	0,43575	0,9001	66	2,2460	0,9135	24
26	00	0.48778	0,43837	0,8988	67	2,3559	0,9205	25
	10	0,49134	0,44098	0,8975	68	2,4751	0,9272	22
i	20	0,49495	0,44359	0,8962	69	2,6054 2,7475	0,9336 0,9397	21 20
	80	0,49858	0,44620	0,8949	70 74	2,7473	0,9557	19
	40	0,50222	0,44880	0,8936	72	3,0777	0,9844	18
	50	0,50587	0,45140	0,8923	78	5,2709	0,9568	47
27	00	0,50955	0,45599	0,8910	74	5,4874	0,9613	46
	10	0,54549 0,54688	0,45658 0,45917	0,8897 0,8883	75	8,7324	0,9659	45
	2 0	0,51088	0,45917	0,8880	76	4,0108	0,9708	44
	40	0,52057	0,46175	0,8870	77 78	4,3315 4,7046	0,9744	18 13
	20	0,52798	0,46690	0,8844	78 79	5,1446	0,9781	12
28	00	0,53474	0,46947	0,8829	80	5,6713	0,9848	40
l -	10	0,53545	0,47204	0,8816	84	6,5138	0,9877	9
	20	0,53920	0,47460	0,8802	82	7,1154	0,9903	8
	30	0,54296	0,47716	0,8788	85	8,1443	0,9925	7
	40	0,54675	0,47974	0,8774	84	9,5144	0,9945	6
	50	0,55051	0,48226	0,8760	85	11,4301 14,3007	0,996 2 0,9976	5 4
29	00	0,55484	0,48484	0,8746	86 87	19,0811	0,9976	8
	10	0,55842	0,48735 0,48988	0,873 2 0,8748	88	28,6363	0,9994	2
1	80	0,56578	0,40900	0,8703	89	57,2900	0,9998	l i l
	40	0.56962	0,49495	0,8689	90	infini.	4,0000	0
	20	0,57548	0,49748	0,8675				
50	00	0,57785	0,80000	0,8660		COTANG.	COSINUS.	DEGRÉS.
-		•		'	(Extrait de par T. 1	' e l'Aide-Mé Richard.)	moire des i	ngénieurs,

III. TABLE DES HAUTEURS DUES A DIFFERENTES VITESSES.

VITESSE.	HAUTEUR	VITESSE.	HAUTEUR	VITESSE.	HAUTEUR	VITESSE.	HAUTEUR	VITESSE.	HAUTEUR
m:s	. m	m:s	m	m:s	m	m:s	m	m:s	m
60,0	183,51	72,0	264,25	120	734,03	180	1651,59	240	2936,4
60,2	184,73	72,5	267,94	121	746,32	484	1670,00	241	2960,B
60.4	185,90	73,0	271,64	122	758,72	182	1688,50	242	2985,2
60,6 60,8	187,20 188,43	73,5 74,0	275,38 279,14	423 424	771,21 783,80	185 184	1707,09 17 25 ,79	243 244	3010,0 3034,8
61,0	189,68	74.5	282,92	125	796,48	485	1744.60	245	3059.8
61,2	190,92	75,0	286,73	126	809,27	486	1753,51	246	3084,8
61,4	192,17	75,5	290,57	127	822,16	487	1782,52	247	3110,0
61,6	193,43	76,0	294,43	128	835,46	188	1801,64	248	3435,2
61,8	194,68	76,3	298,52	129	848,28	189	1820,87	249	3(60,6
62,0 62,2	495,95 497,24	77,0 77,5	302,23 306,17	430 434	861,48 874,78	490 494	1840,19 1859,60	250 254	3186,0 3211,5
62,4	198,48	78,0	310,13	132	888,20	191	1879,12	252	3237.4
62,6	199,76	78,5	314,12	133	901,70		1898,75	253	3262,8
62,8	201,08	79,0	348,43	134	915,34	194	1918,48	254	3288,7
63,0	202,32	79,5	322,17	435	939,02		1938,31	255	3314,6
63,2	205,61	80,0	326,24	436	942,84	196	1958,24	256	3340,7
63,4	204,90	80,8	330,33	137	956,76	497 498	1978,27	257	3366,8
63,6 63,8	206,19 207,49	81,0 81,5	334,45 338,59	138 139	970,77 984,89	198	1998,40 2018,64	258 259	3398,1 3419,5
64,0	208,79	82,0	342,75	140	999,12	200	2039.00	260	3446,0
64,2	210,10	82,5	346,95	141	1013,44	201	2059,5	261	3472.5
64,4	211,41	83,0	354,46	142	1027,86	202	2080,0	262	3499,1
64,6	212,73	83,3	355,44	143	1042,38		2100,6	263	3525,8
64,8	214,04	84,0	359,68	144	1057,01		2121,4	264	3552,7
65,0	215,37	83,0	368,29	145	1071,74		2142,3	265	3579,7
65,2 65,4	216,70	86,0 87.0	377,04 385,83	446 447	1086,57	206 207	2163,3 2184,3	266 267	3606,7 3633,8
65,6	248,03 249,30	88,0	394,75	147	1116,57	207	2205,4	268	3664,4
65,8	220,70	89,0	403,77	149	1131,68		2226.6	269	3688,5
66,0	224,05	90,0	412,90		1146,92	210	2248,0	270	3746,0
66,2	223,39	91,0	422,12	151	1162.29		2269,4	274	3713,6
66,4	224,74	92,0	431,45	152	1177,72		2291,0	272	3771,2
66,6	226,10	93,0	440,88 450,41		1193,28		2312,8 2334,6	273 274	3799,1
66,8	227,46 228,83	94,0 95,0	460,05	454 455	1208,93		2336 4	274	3827,0 3855,0
67,0 67,2	230,49	96,0	469,78	155 156	1240.55	215 216	2378,3	275	3883,4
67,4	231,50		479,62	157	1256,48	217	2400,3	277	3911,8
67,6	232,94	98,0	489.56	158	1272,53	218	2422,5	278	3939,6
67,8	234,39	99,0	499,60	159	1288,68		2444,8	279	3968,0
68,0	235,74	100	509,75	160	1304,96		2467,2	280	3996,5
68,2	237,09	104	519,99 530,34	161	1321,33 1337,80	224	2489.5 2512,2	231	1025,0
68,4	238,49 239,89	102	530,34	462 463	1354,36		2512,2	282 283	4053,7
68,6 68,8	241,29		551,36		1371,01		2557,8	284	4111,5
69,0	242,69	105	362,01	165	1387,78	225	2580,5	285	4140.4
69,2	244,10	106	572,76	166	1404,65	226	2603,6	286	4169,5
69,4	245,51	107	583.62	167	1421 64	227	2626,7	287	4198,7
69,6	246,93		594,58		1438,72	228	2649,8	288	4228,0
69,8	248,35	109	605,64 616,80	169	1455,89	229 230	2673,1 2696,5	289	4257,5
70,0 70,2	249,78 251,21	411	628,06	170 171	1473,17	230 231	2720,0	290 291	4287,0 4316,5
70,2	252,64	112	639,43	172	1508,05	232	2743,5	292	4346.5
70,6	254,08	113	650,89		1525,64		2767,2	293	4376,2
70,8	255,52	114	662,48		1543,32	234	2791,0	294	4406,1
71,0	256,9€	115	674,16	175	1561.11	235	2815,0	295	4436,4
71,2	258,41	416	685,93	476	1379,00		2839.0	296	4466,2
71,4 71,6	259,87 261,35	117 118	697,80 709,76	477 478	1596,99 1615,08	237 238	2863,2 2887,5	297 298	4496,5
71,6	261,32	118	709,76		1633,28		2911,8	298	4557,2
72,0	264,25	120	734,03		1651,59		2936,4	500	4587,8
J, .	1,	I	(,	l	1	I	l '''	1	1

Suite de la Table des hauteurs dues à différentes vitesses.

TITESSE.	HAUTEUR	VITESSE.	BAUTEUR	VITESSE.	HAUTEUR	VITESSE.	HAUTEUR	VITESSE,	HAUTEU
m:s	m	m:s	m	m:s	m	m:s	m	m:s	m
300	4588	560	6606	420	8992	480	11744	540	14864
304	4618	564	6643	421	9035	481	11793	541	14919
502	4649	362	6680	422	9078	482	11842	542	14975
303	4680	563	6717	423	9121	483	11891	543	15050
304	4711	364	6754	424	9164	484	11941	544	15085
505 506	4742	565	6791	425	9207	488	11990	545	15141
307	4773	366	6828	426	9251	486	12040	546	15196
308	4804 4835	367 368	6866 6905	427	9294	487	12090	547 548	15259
509	4867	569	6940	429	938:	489	12189	559	15364
540	4899	570	6978	430	9425	490	12239	350	15420
311	4930	374	7016	431	9469	494	12289	551	15476
512	4962	572	7054	432	9513	492	12559	552	15535
545	4994	373	7092	453	9557	493	12389	553	15588
314	5026	574	7130	434	9601	494	12440	554	13645
315	5058	375	7168	455	9646	495	12490	555	15704
516	5090	576	7206	456	9690	496	12541	556	15758
317	5122	577	7245	437	9734	497	12591	557	15815
518	3135	578	7283	458	9779	498	12642	558	15875
519	5187	379	7322	459	9825	499	12693	559	15929
320	5220	580	7351	440	9869	500	12744	560	15986
321	5252	381	7400	444	9913	504	12795	561	16043
322	5285	582	7458	442	9958	502	12846	562	16100
323	5518	383	7478	445	10003	503	12897	563	16157
524 525	5554	584	7517	444	10048	504	12948	564	16213
	5584	585	7556	445	10094	505	15000	565	16275
226 327	5417	586	7595	446	10140	506	13051	566	16330
328	5450 5484	387 388	7634 7674	447	10185	507	15103	567	16388
329	5517	589	7745	449	10231	509	45206	568 569	16446
530	5551	590	7755	450	10322	510	15258	570	16569
331	5585	594	7793	454	10368	511	13311	571	16620
332	5618	592	7833	452	10414	512	15565	572	16678
333	5652	393	7873	453	10460	515	15415	575	16756
334	5686	394	7913	454	10507	514	13467	874	16798
333	5721	595	7955	455	10553	545	15520	575	16854
336	5755	596	7994	436	10599	516	43572	576	16915
337	5789	597	8034	457	10646	517	13625	577	16974
558	5825	598	8074	458	10692	518	15678	578	17030
339	5858	599	8115	459	10739	519	13730	579	17089
540	5893	400	8156	460	10786	520	13784	580	17148
344	5927	401	8197	464	10833	521	13837	581	17207
342 543	5962	402	8238	462	10880	522	13890	582	17266
544	5997 6032	405	8279 8320	465	10927	523	15945 13996	583	17326
345	6067	404	8361	465	11022	524 525	14050	584	17385
346	6102	406	8402	466	11022	525	14103	585	17443
547	6158	407	8444	467	11117	526	14105	586 587	17505
548	6173	408	8485	468	11164	528	14211	588	17624
549	6209	409	8527	469	11212	529	14265	589	1768
350	6244	410	8569	470	11260	550	14319	590	17744
351	6280	411	8611	474	11308	551	14373	594	17803
552	6316	412	8655	472	11556	552	14427	592	17863
553	6332	415	8693	473	11404	555	14481	595	17921
354	6588	414	8757	474	11452	534	14535	594	17986
355	6424	415	8779	475	11501	535	14390	595	1804
356	6460	416	8821	476	11549	536	14645	596	18107
357	6497	417	8864	477	11598	557	14699	597	18168
358	6553	418	8906	478	11647	558	14754	598	18229
369	6569	419	8949	479	11695	559	14809	599	18290
900	6606	420	8992	480	11744	540	14864	600	1855

(Extrait en partie de l'architecture hydraulique de Bélidor, 1819) g - 9=8088.

II. TABLE DU RAPPORT DU DOUBLE DE LA TANGENTE D'UN ANGLE
AU SINUS DU DOUBLE DE CET ANGLE.

φ	$\frac{2\tan\varphi}{\sin2\varphi}$	Diff.	φ	2tang ϕ sin 2 ϕ	Diff.
degrés 0 4 2 3 4 5 6 7 8	4,0000 4,0003 4,0042 4,0028 4,0049 4,0077 4,0414 4,0454 4,0458 4,0284	3 9 16 21 28 34 40 47 53 60	degrés 40 41 42 43 44 48 46 47 46 47	1,0514 1,0578 1,0452 1,0553 1,0523 1,0718 1,0822 1,0935 1,1056 1,1155 1,1522	67 74 84 89 96 404 443 424 429

IV. TABLE DES DENSITÉS DE L'AIR.

Dans cette table, les densités sont exprimées par le poids en kilogrammes d'un mètre cube d'air à moitié saturé de vapeur d'eau, pour les divers degrés de température, depuis 36° au-dessus de zéro jusqu'à 8° au-dessous, avec les différences de 4° en 4°, et, pour les pressions barométriques, depuis 0m700 jusqu'à 0m800, avec les différences de 0m005 en 0m005, et communes à plusieurs hauteurs (avant-dernière colonne). Connaissant le rapport de la saturation s de l'air à la saturation complète, représentée par 1,00, on aura la quantité à retrancher des nombres du tableau, en multipliant par 2s—1 le nombre de la dernière colonne qui correspond à la température.

La valeur de s est déterminée au moyen d'hygromètre. Si l'on fait usage de l'hygromètre à cheveux de Saussure, on se servira de la table ci-après pour déterminer la quantité 2s—1 dont on a besoin :

Deg. de l'hyg. 0 20 30 40 50 55 60 65 70 72 74 76 78 80 82 (2s-1). -1,00 -0,82 -0,70 -0,56 -0,44 -0,32 -0,28 -0,18 -0,06 0,00 0,04 0,10 0,16 0,22 0,28 Deg. de l'hyg. 83 84 86 88 90 91 92 93 94 95 96 97 98 99 100 (2s-1). 0,28 0,34 0,42 0,50 0,58 0,62 0,66 0,70 0,74 0,78 0,82 0,86 0,92 0,96 1,00

Poids en kilogrammes d'un mètre cube d'air à moitié saturé de vapeur d'eau, sous diverses pressions, et à divers degrés de température.

52	0m715 Diff. pour la hauteur la multi la
----	--

Suite de la Table du poids d'un mêtre cube d'air.

					Polac	ww		e cu	ob u uir.	
Therm. centig.	0m720	Diff.	0™725 	Diff.	0m 73 0	Diff.	0m735	Diff.	Diff. pour la hauteur barom.	Corr. nég à multip. par 2s - 1
deg.		ì							ou	
86	1,0757	151	1,0832	152	1,0906	154	1,0981	455	74 75	98
32 28	1,0908 1,1064	156	1,0984 1,1141	187	1,1060	158	1,1136	159	78 76	90
24	1,1004	160	1,1141	161	1,1310	162	1,1295 1,1458	463	76 77	82
20	1,1389	165	1,1468	166	1,1547	167	1,1626	168	78 79	74 64
16	4,4559	170	1,1639	171	1,1719	172	1,1800	174	80 81	85
12	1,4784	178	1,1815	176	1,1897	178	4,1978	178	84 82	45
8	1,1914	180	1,1997	182	1,2080	183	1,2162	184	82 83	36.
4	1,2100	186	1,2184	187	1,2268	188	1,2352	190	84 85	27
0	1,2292	198	1,2377	200	1,2463	200	1,2548	196 202	85 86	16
- 4	1,2490	204	1,2877	205	1,2663	208	1,2750	209	86 87	5
8	1,2694		1,2782		1,2871	-00	1,2959	203	88 89	0
Therm.	0 m74 0	Diff.	0m 74 5	Diff.	0m750	Diff.	0 ∞7 55	Diff.	Diff. pour la hauteur barom.	Corr. nég à multip par 2s - 1
deg.									ou	
86	1,1056		1,1181	ایرا	4,1205		1,1280		74 75	194
82	1,1211	455	1,1287	456	1,1363	458	1,1439	159	78 76	92
28	1,1571	160	1,1448	161	1,1525	162	1,1602	168	76 77	84
24	1,1536	169	1,1614	170	1,1692	172	1,1770	168 173	78	76
20	1,1705	175	1,1784	176	1,1864	176	1,1943	178	79	66
46	1,1880 1,2060	180	1,1960	181	1,2040	183	1,2121	183	80 81	86
42 8	1,2345	185	1,2141	187	1,2223	188	1,2304 1,2493	189	84 82 82 83	.47
4	1,2436	191	1,2520	192	1,2604	193	1,2688	195	62 83 84 85	57 28
ŏ	1,2653	197	1,2719	199	1,2804	200	1,2889	201	85 86	16
- 4	1,2837	204	1,2925	204	1,3010	206	1,8097	208	86 87	10
8	1,3047	240	1,3188	212	1,3225	213	1,3311	214	88 89	ŏ
								<u> </u>		
Therm.	0 ∞76 0 	Diff.	ე ≖76 5	Diff.	0 ¤77 0	Diff.)nı775 ———	Diff.	Diff. pour la hauteur barom.	Corr. nég à multip par 28-1
deg.		l							. ou	
36	1,1355	459	1,1429	161	1,1504	160	4,4579		74 73	403
82	1,4514	165	1,1590	165	1,1664	168	1,1742	163	75 76	95
28	1,1679	169	1,1755	171	1,1832	172	1,1909	175	76 77	86
24	1,4848	174	1,1926	175	1,2004	176	4,2082	177	78	78
20	1,2022	179	1,2104	180	1,2180	181	1,2259	183	79	68
16 12	1,2201	485,	1,2281	186	1,2364	188	1,2442	188	80 84	38
8	1,2576	190	1,2659	192	1,2549 1,2741	192	1,2630 1,2824	194	81 82 82 83	48 88
4	1,2772	196	1,2856	197	4,2940	19 9	1,2824	200	84 85	29
ò	1,2975	203	1,5060	204	1,8445	205	1,3231	207	85 86	47
- ,4	1,5184	209 216	1,5270	210	4,8857	242	1,3444	213	86 87	-6
8	1,3400	210	1,3488	218	1,3376	219	1,2664	220	88 89	0
Therm. centig.	0 780	Diff.	ე ™78 5	Diff.	0 m79 0	Di ff .)m795	Diff.	Diff. pour la hauteur barom.	Corr. nég à mult p par 2s –
den										
deg.	1,1633	l	1,1728		1,4803		1,4878		01 74 75	106
32	1,1817	164	1.1895	165	1,1808	166	1,1076	167	75 76	100 98
28	1,1986	169	1,2063	170	1,2140	174	1,2216	174	76 77	88
24	1,2160	174	1,2238	175	1,2315	178	1,2395	177	78	80
20	1,2338	178	1,2417	179	1,2496	181	1,2675	182	79	69
	1,2522		4,2609	191	1,2683	187	1,2763	488 493	18 08	59
16		1 490								
12	1,2712	190	1,2798		1,2875		1,2956		84 82	49
19 8	1,2715	190 195 201	1,2793 1,2990	197	1,3072	197	4,3465	199	82 83	89
12 8 4	1,2715 1,2907 1,3108	195	1,2793 1,2990 1,3192	197	1,3072 1, 32 76	197	4,5485 4,3360	199	82 83 84 85	59 29
49 8 4 0	1,2715 1,2907 1,3108 1,5316	195 201 208 215	1,2793 1,2990 1,3492 1,5401	197 202 209 216	1,3072 1,3276 1,3487	197 204	4,8485 4,3360 4,3572	199 205	82 83 84 85 85 86	89 29 17
12 8 4	1,2715 1,2907 1,3108	195 201 208 215	1,2793 1,2990 1,3192	197 202 209 216	1,3072 1, 32 76	197 204 211 217	4,5485 4,3360	199 205 212 219	82 83 84 85	59 29

TABLE V.

Υ,				1			
	ABLE DES VAL	EUR	DE $\xi(\Phi)$	TA	BLE DES VALE	URS	DE $\frac{\xi(\phi)}{\tan \phi}$ =
tang	sec 9+cot	φlog	$t(450 + \frac{1}{2}\phi)].$	1.50		-4	•
2				2 [8		, tani	$g(450 + \frac{1}{2}\phi)].$
	ξ(¢).	,	ξ(φ).	•	ξ(Φ)	٠	ξ (φ)
_	• (•) •	Ľ	- (1).		tang 🕈	Ľ	tang o
deg.	0,0000000	deg.	4,1477984	deg.	4,00000	deg.	1,14777
4	0,0474559	46	4,1984896	4	4,00008	46	1,15741
3	0,0349278	47	1,2520116	2	4,00020	47	1,16752
8	0,0524318 0,0699837	48 49	4,3086253 4,3686303	A	1,00045 1,00081	48 49	1,178 26 1,18973
5	0,0876001	80	1,4523614	8	1,00127	50	1,20189
6	0,1052974	81	1,5001970	6	1,00184	51	1,21485
7	0,1250926 0,1410022	52 53	1,8725657 1,6499519	7 8	1,00251 1,00328	52 53	1,22862 1,24533
ŷ	0,1590449	84	1,7829189	9	1,00417	54	1,25905
10	0,4772365	55	1,8220670	10	1,00516	85	1,27583
44	O,1955976	56	1,9181512	44	1,00626	56	1,29384
12	0,2141464	57	2,0219938	12	1,00748	87	1,51510
15 14	0,2329030	58	2,1345596	45	1,00881	58	1,55582
45	0,2518877 0,2741218	59 60	2,2569694 2,5903296	44	1,00912 1,01184	60 59	1,55612 1,58017
	,,,,,,,,,,	, o	2,000200	1 20	-,01100	•	1 .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
16	0,2906277	64	2,586776	16	1,01554	64	1,40616
47	0,8104288	62	2,697548	47	1,04536	62	1,45429
18 19	0,3305495 0,3510153	63 64	2,874904 5,071501	18	1,01752 1,01943	68 64	1,46484 1,49807
20	0,3718537	65	8,290396	20	1,02165	65	1,53435
21	0,3930932	66	3,585320	21	1,02404	66	1,57409
22	0,4147637	67	8,810834	22	1,02657	67	1,61789
23	0,4368974	68	4,122549	23	1,02926	68	4,66562
24 25	0,4595290 0,4826944	69 70	4,477444	24	1,03212	69	1,71872 1,77772
	1	"	4,884250	25	1,03514	70	3,77772
26 27	0,5064324	74	5,354075	26	1,03834	71	1,84355
28	0,5507845	72 73	5,901161 6,544048	27	1,04172	72 73	1,91740 2,00074
29	0.5815120	74	7,307220	29	1,04907	74	2,09834
80	0,6079863	75	8,223570	30	1,05306	75	2,20349
81	0,6352732	76	9,338073	84	1,05727	76	2,33824
82	0,6634325	77	10,713657	32	1,06171	77	2,47844
83 54	0,6925287	78 79	12,440411	33	1,06640	78	2,64428
55	0,7226311	79 80	14,651100 17,54793	54 55	1,07134 1,07596	79 80	2,84788 3,09418
l	1	1					
36 37	0,7861656 0.8197699	81 82	21,45123 26,89318	36 37	1,08206 1,08787	84 82	3,29753 3,77960
38	0,8547266	83	34,84136	58	1,09400	83	4,27430
39	0.8941439	84	46,93522	89	1,10001	84	4,93838
40	0,9291380	85	67,12291	40	1,10730	85	5,87383
44	0,9688390	86	104,1815	44	1,41452	86	7,28508
42	1.0103900	87	184,1163	49	4,12215	87	9,90478
45 44	1,0539469 1,0996840	88 89	412,2915 1643,690	45	4,130 22 4,13875	88 89	14,39754
45	1,1477984	90	infini.	45	1,15875	90	28,69102 infini.
		•			-,		iuudi.

/waler: Mem. de l'Acad. de Berlin, 1753.) (Besout; Cours de Mathématiques, 1788.)

Suite de la Table V.

TABLE D	ES VALEURS	DE $\alpha = \frac{\xi(\phi) - \xi(\phi)}{\tan \phi}$	$\frac{\xi(\theta)}{\tan \theta}$.
de φ å θ.	α.	de φ à θ.	α.
Arcs de 5		Arcs de 10) degrés.
75 70	3,89164	a 1	
70 65 65 60	2,64522 2.48449	80 70	4,33194
65 60	1,18119 1.86990	70 69	2,45597
88 80°	1,86990	60 50 \	4,77303
	•	50 40	4,42698
50 45	1,48572	40 50	1,22694
48 40	1,55895		
40 - 85	1,26232		
55 50	1,18695	50 20	1,10663
30 95	4,12835	20 10	1,03718
25 20	1,08306	10 0	1,00514
20 45	1,04907		
15 10	1,02473	Arcs de 1	5 degrés.
10 8	4,00896	78 60 L	2,91662
5 0	4,00126	60 45	4,69784
Arcs de	20 30'.	45 50	1,27720
45• à 42•30 I	4.58192	BO 45	4,08873
42030' à 400	4,83406	45 0	1,01184

Table des valeurs de c, de $\frac{100^{\text{m}}}{c}$ et de ses multiples, pour les projectiles spiiériques d**e l'armée de** terre. TABLE VI.

			`	c	$\frac{1}{2c} = \frac{g}{P} A$	$\frac{1}{2c} = \frac{g}{P} A \sigma R^2$; $A = 0.027$; $g = 9^{m}809$.	=0,027;	g==9m80{					
PROJECTILES	TILES.	DIANÈTRES. 2R	POIDS.	o	100m	200m	300m	400m -	500	000g	-00 <u>r</u>	800m	008
	30	m 0,4896	kg 45,070	m 1423,3	0,07032	0,44064	0,21096	0,28128	0,33460	0,42193	42264,0	0,86286	0,63288
əp	*	0,1488	12,010	1,6021	0,07638	0,48276	0,22914	0,50552	0,58190	0,45828	0,83466	0,64104	0,68742
stell	16	0,1293	8,020	4149,8	0,08697	0,47394	0,26094	0,34788	0,43485	0,52182	0,60879	0,69376	0,78273
Bou	5	0,4483	6,070	1042,6	0,09894	0,19182	0,28773	0,38364	0,47988	0,57546	0,67137	0,76728	0,86319
	80	0,1031	4,020	909,4	0,44000	0,22000	0,55000	0,44000	0,83000	0,66000	0,77000	0,88000	0,99000
Balle sphérique.	hérique.	0,0167	0,087	\$24,4	0,44564	0,89128	1,55692	4,78256	2,23820	2,67384	5,11948	3,86519	4,01076
sə	82cm	0,3206	. 78,00	4784,0	0,08704	0,41402	0,47403	0,22804	0,28505	0,34206	0,59907	0,48608	0,81509
ensq	27	0,2744	80,60	4688,0	0,06042	0,12084	0,18126	0,24168	0,50210	0,56282	0,42294	0,48556	0,54578
19 J	22	0,2202	92,00	1140,2	0,08770	0,47340	0,26510	0,55080	0,45830	0,52620	0,61390	0,70160	0,78930
əp sno	9,	0,1629	10,70	969,8	0,40547	0,20634	0,50954	0,41268	0,54585	0,61903	0,72219	0,82556	0,92858
10 '	45	0,1487	7,70	857,1	0,41946	0,23892	0,55838	0,47784	0,89780	0,71676	0,83622	0,93368	4,07844
wpea	57	0,4184	4,28	783,9	0,45626	0,27252	0,40878	0,84504	0,68430	0,84756	0,95589	1,09008	1,33654
Bo	**	0,0812	4,48	419.3	0,23883	0,47704	0,71556	0,98408	1,19260	1,45112	1,66964	1,90816	2,14668
	_	_	_	_	_	_	_	_	_	_		-	•

TABLES VII, VIII ET IX

DES VALEURS DE

$$e^{z} = 2,718281828^{z}, \quad F'(z) = \frac{e^{z} - 1}{z}, \quad F(z) = 2\frac{e^{z} - z - 1}{z^{2}}$$

pour les valeurs de
$$z = \frac{\alpha x}{c}$$
,

croissant de 0,01 en 0,01, avec sept décimales pour e^z et F'(z) décimales pour F(z). Elles s'étendent jusqu'à 3,00 pour e^z , et ju 2,40 pour F'(z) et pour F(z).

VII. TABLE DES VALEURS DE et,

z	ez	Diff	z	e ^z	Diff.	z	ez	Diff.
0,00	1,0000 000		0,60	1,8221 188	100	1,20	3,5201 169	
0,01	1,0100 502	100 302	0,61	1,8404 314	185 126	1,21	5,5554 847	335 678
0,02	1,0202 013	104 514	0,62	1,8589 280	184 966	1,22	3,5874 877	337 030
0,05	1,0304 545	102 532	0,63	1,8776 106	186 846	1,23	5,4212 295	540 418
0,04	1,0408 108	103 363	0,64	1,8964 809	188 703	1,24	3.4556 135	543 840
0,05	1,0512 711	104 603	0,65	1,9155 408	190 599	1,25	5,4905 450	347 295
0,06	1.0618 365	109 654	0.66	1,9347 923	192 515	4,26	3,5254 215	350 785
0.07	1,0725 082	106 717	0,67	1,9542 575	194 450	1,27	5,5608 526	354 311
0,08	1,0832 871	107 789	0,68	1,9758 777	196 404	1,28	5,5966 597	357 871
0,09	1,0941 743	108 874	0,69	1,9937 155	198 378	1,29	3,6327 866	364 469
6.00		109 966	0.000.21		200 372	100001		365 101
0,10	1,1051 709	444 072	0,70	2,0137 527	202 586	1,50	3,6692 967	368 770
0,44	1,1162 781	112 188	0,74	2,0559 915	204 419	4,51	3,7061 737	572 477
0,12	1,1274 969	113 315	0,72	2,0544 552	206 474	1,52	3,7454 214	576 220
0,15	1,1388 284	114 454	0,75	2,0750 806	209 549	1,53	3,7840 454	580 001
0,14	1,1502 758	115 604	0.74	2,0959 555	210 645	1,54	5,8190 455	383 820
0,15	1,1618 342	116 767	0,75	2,1170 000	212 762	1,35	5,8574 255	387 678
0,16	1,1735 109	117 940	0,76	2,1382 762	214 901	1,36	5,8961 933	391 574
0,17	1,1853 049	119 125	0,77	2,1597 663	247 060	4,57	5,9355 507	395 509
0,18	1,1972 174	120 322	0,78	2,1814 723	219 241	1,58	3,9749 016	399 505
0,19	4,2092 496	121 552	0,79	2,2033 964	221 445	1,39	4,0148 501	405 499
0,20	1,2214 028	Print Con	0,80	2,2255 409		1,40	4,0552 000	3.3232.2
0,24	1,2336 781	122 753	0,84	2,2479 080	225 671	1,41	4,0959 554	407 554
0,22	1,2460 767	123 986	0,82	2,2704 998	225 918	1,42	4,1371 204	411 650
0,23	1,2586 000	125 235	0,83	2,2933 187	228 189	1,45	4,1786 992	445 788
0,24	1,2712 492	126 492	0,84	2,5163 670	230 485	1,44	4,2206 958	419 966
0,25	1,2840 254	121 762	0,85	2,3396 469	232 799	1,45	4,2651 145	424 487
0,26	1,2969 301	129 047	0,86	2,3634 607	255 158	1,46	4,5059 595	428 450
0,27	1,3099 645	130 344	0,87	2,5869 109	237 502	1,47	4,3492 334	432 756
0,28	1,5231 298	131 653	0,88	2,4108 997	249 888	1,48	4,5929 457	457 106
0,29	1,3364 275	132 977	0,89	2,4354 297	242 300	1,49	4,4570 955	444 498
		134 313	0.00	100 PH 10	244 954	Pr. 1000		445 936
0,50	1,5498 588	135 663	0,90	2,4596 034	247 194	4,50	4,4816 891	450 417
0,54	1,3634 254	137 027	0,94	2,4843 225	249 679	1,51	4,5267 508	454 944
0,32	1,3771 278	138 403	0,92	2,5092 904	252 188	1,52	4,5722 252	459 546
0,33	1,5909 681	139 795	0,93	2,5345 092	254 722	4,53	4,6181 768	464 135
0,54	1,4049 476	141 199	0,94	2,5599 814	257 283	1,54	4,6645 905	1 868 700
0,35	1,4190 675	142 619	0,95	2,5857 097	259 868	1,55	4,7114 702	h72 840
0,36	1,4533 294	144 052	0,96	2,6116 965	262 480	1,56	4,7588 212	
0,57	1,4477 346	145 500	0,97	2,6379 445	265 117	4,57	4,8066 482	
0,38	1,4622 846	146 962	0,98	2,6644 562	267 783	1,58	4,8549 558	
0,39	1,4769 808	148 439	0,99	2,6912 345	270 473	1,59	4,9037 489	492 855
0,40	1,4918 247	C. C. C. C.	1,00	2,7182 818		1,60	4,9550 524	497 788
0,41	1,5068 178	149 931	1,01	2,7456 010	273 182	1,61	5,0028 112	K09 704
0,42	1,5219 616	151 438	1,02	2,7731 948	275 938	1,62	5,0530 905	HOT ON
0,43	1,5372 575	152 959	1,03	2,8010 658	278 740	1,63		W. 10 040
0,44	1,5597 079	154 497	1,04	2,8292 170	284 542	1,64		WAG ANT
0,45	1,5685 122	156 050	4,05	2,8576 511	284 544	1,65	5,2069 798	
0,46	1,5840 740	157 618	1,06	2,8863 710	287 199		5,2593 108	523 310
0,47	1,5999 942	159 202	1,07	2,9155 795	290 085	1,67	5,3121 678	528 570
0,48	1,6160 744	160 802	1,08	2,9446 796	293 004	1,68	5.3635 560	533 889
0,49	1,6323 162	162 518	1,09		295 945	4,69	5,4194 807	539 247
0,50		164 051	100	the state of the state of	298 919	1,70		544 667
	1,6652 912	165 699	1,10	3,0543 584	301 924	1,76	5,5289 613	
0,54		167 364	1,11		304 958	1,72		
0,52		169 047	1,12	3,0956 565	308 023	1,75		
0,53	1,6989 323	170 746	1,15		341 449	1,70		
0,54		172 461	1,14		314 145			VCD 107
0,55		174 195	1,15		317 404			PHO 444
	1,7506 725	175 946	1,16		320 593			
0,56	1 8000 081							
0,57		177 713	1,17		323 846			PAG 000
0,57	1,7860 384	177 713	1,48	3,2543 742	323 816 327 070	1,78	8,9298 564	590 030
0,57	1,7860 384	177 713 179 500	1,18	3,2543 742 3,2870 842	327 070	1,78	5,9298 564 5,9894 52	590 050

Suite de la Table des valeurs de e2.

					سمعتن =			
z	e2	Diff.	z	e ²	Diff.	z 	e ^z	Diff.
1,80 1,81 1,82 1,83	6,0496 475 6,4404 474 6,4748 584 6,2838 867	607 999 614 110 620 283	2,20 2,21 2,22 2,23	9,0250 435 9,4157 464 9,2078 809 9,2998 661	907 029 916 145 925 352	2,60 2,61 2,62	13,4637 380 13,5990 509 15,7557 236	1553 129 1366 727 1380 463
1,84 1,85 1,86 1,87		626 516 632 812 639 173 645 596	1,24 2,25 2,26 2,27	9,3933 343 9,4877 358 9,5830 892 9,6794 008	934 652 944 045 953 534 963 446	2,63 2,64 2,65 2,66	14,0132 036 14,1540 386 14,2962 891	1394 357 1408 350 1422 505 1436 801
1,88 1,89 1,90 1,91	6,5535 049 6,6195 687 6,6858 944 6,7830 888	652 085 658 658 665 257 674 944	2,28 2,29 2,30	9,7766 804 9,8749 377 9,9744 825	972 796 982 573 992 448 4002 422	2,67 2,68 2,69 2,70	14,4399 692 14,5850 935 14,7316 759 14,8797 317	1451 244 1465 826 1480 558 1495 448
1,91 1,92 1,93 1,94 1,98	6,8209 585 6,8895 402 6,9587 540 7,0286 876	678 697 685 517 692 408 699 566	2,51 2,32 2,53 2,53 2,54	10,0744 247 10,1756 743 10,2779 418 10,3812 366 10,4855 697	1012 496 1022 682 1032 951 1043 331	2,74 2,75 2,75 2,74 2,75	15,0292 755 15,1805 222 15,3328 870 15,4869 851 15,6426 319	1510 567 1525 652 1540 981 1556 468
1,96 1,97 1,98 1,99	7,0993 271 7,1706 765 7,2427 430 7,8158 538	706 895 743 494 720 665 727 908	2,36 2,37 2,38 2,39	10,5909 515 10,6975 925 10,8049 029 10,9134 939	1083 848 1064 408 1075 106 1085 910	2,76 2,77 2,77 2,78 2,79	15,7998 429 15,7998 540 16,1190 209 16,2810 198	1372 110 1587 911 1603 869 1619 989
2,00 2,01 2,02 2,03	7,6140 864	735 223 742 612 750 076 757 615	2,40 2,41 2,42 2,43	11,0231 764 11,1339 611 11,2458 593 11,3588 821	1096 825 1107 847 1118 982 1130 228	2,80 2,84 2,82 2,85	16,4446 468 16,6099 182 16,7768 507 16,9454 608	1656 270 1652 714 1669 325 1686 101
2,04 2,05 2,06 2,07 2,08	7,7679 011 7,8459 698 7,9348 231	765 228 772 949 780 687 788 533 796 458	2,44 2,45 2,46 2,47	11,4730 407 11,5883 467 11,7048 115 11,8224 469	1141 586 1153 060 1164 648 1176 554 1188 175	2,84 2,85 2,86 2,87	17,4137 635 17,2877 818 17,4615 269 17,6370 182	1703 047 1720 163 1787 451 1754 918 1772 550
2,09 2,10 2,11 2,11	8,0849 152 8,1661 699 8,2482 415	804 463 812 547	2,48 2,49 2,50 2,51	11.9412 644 12,0612 761 12,1824 940 12,3049 301	1200 118 1212 189 1224 561 1226 666	2,88 2,89 2,90 2,94		1772 550 1790 364 1808 558 1826 532 1844 889
2,12 2,13 2,14 2,15 2,16	8,4148 668 8,4994 376 8,5848 584 8,6711 377	837 193 845 708 854 208 862 793	2,52 2,53 2,54 2,55 2,56	12,4285 967 12,5535 061 12,6796 710 12,8071 038 12,9358 173	1249 094 1261 649 1274 328 1287 435	2,92 2,93 2,94 2,95 2,96	18,5412 875 18,7276 305 18,9158 463 19,1089 837 19,2979 718	1865 430 1882 158 1901 074 1920 181
2,47 2,48 2,49 2,20	8,7582 840 8,8463 063 8,9352 131 9,0250 135	870 465 880 223 889 068 898 004	2,57 2,58 2,59 2,60	13,0658 244 45,1971 382 13,5297 716 45,4637 580	1300 071 1313 138 1326 334 1339 664	2,97 2,98 2,99 3,00	19,4919 196 19,6878 166 19,8856 825 20,0885 369	1939 478 1988 970 1978 679 1998 544

VIII. Table des valeurs de F'(z) = $\frac{1}{z}(e^z-1)$.

z	F'(z)	Diff.	z	F'(z)	Diff.	z	F'(z)	Diff.
0,00	1,0000 000	1	0.60	1.3704 980		4 00	4,9834 808	
0,01	1,0050 167	50 407	0,61	1,8777 564	75 584	1,20	1.9480 286	115 978
0,02	1,0100 670	50 503	0,62	1,3853 678	76 114	1,22	1,9567 118	116 827
0,03	1,0151 811	50 844	0,63	1,5930 327	76 649	1,28	1,9684 798	117 680
0,04	1.0202 694	54 183	0,64	1,4007 514	77 187	1,24	1,9808 534	118 541
0,05	1,0254 219	54 525	0,65	1,4085 244	77 730	1,25	1.9922 744	119 410
0,06	1,0306 091	51 872	0,66	1,4163 520	78 276	1,26	2,0045 028	120 284
0,07	1,0358 312	52 224	0,67	1,4242 348	78 828	1,27	2,0164 193	121 165
0,08	1,0410 883	52 574	0,68	1,4321 731	79 583	1,28	2,0286 248	122 055
0,09	1,0463 809	32 926	0,69	1,4401 674	79 943	1,29	2,0409 198	122 950 123 853
0,10	4,0547 092	53 283 53 642	0,70	1,4482 182	80 808	1,30	2,0538 051	124 764
0,11	1,0570 734		0,74	1,4568 257	80 075	4,84	2,0687 848	
0,12	1,0624 738	54 004	0,72	1,4644 906	80 649	1,52	2,0783 495	125 680
0,43	1,0679 106	54 868	0,73	1,4727 132	82 226	1,53	2,0910 101	126 606
0,14	1,0733 843	54 737	0,74	1,4809 939	82 807	1,34	2,1037 638	127 557
0,15	1,0788 950	85 107	0,75	1,4893 334	83 395	1,55	2,1166 115	128 477
0,16	1,0844 429	55 479	0,76	1,4977 319	83 985	1,36	2,1295 539	129 424
0,17	1,0900 285	55 956	0,77	1,5064 899	84 580	1,57	2,1425 917	130 378
0,18	1,0956 520	56 235	0,78	1,5147 080	85 181	1,38	2,4557 258	134 841
0,19	4 4013 137	56 647	0,79	1,5232 866	83 786	1,89	2,1689 569	132 311 133 288
0,20	1,4070 438	87 004	0,80	4,5549 262	86 396	1,40	2,4822 857	134 274
0,24	1.4127 527	57 589	0,81	1,5406 271	87 009	1,41	2,4957 134	
0,22	1,1185 306	57 779	0,82	1,5493 900	87 629	1,42	2,2092 597	133 266
0,23	1,1243 479	58 473	0,83	1,5582 153	88 253	1,43	2,2228 666	136 269
0,24	1,1302 048	88 869	0,84	1,5671 085	88 882	1,44	2,2365 943	137 277
0,25	1,1361 017	58 969	0,85	1,5760 554	89 346	1,45	2,2504 238	138 295
0,26	1,1420 388	59 874	0,86	1,5850 706	90 135	1,46	2,2643 558	139 320
0,27	1,1480 165	59 777	0,87	1,5941 804	90 898	1,47	2,2783 913	140 555
0,28	1,1540 350	60 185	0,88	1,6032 951	91 447	1,48	2,2925 309	144 396
0,29	1,1600 948	60 598	0,89	1,6125 052	92 101	1,49	2,3067 755	142 446
0,30	4,1661 960	61 012	0,90	1,6217 812	92 760	1,50	2,3214 260	143 515
0,81	1,1723 391	61 431	0.94	1,6544 257	93 425	1,51	2,5355 833	144 573
0,31	1,1725 331	64 852	0.92	1,6405 330	94 093	1,52	2,3501 482	145 649
0,33	1,1847 519	62 276	0,95	1.6500 099	94 769	1,55	2.3648 215	146 733
0,54	1,1910 223	62 704	0,94	1,6595 547	95 448	1,54	2,3796 041	147 826
0,35	1,1973 359	63 156	0,95	1,6691 681	96 153	1,55	2,3944 969	148 928
0,36	1,2036 928	63 569	0,96	1,6788 505	96 924	1,56	2,4095 008	150 039
0,37	1.2100 936	64 008	0.97	1,0886 025	97 520	1,37	2.4246 167	151 159
0,38	1,2163 384	64 448	0,98	1,6984 247	98 222	1,58	2,4398 455	152 288
0,39	1,2230 277	64 893	0,99	4,7083 476	98 929	4,59	2,4551 880	453 425
0,40	1,2295 617	65 340	1,00	1,7182 818	99 642	1,60	2,4706 453	454 573
0,41	1,2361 409	65 892	1,01	4.7283 478	100 360	1,61	2.4862 482	155 729
0,41	1,2301 409	66 247	1.02	1,7584 262	101 084	1,62	2,5019 076	156 894
0,42	1,2494 361	66 705	1,02	1,7486 076	101 814	1,65	2,5177 146	158 070
0,44	1,2561 528	67 167	1.04	1,7588 625	102 549	1,64	2,5336 399	159 253
0,45	1,2629 160	67 632	1,05	4.7694 945	105 290	4,65	2,5496 847	160 448
0,46	1,2697 261	68 101	1,06	1,7795 953	104 058	1,66	2,5658 499	164 659
0,47	1,2765 834	68 575	1,07	1,7900 743	104 790	1,67	2,5821 364	462 865
0,48	1,2834 883	69 049	1,08	1,8006 292	105 549	1.68	2,5985 452	164 088
0,49	1,2904 413	69 530	1,09	1,8112 606	100 314	1,69	2,6150 773	165 321
0,50	1,2974 425	70 012	1,10	1,8219691	107 862	1,70	2,0517 338	166 365
0.54	1,3044 925	70 500	1,11	1,8327 553		1,71	2.6483 455	167 847
0,51	1,3115 916	70 991	1,12	1,8456 198	108 645	1,72	2,6654 255	169 080
0,32	1,3187 402	74 486	1,13	1,8545 653	109 435	1,73	2,6824 589	170 354
0,54	1,3259 386	71 981	1,14	1,8655 863	110 250	1,74	2,6996 227	171 638
0.55	1,3331 873	72 487	1,13	1,8766 895	111 052	1,75	2,7169 458	172 931
0,56	1,3404 866	72 993	1,16	1,8878 735	111 840	1,76	2,7343 394	174 236
0,57	1,3478 369	73 503	1,17	1,8991 390	112 655	1,77	2,7518 946	175 552
0,58	1,3552 387	74 018	1,18	1,9104 866	113 476	1,78	2,7695 823	176 877
0.59	1,3626 922	74 555	4,49	1,9219 170	115 138	1,79	2,7874 036	178 213
0.60	1,3704 980	75 058	1,20	1,9334 508	110 100	1,80	2,8033 597	179 561
1		1	•	1	· ·	•	7	•

Suite de la Table des valeurs de F(z)= $\frac{1}{z}(e^z-1)$.

2	F'(z)	Diff.	2	F'(z)	Diff.	z	F'(z)	Diff.
1,80 1,81 1,82 1,85 1,85 1,85 1,86 1,87 1,88 1,89 1,90 1,91 1,95 1,95 1,95 1,96 1,97 1,98 1,98 1,99 1,99 1,99 1,99 1,99 1,99	2,8085 597 2,8254 516 2,8416 805 2,8600 474 2,8785 554 2,8971 997 2,9559 875 2,9559 949 2,9552 760 3,0145 897 3,0145 214 5,0946 547 5,1149 046 5,1552 525 5,1559 005 5,1756 535	480 919 182 289 185 669 185 669 185 669 186 465 187 878 189 504 190 195 651 195 124 196 408 199 614 204 156 204 215 205 774 207 744 207 746 207 746	2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,12 2,12 2,12 2,14 2,15 2,14 2,15 2,17 2,18 2,19 2,19	5,1945 280 5,2155 808 5,2567 945 5,2581 704 5,5044 452 5,5252 865 5,6155 252 5,5675 254 5,4124 619 3,4354 834 5,4364 834 5,4364 834 5,5752 841 5,5752 841	240 528 212 157 213 761 215 769 247 048 248 744 220 589 222 079 223 785 223 785 225 785 225 256 227 255 228 266 236 415 256 415 257 755 259 770 241 649 243 644	2.24 2.25 2.25 2.25 2.25 2.25 2.25 2.25	5,6477 554 5,6722 699 5,6969 989 5,7219 150 5,7219 150 5,7470 229 5,7723 270 5,8255 246 5,8255 246 5,8255 246 5,8755 186 5,918 185 5,9285 224 5,9550 520 5,9619 492 4,0090 755 4,0564 126 4,047 267 4,147 054 4,1476 255	248 568 247 267 249 47 251 099 253 097 256 997 268 997 268 997 268 997 267 099 269 47 277 54 279 80 284 98 284 18

IX. Table des valeurs de $F(z) = \frac{e^z - z - 1}{\frac{1}{2}z^2}$.

2	F(z)	Dif.	2	$\mathbf{F}(z)$	Dif.	2	F (z)	Dif.
0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,41 0,42 0,45 0,45 0,46 0,47 0,48 0,49 0,49	1,0000 000 1,0053 417 1,0067 001 1,0100 758 4,0134 677 1,0146 877 1,0203 056 1,0237 478 1,0272 086 1,0304 856 1,0304 876 1,0344 856 1,0342 794 1,0442 294 1,0442 294 1,0442 94 1,0483 468 1,0549 527 1,0544 593 1,0568 002 1,0668 597	55 447 55 584 55 784 55 792 54 295 54 295 54 459 54 487 54 787 55 490 55 679 55 679 56 225 56 499 56 782	0,20 0,21 0,22 0,25 0,26 0,27 0,28 0,29 0,50 0,50 0,52 0,53 0,55 0,55 0,56 0,57 0,58	1,0701 579 1,0758 549 1,0758 549 1,0812 888 1,0850 599 1,0888 155 1,0926 061 1,0964 188 1,1002 503 1,4041 020 1,4079 735 1,4148 65 1,4157 76 1,4197 08 1,4126 64 1,1276 54 1,4156 67 1,4157 66 1,4157 66 1,4157 66 1,4157 67 1,4157 67 1,4157 67 1,4157 67 1,4157 67 1,4157 67 1,4157 67 1,4157 67	56 970 57 160 57 549 57 584 57 754 57 758 58 127 58 515 58 915 58 915 59 95 59 95 40 14 40 55 40 55	0,40 0,42 0,45 0,45 0,46 0,47 0,48 0,49 0,50 0,51 0,52 0,55 0,55 0,55 0,56 0,57	1,4478 09 1,4549 07 1,4560 26 1,4604 67 1,4643 50 4,4683 43 1,4769 50 4,4884 74 4,4887 70 4,4887 70 4,4897 70 4,1984 99 4,2027 95 4,2074 80 4,2160 23 4,2160 23 4,2294 60 4,2294 61 4,2294 61	40 91 41 11 44 44 41 63 42 83 42 73 42 73 44 73 44 74 74 45 74 74 74 45 74 74

Suite de la Table des valeurs de $F(z) = \frac{e^z - z - 1}{\frac{1}{2}z^2}$.

(z)	F(z)	Dif.	z 	F (z)	Dif.	z	F(z)	Dif.
0,60	1,2339 93		1,20	1,5557 18		1,80	2,0059 55	
0,61	4,2385 45	45 52	1,21	1,5620 34	63 48	1,81	2,0148 64	89 09 89 62
0,62	1,2431 22	45 77 46 04	1,22	1,5683 79	63 48 63 84	1,82	2,0238 26	90 43
0,63	1,2477 28	46 25	1,23	1,5747 63	64 20	4,83	2,0328 59	90 67
0,64	1,2523 48	46 50	1,24	1,5811 83	64 56	1,84	2,0419 06	91 21
0,65	1,2569 98 1,2646 72	46 74	1,25	1,5876 39	64 92	1,85	2,0510 27	91 75
0,66 0,67	1,2665 72	47 00	1,20	1,594131	65 29	1,86	2,0602 02 2,0694 31	92 29
0,68	1,2710 97	47 25	1,28	1,6079 26	65 66	1,88	2,0787 45	9284
0,69	1,2758 47	47 50	1,29	1,6138 29	66 03	1,89	2,0880 54	93 59
0,70	1,2806 23	47 76	4,30	1,6204 69	66 40	1,90	2,0974 49	95 95 94 51
0,71-	1,2854 24	48 04	1,31	1,6271 47	66 78	1,91	2,1069 00	
0,72	1,2902 54	48 27	1,32	1,6338 62	67 15	1,92	2.1164 06	95 06
0,75	1,2951 04	48 55	1,33	1,6406 16	67 54	1,93	2,1259 68	95 62 96 20
0,74	1,299983	48 79 49 06	1,34	1,6474 08	67 92	1,94	2,1355 88	96 78
0,75	1,3048 89	49 06	4,35	1,654239	68 34 68 69	1,95	2,1432 66	97 36
0,76	1,3098 20	49 58	1,36	1,6611 08	69 08	1,96	2,1550 02	97 98
0,77	1,3147 78	49 86	1,37	1,6680 16	69 48	1,97	2,1647 95	98 52
0,78 0,79	1,3197 64 1,3247 76	50 12	1,58	1,6749 64 1,6819 52	69 88	1,98 1,99	2,1746 47 2,1845 58	99 11
0,79	1,3298 15	5039	1,40	1,6889 79	70 27	2,00	2,1945 28	9970
	1,5348 84	20 66			70 67		1	190 30
0,81	1,3399 75	50 94	1,41	1,696046	74 08	2,04 2,02	2,2045 58 2,2146 48	100 90
0,83	1,3450 97	51 22	1,42	1,7001 04	74 49	2,03	2,2140 48	101 50
0,84	1,3502 46	5149	1,44	1,7174 92	74 89	2,04	2,2350 10	102 12
0,85	1,3554 25	84 77	1,45	1,7247 22	72 30	2,05	2,245283	102 73
0,86	1,3606 29	52 06	1,46	1,7319 94	72 72	2,06	2,2556 18	103 35 103 97
0,87	4,3658 63	52 34 52 62	4,47	1,7393 07	73 43 73 56	2,07	2,2660 45	104 59
0,88	1,3711 25	52 94	1,48	1,7466 63	73 98	2,08	2,2764 74	105 23
0,89	1,8764 16	53 20	1,49	1,7540 61	74 40	2,09	2,2869 97	105 86
0,90	1,3817 36	53 49	4,50	1,7615 01	74 83	2,10	2,2975 83	106 49
0,91	1,3870 85	53 78	4,54	1,7689 84	73 26	2,11	2,308232	107 14
0,92	1,3924 63 1,3978 70	54 07	1,52	1,7765 10	75 70	2,12	2,318946	107 79
0,93	1,4033 07	54 37	4,53	1,7840 80	76 14	2,13 2,14	2,3297 25 2,3405 70	108 45
0,94 0,95	1,4087 74	54 67	1,54 1,55	1,7910 94	76 57	2,15	2,3514 80	109 10
0,96	1,414271	54 97	1,56	1,8070 52	7701	2,16	2,3624 56	109 76
0,97	1,4197 98	35 27	4,57	1,8147 98	7746	2,17	2,3734 99	110 43
0,98	1,4253 56	55 56 55 88	1,58	1,8225 89	77 91	2,18	2,3846 09	111 10
0,99	1,4309 44	56 49	1,59	1,8304 25	78 36 78 84	2,19	2,395786	11244
1,00	1,4365 63	56 50	1,60	1,8383 06	79 27	2,20	2,407030	113 14
4,04	1,4422 13	56 84	1,61	1,8462 33	79 73	2,21	2,418344	113 82
1,02	1,4478 94	57 12	1,62	1,8542 06	80 20	2,22	2,4297 26	114 52
1,03	1,4536 06 1,4593 50	57 44	1,63	1,8622 26	80 66	2,23	2,444178	145 91
1,04	1,4593 30	57 76	1,64	1,8702 92 1,8784 05	84 13	2,24 2,25	2,4526 99 2,4642 94	115 92
1,05 1,06	1,4709 34	58 08	1,65	1,8865 66	81 61	2,26	2,4042 51	11662
1,00	1,4767 74	58 40	1,67	1,8947 74	82 08	2,27	2,4876 87	11734
4,08	1,4826 46	58 72	1,68	1,9030 30	82 56	2,28	2,4994 92	11805
1,09	1,4885 51	59 05 59 38	4,69	1,9113 34	83 04	2,29	2,511370	11878
1,10	1,4944 89	59 38 59 71	1,70	1,9196 86	83 52 84 01	2,30	2,5233 24	11951
1,11	4,5004 60	i 1	1,71	1,9280 87	i	2,34	2,835345	1 1
1,12	1,5064 63	60 03	1,72	1,9365 38	84 51	2,32	2,5474 43	120 98
4,43	4,5125 01	60 38 60 74	4,73	1,9450 39	85 04 85 50	2,33	2,5596 44	12171
1,14	1,5185 72	61 05	1,74	1,9535 89	86 00	2,34	2,5718 60	123 24
4,45	1,5246 77	64 39	4,75	1,9621 89	86 51	2,35	2,5844 84	123 97
1,16 1,17	1,5308 16 1,5369 89	64 78	1,76	1,9708 40	87 01	2,36 2,37	2,596578 2,609052	124 74
1,17	1,5309 89	62 08	1,77	1,979541	87 53	2,38	2,6916 08	125 51
1,19	1,5494 40	62 43	1,79	1,9970 99	88 05	2,39	2,6342 34	126 28
1,20	1,5557 48	62 78	1,80	2,0059 85	88 56	2,40	2,6469 88	127 04
' ' 1		l		1	1	•	`	•

X. Table des valeurs de $\mathfrak{V}_{\bullet}(x, V)$. $\mathfrak{V}_{\bullet}(x, V)$ pr ordon., et $\mathfrak{I}(x, V)$ pr inclin.; $z = \frac{\alpha x}{c}$, $V_0 = \frac{\alpha V_1}{r}$.

ord.	z =	0,00)	z=	0,01		z=	0,02		3=	0,03	
Vo	$v_{\mathbf{b}}(xV)$	DVo	D.Z	$\mathfrak{B}(xV)$	DVo	D. Z	$v_{\mathbf{b}}(xV)$	DVo	D. 2	$\mathfrak{B}(xV)$	DVo	D.
0,00	1,0000		33	1,0035		34	1,0067	1.5	34	1,0101		34
0,05	1,0000	0	55	1,0035	2	36	1,0071	4	35	1,0106	8	56
0,10	1,0000	0	57	1,0037	2	37	1,0074	5	37	1,0111	5	37
0,45	1,0000	0	39	1,0039	2	38	1,0077	5 4	59	1,0116	8	39
0,20	1,0000	0	40	1,0040	4	44	1,0081	5	40	1,0121	3	4
0,25	1,0000	0	42	1,0042	2 2	42	1,0084	3	42	1,0126	5	43
0,30	1,0000	0	44	1,0044	4	43	1,0087	4	44	1,0154	8	4
0,55	1,0000	0	45	1,0045	2	46	1,0091	5	45	4,0156	3	40
0,40	1,0000	0	47	1,0047	2	47	1,0094	3	47	1,0141	5	41
0,45	1,0000	0	49	1,0049	i	48	1,0097	4	49	1,0146	6	5
0,50	1,0000	0	50	1,0050	2	51	1,0101	5	54 53	1,0152	5	5
0,60	1,0000	0	53	1,0053	1	54	1,0104	5	55	1,0157	5	5
0,65	1,0000	0	55	1,0033	2	56	1,0111	4.	56	1,0162	5	5
0,70	1,0000	0	57	1,0057	2	57	1,0111	3	58	1,0167	3	5
0,75	1,0000	0	59	1,0059	2	39	1.0118	4.	59	1,0177	5	6
0,80	1,0000	0	60	1,0060	1	64	1,0121	3	61	1,0182	5	6:
0,85	1,0000	0	62	1,0062	2	62	1.0124	5	63	1,0182	3	6
0,90	1,0000	0	64	1,0064	2	64	4.0128	4	65	1,0195	6	6
0,95	1,0000	0	65	1,0065	4	66	1,0131	5	67	1,0198	5	6
1,00	1,0000	0	67	1,0067	2	68	1,0155	4	68	1,0203	8	6
1,05	1,0000	0	69	1,0069	2	69	1,0158	5	70	1,0208	5	7
4,10	1,0000	0	70	1,0070	4 2	71	1,0141	4	71	1,0212	4	7
1,15	1,0000	0	72	1,0072	2 2	73	4,0145	5	73	1,0218	6 5	7
1,20	1,0000	0	74	1,0074	1	74	1,0148	5	75	1,0223	5	7
1,23	1,0000	0	75	1,0075	2	76	1,0151	4	77	1,0228	5	7
4,50	1,0000	0	77	1,0077	100	78	1,0155		78	1,0235	0	7
_												
Pour	z=0,0000 Correction		f. 66 000	z=0,0066 Correction		67	z = 0,0133 Correction	Di 0,0	f. 68	z=0,0204 Correction		6. 6
Pour 3 Vo	Correction		000	z=0,0066 Correction	0,0	000	z=0,0155 Correction	0,0	000	Correction		000
V _o	Correction z=	0,0	000	Correction z=	0,0	000	Correction z=	0,0	000	Correction z =	0,00	000
V ₀	z= 1,0455	0,04	34	z= 1,0169	0,05	34	z=	0,0	55	z= 4,0238	0,00	500
Vo 0,00 0,03	z= 4,0455 1,0442	0,04	34 36	z= 1,0169 1,0178	0,05	34 56	z= 1,0205 1,0214	0,06	55 36	z= 1,0258 1,0250	0,07	54 56
V ₀	z= 1,0455	7 6 7	34	z= 1,0169 1,0178 1,0186	0,05	34	z=	0,06	55	z= 1,0258 1,0250 1,0262	0,07	5/ 5/ 5/ 5/
0,00 0,05 0,40 0,45 0,20	z= 4,0455 4,0442 4,0448	7 6 7 7	34 36 38	z= 1,0169 1,0178	0,05	34 56 58	z= 1,0205 1,0214 1,0224	0,06	55 56 58	z= 1,0258 1,0250	1 0,00 0,07	500
Vo 0,00 0,03 0,40 0,45	z= 4,0455 4,0455 4,0448 4,0455	0,04	34 36 38 40	z= 4,0169 4.0178 4,0186 1,0195	0,05 0,05 9 8 9 8	34 56 58 59	z= 4,0205 4,0214 4,0224 4,0234	0,06	55 36 58 40	z= 4,0258 4,0250 4,0262 4,0274	1 0,00 0,07 12 12 12 12	500
0,00 0,05 0,40 0,15 0,20 0,25 0,50	z= 1,0155 1,0142 1,0148 1,0155 1,0162	0,04	34 36 38 40 41	z= 4,0469 4,0478 4,0486 4,0498 4,0498 4,0203	0,05 0,05 9 8 9 8	34 56 58 59 41	z= 4,0205 4,0214 4,0224 4,0254 4,0244	0,06	55 36 58 40 42	z= 4,0258 4,0250 4,0262 4,0274 4,0286	1 0,00 0,07 12 12 12 12 12 12	50 50 50 40 40 40
0,00 0,05 0,40 0,45 0,20 0,25 0,50 0,35	2=	0,04 7 6 7 7 7 7	34 36 38 40 41 45	z= 1,0469 4.0478 1,0486 1,0495 1,0205 1,0205 1,0212	0,05 0,05 9 8 9 8 9 8	34 56 58 59 41 42	4,0203 4,0214 4,0224 4,0254 4,0254 4,0254 4,0254 4,0265 4,0275	0,06	55 36 38 40 42 44	z= 1,0258 1,0250 1,0262 1,0274 1,0286 1,0298	1 0,00 0,07 12 12 12 12 12 12 12	51 51 41 41 41
0,00 0,05 0,40 0,15 0,20 0,25 0,50 0,35 0,40	z= 1,0155 1,0142 1,0448 1,0455 1,0462 1,0169 1,0176 1,0182 1,0189	0,04 0,04	34 36 38 40 41 45 44 47 48	4,0169 4.0178 4,0486 1,0495 1,0205 4,0212 4,0229 1,0229 1,0237	0,05 0,05 9 8 9 8 9 8	34 56 58 59 41 42 45 46 48	z= 1,0205 1,0214 1,0224 1,0254 1,0254 1,0254 1,0255 1,0275 1,0285	0,06 0,06 11 10 10 10 10 11	55 56 58 40 42 44 45 47	z= 4,0258 4,0250 4,0262 4,0274 4,0298 1,0510 4,0522 4,0554	12 12 12 12 12 12 12 12 12	50 50 50 40 40 40 40 40 40 40 40 40 40 40 40 40
0,00 0,05 0,40 0,15 0,20 0,25 0,50 0,35 0,40 0,45	z=	0,04	34 36 38 40 41 45 44 47 48 50	4,0169 4,0486 4,0495 1,0205 4,0212 1,0220 1,0229 1,0237 1,0246	0,05 0,05 9 8 9 8 9 8	54 56 58 59 41 42 45 46 48	7	0,06 0,06	55 56 58 40 42 44 45 47 49 50	z= 4,0238 4,0250 4,0262 4,0274 4,0298 4,0340 4,0340 4,0322 4,0354 4,0346	19 19 19 19 19 19 19 19 19 19 19 19 19	50 50 50 40 40 40 40 40 40 40 40 40 40 40 40 40
0,00 0,05 0,40 0,40 0,20 0,25 0,50 0,40 0,45 0,50	2	0,04 0,04	34 36 38 40 41 45 44 47 48 50 31	z= 1,0469 1,0478 1,0486 1,0495 1,0203 1,0212 1,0220 1,0229 1,0237 1,0246 1,0254	0,05 0,05 9 8 9 8 9 8	54 56 58 59 41 42 45 46 48 50 52	7 = 1,0203 1,0214 1,0224 1,0224 1,0234 1,0244 1,0254 1,0265 1,0275 1,0285 1,0296 1,0306	0,06 0,06 11 10 10 10 10 11	55 56 58 40 42 44 45 47 49 50 52	z= 1,0258 1,0250 1,0262 1,0274 1,0286 1,0298 1,0310 1,0522 1,0534 1,0534 1,0588	12 12 12 12 12 12 12 12 12 12 12 12	50 50 50 40 40 40 40 40 40 40 40 40 40 40 40 40
0,00 0,05 0,40 0,45 0,20 0,25 0,50 0,40 0,45 0,50 0,55	4,0455 1,0142 1,0148 1,0148 1,0162 1,0162 1,0176 1,0176 1,0196 1,0196 1,0203 1,0203	7 6 7 7 6 7 7 7 7	34 36 38 40 41 45 44 47 48 50 31 54	4,0469 4,0478 1,0486 1,0495 1,0205 4,0229 1,0229 1,0237 1,0246 1,0254 1,0265	0,05 0,05 9 8 9 8 9 8 9	34 56 58 59 41 42 45 46 48 50 52 55	1,0205 1,0214 1,0224 1,0224 1,0254 1,0254 1,0265 1,0275 1,0285 1,0275 1,0286 1,0306 1,0316	0,06 0,06 11 10 10 10 11 10 10	55 56 58 40 42 44 45 47 49 50 52 55	4,0258 4,0250 4,0260 4,0262 4,0274 4,0286 4,0298 4,0310 4,0522 4,0544 4,0546 4,0558 4,0574	19 19 19 19 19 19 19 19 19 19 19 19 19	51 51 51 41 41 41 41 51 51 51
0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,40 0,45 0,55 0,55 0,60	z= 4,0455 4,0442 4,0448 4,0465 4,0466 4,0176 4,0189 4,0189 4,0189 4,0205 4,0205 4,0205	0,04	34 36 38 40 41 45 44 47 48 50 31 54 55	z= 4,0469 4.0478 4,0486 4,0495 4,0205 4,0220 4,0220 4,0237 4,0254 4,0263 4,0264 4,0263 4,0264 4,0264	0,05 0,05 9 8 9 8 9 8 9 8	34 56 58 59 41 42 45 46 48 50 52 55	z= 4,0205 4,0214 4,0224 4,0224 4,0234 4,0234 4,0235 4,0265 4,0265 4,0266 4,0366 4,05266 4,05266 4,05266	0,06	55 56 58 40 42 44 45 47 49 50 52 55 56	z= 4,0258 4,0250 4,0262 4,0264 4,0298 4,0354 4,0554 4,0554 4,0554 4,0574 4,0574 4,0582	12 12 12 12 12 12 12 12 12 12 12 12 12	50 50 50 50 50 50 50 50 50 50 50 50 50 5
0,00 0,05 0,40 0,45 0,20 0,25 0,50 0,45 0,45 0,45 0,55 0,60 0,65	z= 4,0455 4,0445 4,0448 4,0462 4,0462 4,0467 4,0476 4,0489 4,0489 4,0494 4,0494 4,0494 4,0494 4,0494 4,0494 4,0494 4,0494	7 6 7 7 7 6 7 7 7 6 7	34 36 38 40 41 45 44 47 48 50 31 54 55	z= 1,0169 4,0178 4,0188 1,0188 1,0205 4,0210 4,0220 4,0220 4,0220 4,0237 4,0246 4,0265 4,0261 4,0280	0,05 0,05 9 8 9 8 9 8 9 8	54 56 58 59 41 42 45 46 48 59 59 57	z = 4,0205 4,0214 4,0224 4,0224 4,0224 4,0242 4,0245 4,0275 4,0286 4,0306 4,0316 4,0526 4,0526	0,06	35 36 38 40 42 44 45 47 49 50 52 55 56 57	z= 1,0258 4,0250 4,0250 4,0274 4,0286 4,0274 4,0286 4,0251 4,0554 4,0554 4,0554 4,0554 4,0554 4,0554 4,0558 4,0571 4,0588 4,0574	1 0,00 0,07 12 12 12 12 12 12 12 12 12 12 13 14 15	5: 5: 5: 4: 4: 4: 4: 5: 5: 5: 5:
5 0,00 0,05 0,40 0,25 0,50 0,40 0,45 0,50 0,50 0,60 0,65 0,70	z= 1,0455 1,0442 1,0445 1,0448 1,0469 1,0469 1,0169 1,0189 1,0189 1,0205 1,0209 1,0209 1,0209 1,0209 1,0205	0,044 0,044 7 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 7 7	34 36 38 40 41 45 44 47 48 50 51 54 55 57	z= 1,0169 4.0178 1,0169 4.0178 1,0195 4,0205 4,0219 4,0229 4,0237 4,0244 4,0265 4,0271 4,0289	0,05 0,05 9 8 9 8 9 8 9 8 9 8	34 56 58 59 41 42 45 46 48 50 52 53 57 58	z= 4,0205 4,0244 4,0224 4,0254 4,0254 4,0255 4,0265 4,0265 4,0265 4,0265 4,0366 4,0366 4,0367 4,03547	0,06 44 40 40 40 40 40 40 40 40 40	55 56 58 40 42 44 45 47 49 50 52 55 56 57	z= 1,0238 4,0250 4,0254 4,0274 4,0286 4,0298 4,0514 4,0554 4,0554 4,0554 4,0574 4,0588 4,0574 4,0588 4,0574 4,0588 4,0574 4,0404	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 12	51 51 51 41 41 41 41 51 51 51 51 51 51 51
5 0,00 0,05 0,40 0,25 0,50 0,40 0,45 0,50 0,50 0,65 0,65 0,65 0,75	z= 4,0455 1,0442 1,0448 1,0462 1,0462 1,0469 1,0168 1,0189 1,0196 1,0209 1,0209 1,0209 1,0257	0,04	34 36 38 40 41 45 44 47 48 50 51 54 55 57 59 60	z= 4,0469 4.0178 4,0186 1,0195 4,0205 4,0219 4,0220 4,0220 4,0220 4,0237 4,0246 4,0265 4,0261 4,0280 1,0287	9 8 9 8 9 8 9 8 9 8 9 8	34 56 58 59 41 42 45 46 48 50 55 57 58 60	z= 4,0205 4,0244 4,0254 4,0254 4,0254 4,0255 4,0205 4,0205 4,0206 4,0306 4,0306 4,0307 4,0307 4,0307 4,0307	0,06 44 40 40 40 40 40 40 40 40 40	55 56 58 40 42 44 45 47 49 50 52 55 56 57 59	z= 4,0258 4,0250 4,0250 4,0264 4,0298 4,0298 4,0514 4,0524 4,0524 4,0554 4,0574 4,0574 4,0588 4,0574 4,0404 6,0448	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 12	51 51 51 51 41 41 41 41 51 51 51 51 51 51 51 51 51 51 51 51 51
5 Vo 0,00 0,05 0,40 0,20 0,25 0,50 0,45 0,50 0,45 0,50 0,65 0,60 0,65 0,75 0,75 0,75 0,80	z= 1,0455 1,0442 1,0445 1,0448 1,0469 1,0469 1,0169 1,0189 1,0189 1,0205 1,0209 1,0209 1,0209 1,0209 1,0205	0,04 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	34 36 38 40 41 45 44 47 48 50 51 54 55 57	z= 1,0169 4,0178 1,0188 1,0188 1,0188 1,0205 1,0202 1,0229 1,0237 1,0246 1,0254 1,0265 1,0271 1,0280 1,0289 1,0297 1,0266	9 8 9 8 9 8 9 8 9 8 9 8 9 8	34 56 58 59 41 42 45 46 48 50 52 53 57 58	z= 4,0205 4,0244 4,0224 4,0254 4,0254 4,0255 4,0265 4,0265 4,0265 4,0265 4,0366 4,0366 4,0367 4,03547	0,06 11 10 10 10 10 10 10 10 10 10	55 56 58 40 42 44 45 47 49 50 52 55 56 57	z= 1,0258 4,0250 4,0260 4,0260 4,0274 4,0286 4,0274 4,0354 4,0554 4,0571 4,0588 4,0571 4,0588 4,0571 4,0584 4,0406 4,0406 4,0406	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 12	50 50 50 40 40 40 40 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60
0,00 0,03 0,10 0,20 0,25 0,50 0,40 0,45 0,50 0,65 0,65 0,65 0,65 0,65 0,65 0,6	### Correction ###################################	7 0,04 7 6 7 7 7 7 6 6 7 7 7 7 6 8	34 36 38 40 41 43 44 47 48 50 51 54 55 57 59 60 62	z= 4,0469 4.0178 4,0186 1,0195 4,0205 4,0219 4,0220 4,0220 4,0220 4,0237 4,0246 4,0265 4,0261 4,0280 1,0287	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	34 36 38 39 41 42 45 46 48 50 52 53 57 58 60 62	z = 1,0205 1,0214 1,0224 1,0254 1,0254 1,0255 1,0256 1,0275 1,0256 1,0566 1,0567 1,0567 1,0568	0,06 11 10 10 10 10 10 10 11 10 10	35 36 38 40 42 44 45 47 49 50 52 55 56 57 59 64	z= 1,0238 4,0250 4,0254 4,0254 4,0274 4,0286 4,0274 4,0554 4,0554 4,0554 4,0574 4,0588 4,0574 4,0588 4,0574 4,0588 4,0451 4,0406 4,0448 4,0451 4,0441	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 12	55 55 56 56 66 66 66
0,00 0,03 0,10 0,45 0,20 0,50 0,50 0,40 0,55 0,65 0,65 0,65 0,65 0,65 0,65 0,6	Z=	0,04 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	34 36 38 40 41 45 44 47 48 50 51 55 57 60 62 64	z= 1,0169 4,0178 4,0185 4,0195 4,0205 4,0219 4,0229 4,0237 4,0254 4,0265 4,0271 4,0289 4,0289 4,0297 4,0297 4,0297 4,0254	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8	34 56 58 59 41 42 45 46 48 50 52 55 57 57 58 60 62 64	z= 4,0205 4,0214 4,0224 4,0224 4,0224 4,0265 4,0265 4,0266 4,0316 4,0316 4,0357 4,0357 4,0357 4,0357 4,0357	0,06 44 40 40 40 40 40 40 40 40 40	35 36 38 40 42 44 45 47 49 50 52 55 56 64 65	z= 1,0258 4,0250 4,0260 4,0260 4,0274 4,0286 4,0274 4,0354 4,0554 4,0571 4,0588 4,0571 4,0588 4,0571 4,0584 4,0406 4,0406 4,0406	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 13 14 14 15 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	55 55 56 56 66 66 66 66
Vo 0,00 0,05 0,10 0,25 0,50 0,55 0,40 0,45 0,50 0,65 0,70 0,85 0,90 0,85 0,90 0,85 0,90 0,85	Z=	0,04 7 6 7 7 7 7 7 7 7 7 7 6 7 7 7 7 6 7 7 7 7 6 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 8 8 8 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	34 36 38 40 41 45 47 48 50 51 55 57 60 62 64 65	z= 4,0469 4.0178 1,0186 1,0195 1,0205 4,0219 1,0207 1,0246 1,0257 1,0246 1,0257 1,0246 1,0257 1,026	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	34 56 58 59 41 42 45 46 48 50 52 53 57 58 59 60 60 64 65	Z= 4,0205 4,0244 4,0224 4,0254 4,0254 4,0255 4,0265 4,0265 4,0266 4,0516 4,0526 4,0557 1,0568 4,0578	0,06 11 10 10 10 10 11 10 10 10 11 10 10 10	55 56 58 40 44 45 47 49 50 52 55 56 64 67	z= 1,0258 1,0250 1,0262 1,0274 1,0286 1,0298 1,0554 1,0554 1,0554 1,0554 1,0571 1,0582 1,0594 1,0418 1,0451 1,0448 1,0451 1,0443	10,00 0,07 12 12 12 12 12 12 12 12 12 12 13 14 14 15 14 15 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	51 51 51 41 41 41 41 41 51 51 51 61 61 61 61 61 61
Vo 0,00 0,03 0,40 0,20 0,20 0,35 0,50 0,40 0,55 0,60 0,65 0,70 0,80 0,95 0,95 0,80 0,95 0,95 0,95 0,95 0,95 0,40 0,	Z=	0,040 0,040 7 6 7 7 7 7 6 6 7 7 7 7 6 6 8 6 6 7 7 7 7	34 36 38 40 44 45 44 47 48 50 51 55 57 59 60 62 66 66 67	Z== 4,0469 4,0178 4,0486 4,0486 4,0495 4,0205 4,0220 4,0229 4,0227 4,0246 4,027 4,0280 4,0289 4,0264 4,0514 4,0554 4,0554 4,0554 4,05554	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	54 56 58 58 41 42 45 46 48 50 52 57 58 60 62 64 65 68	Z == 1,0205 1,0214 1,0224 1,0224 1,0254 1,0265 1,0275 1,0286 1,0306 1,0306 1,0367 1,0367 1,0367 1,0568 1,0578 1,0589	0,06 11 10 10 10 10 11 10 10 10 10 10 10 10	55 56 58 40 44 45 47 49 50 50 57 59 61 62 64 67 68	z= 1,0258 4,0250 4,0260 4,0260 4,0274 4,0286 4,0251 4,0524 4,0558 4,0578 4,0558 4,0578 4,0594 4,0406 4,041 4,0451 4,0451 4,0451 4,0457 4,0457	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 12	51 51 41 41 41 41 41 51 51 51 61 61 61 61 61
Vo 0,00 0,03 0,40 0,25 0,50 0,45 0,55 0,50 0,55 0,60 0,65 0,70 0,88 0,88 0,89 0,95 4,00 4,05 4,00 4,05 4,00 4,05 4,00 4,05 4,00 4,	Z=	0,040 0,040 7 6 7 7 7 7 6 6 7 7 7 7 7 6 8 8 6 7 7 7 6	34 36 38 41 45 44 47 48 50 51 54 55 57 60 62 67 67 77	z= 1,0169 4,0178 1,0186 1,0195 1,0205 1,0212 1,0229 1,0237 1,0244 1,0265 1,0254 1,0299 1,0299 1,0299 1,0291 1,0291 1,0291 1,0291 1,0291 1,0501 1,0501	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	34 56 58 59 44 42 45 46 48 50 52 55 57 58 60 62 64 68 69	Z == 4,0205 4,0214 4,0224 4,0224 4,0225 4,0225 4,0225 4,0275 4,0285 4,0275 4,0286 4,0306 4,0316 4,0367 4,0367 4,0588 4,0588 4,0588 4,0588 4,0588 4,0588 4,0598 4,0409	0,06 11 10 10 10 10 10 10 10 10 10	35 36 40 44 45 47 49 50 55 55 57 59 64 65 64 68 70	z= 1,0258 4,0250 4,0260 4,0261 4,0274 4,0286 4,0274 4,0524 4,0554 4,0554 4,0574 4,0588 4,0574 4,0584 4,046 4,0448 4,0454 4,0454 4,0454 4,0454 4,0454 4,0454 4,0457 4,0457	10,00 0,07 12 12 12 12 12 12 12 12 12 12 12 12 12	51 51 44 41 41 41 51 51 51 51 51 51 51 61 61 61 61 61 61 61 77
Vo 0,00 0,03 0,40 0,20 0,50 0,50 0,45 0,45 0,65 0,75 0,65 0,75 0,65 0,75 0,65 0,75 0,65 0,45 0,	## Correction ## Cor	0,044 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 8 6 6 7 7 7 7	346 358 40 41 45 447 48 50 51 55 57 59 60 62 66 67 67 67 77 77	Z= 4,0469 4,0178 4,0148 4,0195 4,0205 4,0219 4,0229 4,0257 4,0254 4,0254 4,0254 4,0254 4,0254 4,0254 4,0254 4,0254 4,0255 4,0271 4,0289 4,0254 4,0555 4,0554 4,0554 4,0554	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	34 56 58 59 41 42 45 46 59 55 57 58 60 62 64 65 68 69 71	Z == 1,0205 1,0214 1,0224 1,0234 1,0244 1,0254 1,0265 1,0275 1,0286 1,0306 1,0316 1,0526 1,0526 1,0526 1,0537 1,0568 1,0578 1,0589 1,0409 1,0409 1,0409 1,0441	0,06 0,06 11 10 10 10 10 10 10 10 10 10 10 10 10	35 36 36 40 44 45 47 45 55 55 64 65 67 67 72	z= 1,0238 4,0250 4,0264 4,0274 4,0286 4,0298 4,0554 4,0554 4,0554 4,0554 4,0568 4,0571 4,0582 4,0564 4,0448 4,0451 4,0454 4,045	10,00 0,07 12 12 12 12 12 12 12 12 12 12	51 51 44 41 41 41 51 51 51 51 51 51 51 51 51 51 51 61 61 61 61 61 61 61 61 61 61 61 61 61
Vo 0,00 0,05 0,20 0,20 0,50 0,50 0,50 0,50 0,50 0,50 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,65 0,50 0,	Z=	0,040 0,040 7 7 7 7 7 7 7 6 6 7 7 7 7 6 6 8 6 6 7 7 6 6 8 7 7 6 6 8 7 7 6 6 8 7 7 7 6 6 8 7 7 7 7	34 35 36 36 36 40 41 44 47 48 53 44 45 55 57 66 66 67 71 75	Correction z ==	0,050	34 56 58 59 41 42 46 48 50 52 55 57 58 60 62 64 65 68 71	Z == 4,0205 4,0214 4,0224 4,0224 4,0224 4,0225 4,0225 4,0225 4,0225 4,0236 4,0316 4,0316 4,0317 4,0357 4,0357 4,0357 4,0557 4,0558 4,0598 4,0404 4,0414 4,0441 4,0441	0,06 11 10 10 10 10 10 10 10 10 10	556 5849 444 457 457 555 664 667 667 725 775	z= 1,0258 4,0250 4,0260 4,0260 4,0261 4,0274 4,0286 4,0510 4,052 4,0554 4,0558 4,0574 4,0406 4,0406 4,0404 4,0404 4,0451 4,0451 4,0457 4,0479 4,0479 4,0494	10,00 0,07 12 12 12 12 12 12 12 12 12 13 14 15 16 17 18 18 18 18 18 18 18 18 18 18	50 50 50 50 50 50 50 50 50 50 50 50 50 60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70
Vo 0,00 0,03 0,40 0,20 0,50 0,50 0,45 0,45 0,65 0,75 0,65 0,75 0,65 0,75 0,65 0,75 0,65 0,45 0,	## Correction ## Cor	0,044 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 6 7 7 7 7 6 8 6 6 7 7 7 7	346 358 40 41 45 447 48 50 51 55 57 59 60 62 66 67 67 67 77 77	Z= 1,0169 4,0178 1,0188 1,0188 1,0195 1,0205 1,0212 1,0220 1,0229 1,0237 1,0254 1,0265 1,0271 1,0260 1,028	0,05 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	34 56 58 59 41 42 46 48 50 52 55 57 58 60 62 64 65 68 69 71 74	Z == 1,0205 1,0214 1,0224 1,0234 1,0244 1,0254 1,0265 1,0275 1,0286 1,0306 1,0316 1,0526 1,0	0,06 0,06 11 10 10 10 10 10 10 10 10 10 10 10 10	556 588 40 424 445 450 552 556 657 668 702 775	z= 1,0258 4,0250 4,0260 4,0261 4,0274 4,0286 4,0274 4,0354 4,0554 4,0554 4,0574 4,0406 4,044 4,0406 4,044 4,0406	10,00 0,07 12 12 12 12 12 12 12 12 12 12	51 51 44 44 45 55 56 66 66 67 77

Pour ord.	z =	0,08		z=	0,09		z =	0,10		z=	0,11	
Vo	$\mathfrak{B}(xV)$	D Vo	D. 2	$\mathfrak{B}(xV)$	D Vo	D. 2				$\mathfrak{B}(xV)$		D.
0,00	1,0272	14	35	1,0307		55	1,0542		55	1,0577		36
0,05	1,0286	14	37	1,0323	16	36	1,0559	17	37	1,0396	19	58
0,10	1,0300	14	58	1,0558	16	39	1,0377	18	59	1,0416	20	59
0,15	1,0514	15	40	1,0354	15	40	1,0394	17	44	1,0455	19	44
0,20	1,0327	14	42	4,0369	45	42	1,0411	18	43	1,0454	19	43
0,25	1,0541	14	45	1,0384	16	45	1,0429	17	44	1,0473	19	45
0,30	1,0555	14	45	1,0400	16	46	1,0446	18	46	1,0492	20	4.7
0,40	1,0383	14	49	1,0416	16	48	1,0464	47	48	1,0312	19	48
0,45	1,0396	13	54	1,0452	15	49 52	1,0481	18	50 54	1,0554	19	59
0,50	1,0410	14	52	1,0447	45	54	1,0499	17	54	1,0550	20	54
0,55	4,0424	14	54	1,0478	16	56	1,0554	18	56	1,0590	20	53
0,60	1,0458	14	56	1,0494	16	57	1,0554	17	57	1,0608	18	58
0,65	1,0452	14	58	1,0510	16	59	1,0569	18	59	1,0628	20	60
0,70	1,0466	14	60	1,0526	16	60	1,0586	17	64	1,0647	19	65
0,75	1,0480	14	64	1,0544	15	63	1,0604	18	65	1,0667	19	62
0,80	1,0494	15	63	1,0557	16	64	4,0624	18	65	1,0686	20	66
0,85	1,0507	14	66	1,0573	16	66	1,0639	18	67	1,0706	19	67
0,90	1,0521	14	68 70	1,0589	16	68	1,0657	17	68	1,0725	20	70
0,95	1,0549	14	74	1,0605	15	69	1,0674	18	74	1,0745	20	74
1,00	1,0564	15	73	1,0620	17	72	1,0692	.48	75	1,0765	19	72
1,10	1,0378	14	75	1,0653	16	75	1,0710	18	77	1,0784	24	76
1,15	1,0592	14	77	1,0669	16	77	1,0746	18	79	1,0825	20	78
1,20	1,0606	14	79	1,0685	16	79	1,0764	18	80	1,0844	19	84
1,25	1,0620	14	84	1,0701	16	81	1,0782	18	82	1,0864	20	82
	A DETE	45	na		16	122		18			20	81
1,30	1,0655	U.F.	82	1,0717		83	1,0800		84	1,0884		
Pour 3	z=0,055 Correction	Di n 0,0	f. 68 000	z=0,060 Correctio	2 Di n 0,0	f. 67 000	z=0.066 Correction	9 Di n 0,0	f. 67 000	z=0,073 Correction	0,0	f. 6
Pour	z=0,053	Di n 0,0	f. 68 000	z=0,060 Correctio	2 Di	f. 67 000	z=0,066	9 Di n 0,0	f. 67 000	z=0,073 Correction		f. 6
Vo 0,00	z=0,055/ Correction z= 1,0415	0,42	f. 68 000	z=0,060 Correction z====================================	2 Di n 0,0	f. 67 000	z=0.0669 Correction	0,14	f. 67 000	z = 0,0750 Correction z == 1,0520	0,15	6, 6
Vo 0,00	z=0,055 Correction z= 1,0415 1,0454	0,12	f. 68 000 55 57	z=0,060 Correction z== 1,04/18 1,0471	2 Di n 0,0 0,13	f. 67 000	z=0,0669 Correction z== 1,0484 1,0509	9 Di n 0,0	f. 67 000	z=0,0750 Correction z====================================	0,15	5 5 5 5 5
Vo 0,00 0,03 0,10	z=0,055 Correction z== 1,0415 1,0454 1,0455	0,42	f. 68 000 55 57 59	z=0,060 Correction z== 1,04/18 1,04/14 1,04/94	2 Di n 0,0	f. 67 000 36 38 39	z=0.066 Correction z== 1.0484 1.0509 1.0535	0,14	f. 67 000	z=0,0756 Correction z====================================	0,15	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Vo 0,00 0,03 0,40 0,45	z=0,053 Correction z====================================	0,12	f. 68 900 55 57 59 41	z=0,060 Correction z====================================	2 Di n 0,0 0,13	f. 67 000 -	z=0,066: Correction z= 1,0484 1,0509 1,0535 1,0538	9 Di n 0,0 0,14	6. 67 000	z=0,0736 Correction z====================================	0,15	1, 6 000 5 5 5 4
Vo 0.00 0.03 0.40 0.45 0.20	z=0,053 Correction z== 4,0413 4,0454 1,0455 4,0476 1,0497	0,12	f. 68 000 55 57 59 44 45	z=0,060 Correction z== 1,04/18 1,0471 1,0494 1,0517 1,0340	2 Di n 0,0 0,13 23 23 23 23 23	f. 67 000 -	z=0,066 Correction z=- 1,0484 1,0509 1,0535 1,0538 4,0585	9 Di n 0,0 0,14	7. 67 000 36 58 40 42 45	z=0,075 Correction z== 1,0520 4,0547 4,0573 4,0600 4,0626	0,15 0,15 27 26 27	1, 6 000 5 5 4
Vo 0,00 0,03 0,40 0,45 0,20 0,25	z=0,053 Correction z== 1,0415 1,0454 1,0455 1,0476 1,0497 1,0518	0,12 0,12 21 21 21 21 21	f. 68 000 55 57 59 41 45 45	z=0,060 Correction z=	2 Di n 0,0 0,13 25 25 25 25 25 25 25	f. 67 000 -	z=0,066: Correction z== 1,0484 1,0509 1,0535 1,0585 1,0585 1,0608	9 Di n 0,0 0,14 25 24 25 25 25 25	56 58 40 42 45	z=0,075 Correction z=	0,15 0,15 27 26 27 26 27 26 27 27	1, 6 000 5 5 5 4 4
Vo 0.00 0.03 0.40 0.45 0.20	z=0,053 Correction z== 4,0413 4,0454 1,0455 4,0476 1,0497	0,12 0,12 0,12 21 21 21 21 21 21	f. 68 000 55 57 59 44 45	z=0,060 Correction z=	2 Di n 0,0 0,13 25 25 25 25 25 25 25 25 25	f. 67 000 -	z=0,066 Correction z=- 1,0484 1,0509 1,0535 1,0538 4,0585	9 Di n 0,0 0,14 25 24 25 25 25 25 25	7. 67 000 36 58 40 42 45	z=0,075 Correction z=	0,15 0,15 27 26 27 26 27 27 27	1. 6 0000 5 5 5 4 4 4
Vo 0.00 0.03 0.40 0.45 0.20 0.25 0.50	z=0,053 Correction z== 1,0413 1,0454 1,0455 1,0476 1,0497 1,0548 1,0539 1,0560	0,12 0,12 0,12 21 21 21 21 21 21 21 21	55 57 59 44 45 45 47	z=0,060 Correction z=	2 Di n 0,0 0,13 25 25 25 25 25 25 25 25 25	f. 67 000 - 36 38 39 41 45 45	### 1,0484 1,0484 1,0509 1,0535 1,0588 1,0585 1,0608 1,0633 1,0658	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25	56 58 40 42 45 47 49	z=0,075 Correction z=	0,15 0,15 27 26 27 26 27 27 27 27 27	5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Vo 0,00 0,03 0,40 0,45 0,20 0,25 0,50 0,50 0,40 0,45	z=0,053 Correction z====================================	0,12 0,12 0,12 24 24 24 24 24 24 24 24 24 24 24 24 24	55 57 59 44 45 45 47 49 50	z=0,060 Correction z=	2 Di n 0,0 0,13 25 25 25 25 25 25 25 22 24	56 58 59 41 45 45 47	z=0,066: Correction z== 1,0484 1,0509 1,0535 1,0538 1,0585 1,0608 1,0633	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25	56 58 40 42 45 47	z=0,075 Correction z=	0,15 0,15 27 26 27 26 27 27 27 27 27	5 5 5 5 4 4 4 4 4 5 5
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45 0,50	z=0,053 Correction z= 1,0415 1,0454 1,0454 1,0455 1,0476 1,0397 1,0518 1,0559 1,0560 1,0581 1,0604 1,0604	0,12 0,12 24 24 24 24 24 24 24 24 24 24 24 24 24	55 57 59 41 45 45 47 49 50 53	z=0,060 Correction z==	2 Di n 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	5. 67 000 36 38 39 44 45 45 45 47 49 52 53	z=0,066: Correction 1,0484 1,0509 1,0535 1,0535 1,0658 1,0653 1,0658 1,0658 1,0658 1,0658	9 Di n 0.0 0,14 25 24 25 25 25 25 25 25 25	56 58 40 42 45 45 47 49 51 53 55	z=0,075i Correction z=	0,15 0,15 27 26 27 26 27 27 27 27 27 27	1. 60000 5 51 51 51 41 41 41 41 41 55 55 55 55 55 55 56 56 56 56 56 56 56
Vo 0,00 0,00 0,10 0,15 0,20 0,25 0,50 0,45 0,40 0,45 0,50 0,55	z=0,053 Correction z= 4,0415 4,0454 4,0454 4,0456 4,0359 4,0560 4,0560 4,0560 4,0602 4,0602 4,0648	94 94 94 94 94 94 94 94 94 94 94 94 94 9	55 57 59 41 45 45 47 49 50 55 54 56	z=0,060°Correction z== 1,0448 1,0471 1,0494 1,0347 1,0347 1,0340 1,0563 1,0663 1,0653 1,0673 1,0673	2 Di n 0,0 0,13 25 25 25 25 25 25 25 22 24	5. 67 000 - 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	z=0,066: Correction z=	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 6000 6 . 6 . 6 . 7	z=0,075; Correction z== 1,0520 1,0547 1,0560 1,0660 1,0665 1,0665 1,0707 1,0707 1,0754 1,0764 1,0768 1,0788 1,0788 1,0788	0,15 0,15 27 26 27 26 27 27 27 27 27 27 27	1, 60000 5 51 51 41 41 41 41 5 5 5 5 5 5 5 5 5 5
Pour 5 Vo 0,00 0,00 0,03 0,40 0,45 0,20 0,25 0,50 0,40 0,43 0,50 0,43 0,50 0,55	z=0,053 Correction z= 4,0413 4,0434 4,0435 4,0476 4,0497 4,0548 4,0559 4,0560 4,0581 4,0602 4,0624 4,0624 4,0666	91 91 91 91 91 91 91 91 91 91 91 91 91	f. 68 0000 2 55 37 59 44 45 45 47 49 50 55 54 56 58	z=0,060 Correction z== 1,0448 1,0471 1,0494 1,0347 1,0347 1,0340 1,0365 1,0651 1,0653 1,0678 1,0701 1,0724	2 Din 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	56 38 39 41 45 47 49 52 55 57 59	z=0,066: Correction z==- 1,0484 1,0309 1,0335 1,0338 1,0385 1,0608 1,0658 1,0658 1,0658 1,0658 1,0708 1,0708 1,0708 1,0708	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 40 42 45 45 47 49 51 53 55 57	z=0,075; Correction z= 4,0520 4,0547 4,0553 4,0660 4,0653 4,0680 4,0707 4,0754 4,0764	0,15 0,15 27 26 27 26 27 27 27 27 27 27 27 27 27	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Pour 5 Vo 0,00 0,03 0,45 0,20 0,25 0,50 0,45 0,50 0,45 0,50 0,65	z=0,053 Correction Z == 1,0415 1,0454 1,0454 1,0457 1,0518 1,0559 1,0569 1,0564 1,0664 1,0665 1,0685	94 94 94 94 94 94 94 94 94 94 94 94 94 9	f. 68 0000 2 55 57 59 44 45 45 47 49 50 55 54 56 58 60	z=0,060 Correction z=	2 Di n 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 59 44 45 47 49 52 53 55 57 59 60	z=0,066: Correction 1,0484 1,0509 4,0535 1,0535 1,0535 1,0658 1,0653 1,0658 1,0658 1,0658 1,0758 1,0758 1,0758 1,0758	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 40 42 45 45 45 55 57 59 61	z=0,075i Correction z= 4,0520 4,0547 4,0575 4,0600 4,0653 4,0653 4,0680 4,0707 4,0754 4,0764 4,0764 4,0788 4,0815 4,0869	0,15 0,15 27 26 27 26 27 27 27 27 27 27 27	5 5 5 5 5 5 5 5 5 6 6
Pour 5 Vo 0.00 0.03 0.45 0.20 0.50 0.45 0.50 0.45 0.60 0.65 0.60 0.65	z=0,053 Correction Z = 4,0415 4,0454 4,0456 4,0560 4,0560 4,0560 4,0666 4	94 94 94 94 94 94 94 94 94 94 94 94 94 9	6. 688 55 57 59 44 45 45 47 49 50 55 54 56 60 62	z=0,060°Correction z== 1,0448 1,0474 1,0494 1,0547 1,0547 1,0565 1,0565 1,0669 1,0651 1,0658 1,0701 1,0724 1,0748 1,0748	2 Din 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	56 67 67 67 67 67 67 67 67 67 67 67 67 67	z=0,066: Correction z== 1,0484 4,0309 4,0358 4,0358 4,0658 4,0658 4,0658 4,0658 4,0753 4,0758 4,0758 4,0758 4,0783 4,0858 4,0783 4,0858 4,0783 4,0858	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 40 42 45 47 49 51 55 57 59 61 65	z=0,075; Correction z== 1,0520 1,0547 1,0547 1,0660 1,0653 1,0660 1,0707 1,0754 1,0761 1,0788 1,0842 1,0842 1,0869	0,15 0,15 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27	1, 60000 5 5 5 5 5 5 5 5 5 5 6 6 6 6
Pour 5 Vo 0,00 0,03 0,40 0,45 0,50 0,50 0,50 0,40 0,45 0,50 0,50	z=0,053 Correction z= 4,0415 4,0454 4,0454 4,0456 4,0547 4,0548 4,0560 4,0560 4,0602 4,0666 4,0688 4,0668 4,0709 4,0730	94 94 94 94 94 94 94 94 94 94 94 94 94 9	6. 68 6. 68 6. 68 6. 68 6. 60 6. 62 6. 64	z=0,060°Correction z== 1,0448 1,0471 1,0494 1,0363 1,0363 1,0363 1,0653 1,0653 1,0673 1,0701 1,0724 1,0748 1,0774	2 Din 0.0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 0000 - 3 36 58 59 41 45 45 47 49 52 55 55 57 59 60 62 65	z=0,066: Correction z=	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	7. 67. 67. 67. 67. 67. 67. 67. 67. 67. 6	z=0,075; Correction z= 1,0520 1,0547 1,0560 1,0660 1,0663 1,0683 1,0761 1,07761 1,0764 1,0784 1,0885 1,0886	0,15 0,15 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1, 60000 5 51 51 51 51 51 51 51 61 61 61 61 61
Pour 5 Vo 0,00 0,03 0,40 0,48 0,20 0,58 0,50 0,40 0,48 0,50 0,50 0,60 0,68 0,70 0,70 0,78	z=0,053' Correction z=	91 21 21 21 21 21 21 21 21 21 21 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 21	55 57 59 41 45 47 49 50 55 54 56 62 64 66	z=0,060 Correction z== 1,0448 1,0471 1,0494 1,0317 1,0317 1,0340 1,0363 1,0651 1,0678 1,0701 1,0724 1,0794 1,0794 1,0794 1,0794 1,0818	2 Din 0,0 0,43 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 0000 - 3 36 58 59 41 45 47 49 52 55 57 57 59 60 62 63 66	z=0,066: Correction z=	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	7. 67. 67. 67. 67. 67. 67. 67. 67. 67. 6	z=0,075; Correction z= 1,0520 1,0547 1,0575 1,0690 1,0626 1,0653 1,0707 1,0754 1,0754 1,0754 1,0761 1,0754 1,0855 1,0856	97 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1, 66 0000 5 5 5 4 4 4 4 4 4 5 5 5 5 5 5 5 5
Pour 5 Vo 0,00 0,03 0,40 0,45 0,20 0,25 0,50 0,40 0,45 0,50 0,65 0,60 0,65 0,70 0,70 0,80	z=0,053' Correction z= 1,0415 1,0454 1,0453 1,0476 1,0518 1,0539 1,0560 1,0581 1,0602 1,0624 1,0645 1,0688 1,0709 1,0752 1,0775	94 94 94 94 94 94 94 94 94 94 94 94 94 9	6. 68 6. 68 6. 68 6. 68 6. 60 6. 62 6. 64	z=0,060 Correction z=	2 Din 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 0000 -	z=0,066: Correction 1,0484 1,0509 4,0535 1,0535 1,0658 1,0653 1,0658 1,0658 1,0758 1,0758 1,0758 1,0758 1,0758 1,0858 1,0853 1,0858 1,0858 1,0858 1,0858 1,0858 1,0858	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	7. 67. 67. 67. 67. 67. 67. 67. 67. 67. 6	z=0,075; Correction z= 1,0520 1,0547 1,0573 1,0600 1,0626 1,0680 1,0707 1,0754 1,0761 1,0761 1,0788 1,0815 1,0869 1,0896 1,0896 1,0896 1,0896 1,0896 1,0953 1,0896	97 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1. 66 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pour 5 Vo 0,00 0,03 0,40 0,48 0,20 0,58 0,50 0,40 0,48 0,50 0,50 0,60 0,68 0,70 0,70 0,78	z=0,053' Correction z=	24 21 21 21 22 21 22 21 22 21 22 21	55 37 59 41 45 47 49 50 55 84 66 66 66 68	z=0,060 Correction z== 1,0448 1,0471 1,0494 1,0317 1,0317 1,0340 1,0363 1,0651 1,0678 1,0701 1,0724 1,0794 1,0794 1,0794 1,0794 1,0818	2 Din 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 0000 - 3 36 58 59 41 45 47 49 52 55 57 57 59 60 62 63 66	z=0,066: Correction z=	9 Di n 0,0 0,14 25 25 25 25 25 25 25 25 25 25 25 25 25	7. 67. 67. 67. 67. 67. 67. 67. 67. 67. 6	z=0,075; Correction z= 1,0520 1,0547 1,0575 1,0690 1,0626 1,0653 1,0707 1,0754 1,0754 1,0754 1,0761 1,0754 1,0855 1,0856	97 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1. 6 0000 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
Pour 5 Vo 0,00 0,00 0,40 0,40 0,25 0,50 0,50 0,40 0,45 0,60 0,65 0,70 0,75 0,80 0,80 0,80 0,90 0,95	z=0,053 Correction Z == 4,0415 4,0454 4,0456 4,0456 4,0560 4,0560 4,0560 4,0624 4,0624 4,0624 4,0626 4,0688 4,0709 4,0730 4,0752 4,0775 4,0775 4,0775 4,0775 4,0775 4,07616 4,0616	94 21 21 21 21 21 21 21 21 21 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 22	55 57 59 44 45 45 47 49 50 55 46 66 66 66 66 66 69	z=0,060°Correction z== 1,0448 1,0471 1,0494 1,0347 1,0363 1,0363 1,0653 1,0653 1,0678 1,0771 1,0794 1,0794 1,0818 1,0841 1,0884 1,0888	2 Din 0,0 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 6. 67 6. 68 58 59 41 45 45 47 49 52 55 55 57 60 62 63 66 68 71 72	z=0,066: Correction z == 1,0484 1,0309 1,0335 1,0608 1,0638 1,0658 1,0658 1,0658 1,0758 1,0758 1,0758 1,0758 1,0758 1,0758 1,0758 1,0859 1,0859 1,0859 1,0859 1,0859 1,0859 1,0859 1,0859 1,0859 1,0869 1,0	9 Di n 0,0 0,14 25 25 25 25 25 25 25 25 25 25 25 25 25	7. 67. 67. 67. 67. 67. 67. 67. 67. 67. 6	z=0,075; Correction z= 1,0520 1,0547 1,0553 1,0600 1,0626 1,0653 1,0680 1,0707 1,0754 1,0761 1,0784 1,0869 1,0896 1,0896 1,0923 1,0923 1,0950 1,0978 1,1005 1,0078 1,1005 1,1005 1,1005 1,1005 1,1005 1,1005 1,1005 1,1005 1,0078 1,1005 1,1005 1,1005 1,1005 1,1005 1,1005 1,1005 1,0	27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1. 6 0000 5 5 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7
Pour 5 Vo 0,00 0,05 0,40 0,45 0,20 0,55 0,50 0,40 0,45 0,70 0,68 0,70 0,70 0,80 0,80 0,80 0,80 0,80	z=0,053 Correction Z == 4,0413 4,0454 4,0454 4,0545 4,0560 4,0560 4,0560 4,0664 4,0664 4,0664 4,0664 4,0666 4,0666 4,0666 4,0675 4,0709 4,0730 4,0752 4,0775 4,075 4,075 4,075 4,075 4,075 4,075	94 21 21 21 21 21 21 21 21 21 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 22	55 57 59 44 45 45 47 49 50 55 46 66 66 66 66 67 72	z=0,060 Correction z=	2 Din 0,00 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 0000 -	z=0,066: Correction z=	9 Di n 0,0 0,14 25 25 25 25 25 25 25 25 25 25 25 25 25	6. 67 6. 67 6. 67 6. 68 6. 68 6. 68 6. 68 6. 69 7. 70	z=0,075; Correction z=	27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1. 6 0000 5 1 51 1 51 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7
Pour 5 Vo 0,00 0,00 0,03 0,40 0,45 0,50 0,50 0,50 0,50 0,60 0,68 0,70 0,70 0,70 0,90 0,95 1,10	z=0,053 Correction Z == 4,0415 4,0454 4,0456 4,0560 4,0560 4,0560 4,0624 4,0624 4,0624 4,0626 4,0636 4,0709 4,0705 4,0816 4,0858	94 91 91 91 91 91 91 91 91 91 91 91 91 91	55 57 59 44 45 47 49 50 55 84 60 62 64 66 68 69 72 75 77	z=0,060 Correction z=	2 Din 0,00 0,13 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 6. 67 6. 67 6. 68 6. 68 6. 68 6. 68 6. 68 6. 68 7. 72 7. 74 7. 76 7. 78	z=0,066: Correction 1,0484 1,0309 1,0535 1,0538 1,0538 1,0658 1,0658 1,0658 1,0758 1,0758 1,0758 1,0758 1,0758 1,0783 1,0783 1,0783 1,0859 1,0985 1,0854 1,0859 1,0985	9 Di n 0,0 0,14 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 40 42 45 45 47 49 51 55 55 57 64 66 69 70 75 78 79	z=0,075; Correction z= 1,0520 4,0547 4,0575 4,0626 4,0653 4,0653 4,0707 4,0754 4,0761 4,0764 4,0764 4,0869 4,0896 4,0896 4,0950 4,0950 4,0950 4,0978 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005 4,1005	97 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1. 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7
Vo 0,00 0,00 0,03 0,40 0,25 0,50 0,50 0,50 0,50 0,70 0,75 0,60 0,70 0,68 0,70 0,98 1,00 1,15 1,15 1,15	z=0,053 Correction Z = 4,0415 4,0454 4,0455 4,0476 4,0457 4,0560 4,0584 4,0666 4,0688 4,0709 4,0730 4,0752 4,0753 4,0753 4,0755 4,0859 4	0,12 0,12 24 24 24 24 24 24 24 24 24 24 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24	1. 68 1.	z=0,060 Correction z== 1,0448 1,0474 1,0494 1,0547 1,0563 1,0563 1,0653 1,0653 1,0671 1,0724 1,0748 1,0771 1,0794 1,0818 1,0818 1,0841 1,0888 1,0914 1,0888	2 Din 0,00 0,43 25 25 25 25 25 25 25 25 25 25 25 25 25 2	f. 67 0000 -	z=0,066 Correction z=	9 Di n 0,0 0,14 25 25 25 25 25 25 25 25 25 25 25 25 25	6. 67 6. 67 6. 68 6.	z=0,075; Correction z== 1,0520 1,0547 1,0577 1,0577 1,0653 1,0660 1,0707 1,0754 1,0764 1,0768 1,0781 1,0869 1,0923 1,0923 1,0950 1,0978 1,1068 1,1068	0,45 27 26 27 26 27 27 27 27 27 27 27 27 27 27	1. 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7
Pour 5 Vo 0,00 0,00 0,03 0,40 0,45 0,20 0,50 0,50 0,40 0,45 0,50 0,45 0,40 0,40	z=0,053' Correction z= 1,0413 1,0434 1,0434 1,0453 1,0476 1,0559 1,0560 1,0581 1,0624 1,0624 1,0624 1,0648 1,0759 1,0752 1,0775 1,0795 1,0781 1,0848 1,0848 1,0858 1,0858 1,0858 1,0886 1,0896 1,0886 1,0896 1,0886	24 24 24 24 24 24 24 24 24 24 24 24 24 2	55 57 59 44 45 47 49 50 55 54 56 62 64 66 68 69 72 75 77 9 81	z=0,060 Correction z== 1,0448 1,0471 1,0494 1,0317 1,0340 1,0363 1,0363 1,0653 1,0678 1,0771 1,0794 1,0818 1,084 1,0884 1,0884 1,0884 1,0884 1,0884 1,0984 1,0988 1,0914 1,0958 1,0958 1,0958 1,0958 1,0958	2 Din 0,00 0,43 25 25 25 25 25 25 25 25 25 25 25 25 25	f. 67 6. 67 6. 67 6. 68 6. 68 6. 68 6. 68 6. 68 6. 68 6. 68 6. 68 6. 68 6. 72 74 74 74 74 74 74 74 74 74 74	z=0,066: Correction 1,0484 1,0309 1,0535 1,0538 1,0658 1,0658 1,0658 1,06758 1,0758 1	9 Di n 0,0 0,14 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 40 42 45 45 47 49 51 55 55 57 64 66 69 70 75 78 79	z=0,075; Correction z= 1,0520 1,0547 1,0575 1,0600 1,0626 1,0653 1,0680 1,0707 1,0754 1,0761 1,0784 1,0881 1,0896 1,0896 1,0950 1,0978 1,1005 1,1005 1,1005 1,1008 1,1117	0,45 0,45 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	1. 6 6 6 6 6 6 6 6 7 7 7 7 7 8 8 8 8 8
Vo 0,00 0,00 0,03 0,40 0,25 0,50 0,50 0,50 0,50 0,70 0,75 0,60 0,70 0,68 0,70 0,98 1,00 1,15 1,15 1,15	z=0,053 Correction Z == 4,0413 4,0434 4,0435 4,0435 4,0559 4,0560 4,0564 4,0624 4,0624 4,0624 4,0645 4,0795 4,0775 4,0795 4,0795 4,0795 4,0786 4,0888 4,0889 4,0881 4,0888 4,0889 4,0889 4,0889 4,0889 4,0889 4,0889 4,0885 4,0855 4,0855 4,0855 4,0855 4,0855	0,12 0,12 24 24 24 24 24 24 24 24 24 24 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24	1. 68 0000 2. 55 57 59 41 43 447 49 50 55 54 56 62 64 66 68 69 72 77 79	z=0,060 Correction z== 1,0448 1,0474 1,0494 1,0346 1,0365 1,0365 1,0653 1,0653 1,0673 1,0794 1,0794 1,0794 1,0794 1,0864 1,0864 1,0888 1,0914 1,0954 1,0958 1,0982	2 Din 0,00 0,43 25 25 25 25 25 25 25 25 25 25 25 25 25 2	f. 67 6. 67 6. 67 6. 68 6. 68 6. 69 6.	z=0,066: Correction z == 1,0484 1,0309 1,0338 1,0608 1,0638 1,0668 1,0668 1,0758 1,0758 1,0758 1,0758 1,0758 1,0788 1,0789 1,0939 1,0935 1,0938 1,1036 1,1036	9 Di n 0,0 0,14 25 25 25 25 25 25 25 25 25 25 25 25 25	56 58 40 42 45 45 47 49 51 55 55 57 61 65 66 69 70 75 78 80	z=0,075; Correction z= 1,0520 1,0547 1,0553 1,0600 1,0626 1,0653 1,0680 1,0707 1,0754 1,0761 1,0784 1,0886 1,0925 1,0978 1,1005 1,1053 1,1060 1,1088 1,1145	0,45 27 26 27 26 27 27 27 27 27 27 27 27 27 27	1. 6 6 6 6 6 6 6 6 7 7 7 7 8 8

Pour ord.	z=				0,17		3 =			z=		
Vo	$v_b(xV)$	D Vo	D. Z	$\mathfrak{B}(xV)$	D Vo	D. 2	$\mathfrak{V}_{\mathbf{b}}(x\mathrm{V})$	D Vo	D. 2	$\mathfrak{B}(xV)$	D Vo	D. 2
0,00	1,0556	29	36	1,0592		37	1,0629	59	56	1,0663	34	37
0,05	1,0585	27	38	1,0625	31	38	1,0661	32	38	1,0699	55	59
0,10	1,0612	29	41	1,0655	30	40	1,0695	52	41	1,0754	34	40
0,15	1.0641	29	44	1,0685	31	42	1,0725	33	100	1,0768	35	1.5
0,20	1,0670	29	46	1,0714	34	45	1,0758	52	45	1,0803	54	44
0,30	1,0728	29	47	1,0775	50	48	1,0790	33	48	1,0871	34	49
0,55	1,0756	28	50	1,0806	54	50	1,0856	55	50	1,0906	35 55	50
0,40	1,0785	29	52	1,0857	51	52	1,0889	55	52	1.0941	34	52
0,45	1,0814	29	53	1,0867	31	54	4,0921	52 55	54	1,0975	35	55
0,50	1,0843	29	55	1,0898	51	56	1,0934	55	56	1,1010	35	57
0,55	1,0872	28	7.75500	1,0929	31	58	1,0987	55	38	1,1045	35	58
0,60	1,0900	50	60	1,0960	54	60	1,1020	35	60	1,1080	55	60
0,70	1,0960	30	63	1,0991	52	63	1,1055	35	64	1,1115	55	65
0,75	1,0988	28	66	1,1054	31	65	1,1119	55	67	1,1186	36	66
0,80	1,1017	30	68	1.1083	54	68	1.1155	34	68	1,1221	55	69
0,85	1,1047	29	69	1,1116	54 59	70	1,1186	33	70	1,1236	55 56	71
0,90	1,1076	50	72	1,1148	51	72	1,1220	54	72	1,1292	35	75
0,95	1,1106	29	73	1,1179	32	74	1,1255	54	74	1,1327	56	75
1,00	1,1135	29	76 77	1,1211	30	76	1,1287	52	76	1,1363	34	77
1,10	1,1164	30	79	1,1241	32	78 80	1,1519	34	78 80	1,1397	36	79 84
1,15	1,1224	50	81	1,1505	52	82	1,1353	34	82	1,1469	36	85
1,20	1,1255	29	85	1,1336	51	84	1,1420	33	85	1,1505	56	85
1,25	1,1283	50	85	1,1368	32	87	1,1455	33	86	1,1344	56	87
1,50	1,1515	30	87	1,1400	32	88	1,1488	55	89	1,1377	36	89
Pour	=0,1077	Di	f. 67	= 0,414	0 Di	f. 67	z=0.120°	Di	f. 67	= 0,1274	Di	f. 68
5	Correction		000	Correction	0,0	000	Correction	0,0	100	Correction	0,0	100
Vo	==	0,20)	z=	0,21		2=	0,25	2	2=	0,23	
0,00	1,0702	56	57	1,0739	58	57	1,0776	40	57	1,0813	42	57
0,05	1,0758	56	59	1,0777	38	39	1,0816	40	59	1,0855	42	59
0,10	1,0774	36	41	1,0815	38	44	1,0856	40	41	1,0897	42	41
0,20	1.0847	37	44	1,0894	38	***	1,0956	40	45	1,0984	42	45
0,25	1,0883	36	47	1,0891	39	45	1,0936	40	47	1,1025	42	48
0,50	1,0920	57	48	1,0968	58	49	1,1017	44	49	1,1066	43	49
0,35	1,0956	56 57	50	1,1006	38 39	52	1,1058	41	51	1,1109	45	54
0,40	1,0995	57	52	1,1048	39	53	1,1098	41	55	1,1151	43	54
0,45	1,1050	37	84	1,1084	39	55	1,1139	41	55	1,1194	43	55
0,50	1,1067	36	56 58	1,1123	38	57 60	1,1180	41	57 59	1,1257	45	57 59
0,60	1,1140	37	64	1,1161	40	1200	1,1221	41	61	1,1323	43	61
0,65	1,1140	58	62	1,1201	39	61	1,1202	44	65	1,1323	45	64
0,70	1,1215	57	64	1,1279	59	65	1,1544	44	66	1,1410	44	66
0,75	1,1252	57 58	67	1,1319	59	67	1,4386	49	67	1,1455	43	68
0,80	1,1290	37	68	1,1358	40	69	1,1427	42	70	1,1497	43	70
0,85	1,1527	58	71	1,1398	59	71	1,1469	41	71	1,1540	44	72
0,90	1,1365	57	79	1,1457	40	73	1,1510	42	74	1,1584	44	75
1,00	1,1402	58	75	1,1477	40	75	1,1552	42	76	1,1628	44	79
1,00	1,1476	36	77 80	1,4517	39	77 80	1,1594	42	80	1,1672	44	81
1,10	1,1514	38	82	1,1596	40	81	1,1677	44	83	1,1710	44	83
4,45	1,1552	38	83	1,1635	59	84	1,1719	42	85	1,1804	44	86
1,20	1,1390	38	86	1,1676	41	85	1,1761	45	87	4,1848	46	88
1,25	1,1628	58	88	1,1716	40	88	1,1804	45	90	1,1894	44	90
1,50	1,1666	15.0	90	1,1756	40	91	1,1847	1 "	91	1,1938		95
Pour	1=0,4349		f. 68	z=0,1416		f. 67	2 = 0,147		f. 67	1=0,1544		
3	Correction	0,0	100	Correction	0,0	004	Correction	0,0	100	Correction	0,0	100

Pour ord.	z=				0,25	5	z=			z =		
Vo	$\mathfrak{B}(xV)$	D Vo	D. 2	$\mathfrak{V}_{\mathbf{b}}(xV)$	D Vo	D. Z	$\mathfrak{B}(xV)$	D Vo	D. 2	$\mathfrak{B}(xV)$	D Vo	D.
0,00	1.0850		58	1,0888	26	58	1,0926		58	1.0964		38
0,05	1,0894	44	40	1,0954	46	40	1,0974	48	40	1,1014	50	40
0,10	1,0958	44	42	4,0980	46	42	1,1022	48	41	1,1063	49	43
0,15	1,0982	144	44	1,1026	46	44	1,1070	48	44	1,1114	54	44
0,20	1,1026	45	46	1,1072		46	1.1118	1000	46	1,1164	50	46
0,25	1,1071	44	47	1,1118	46	48	1,1166	48	48	1,1214	20	48
0,50	1,1115	45	50	4,1165	47	50	1,1215	48	50	1,1265	54	51
0,35	1,1160	45	52	1,1212	46	51	1,1263	49	53	1,1316	31	53
0,40	4,4203	44	55	1,1238	47	54	4,4312	49	55	1,1367	1200	35
0,45	1,1249	4.5	56	1,1305	47	56	1,1561	49	57	1,1418	54	57
0,50	1,1294	45	58	1,1352	47	58	1,1410	50	59	1,1469	52	59
	100	45	60	1,1399	48	61	1,1460	49	61	1,1521	51	6
0,60	1,1384	46	63	1,1447	47	62	4,1509	50	65	1,1572	52	63
0,65	1,1430	46	66	1,1494	48	63	1,1559	49	65	1,1624	52	6
0,73	1,1521	4.5	68	1,1542	47	66	1,1658	50	68 70	1,1676	52	67
0.80	1,1567	46	70	1,1657	48	6.7	1,1708	50	10-51	1,1728	52	11.57
0,85	1,1567	45	73	1,1637	48	74 73	1,1708	50	72	1,4780	52	75
0,90	1,1659	47	74	1,1733	48	76	1,1809	54	76	1,1883	53	76
0,95	1,1705	46	77	1,1782	49	78	1,1860	54	78	1,1958	53	78
1,00	1.1751	10.0	79	1,1830	48	80	1,1940	20	84	1,1991	53	8
1,05	1,1797	46	82	1,1879	49	82	4,4964	54	83	1,2044	53	83
1,10	1,1843	46	84	1,4927	48	84	1,2011	20	85	1,2096	52	86
1,15	1,1890	46	86	1,1976	49	87	1,2065	52 54	87	1,2150	54	88
1,20	1,1936	48	89	1,2023	1000	89	1,2114	2.0	90	1,2204	54	90
1,25	1,1984	48	90	1,2074	49	91	1,2165	51	91	4,2256	52	93
1,50	1,2051	41	92	1,2123	49	93	1,2216	01	95	1,2311	55	98
_		-	_		-	-			_	-	200	_
Pour 3	z = 0,4644 Correction		f. 67	s = 1,1678 Correction		f. 68	z=0,1746 Correction		6. 67	z=0,1815 Correction		. 6
Pour	z = 0,1611	0,0	f. 67 004	z = 1,1678	0,0	f. 68 002	z=0,1746	0,00	f. 67 002	z-0,1813	0,00	6. 6
Vo 0,00	z=0,4644 Correction z=	0,28	f. 67 004	s = 1,1678 Correction	0,29	f. 68 002	s = 0,1746 Correction	0,30	f. 67 002	z=0,1815 Correction	0,34	6. 6
Vo 0,00	z=0,4644 Correction z== 1,4002 1,4054	0,28	f. 67 001 3 58 40	z = 1,1678 Correction	0,29	f. 68 002	z=0,1746 Correction	0,30	f. 67 002	z=0,1815 Correction	0,34	5. 6
Vo 0,00 0,05 0,10	z=0,4644 Correction z== 1,4002 1,1054 1,4106	0,0	6. 67 004 3 58 40 42	z = 1,1671 Correction z == 1,1040 1,1094 1,1148	0,29	f. 68 002	z=0,1746 Correction z== 1,1079 1,1155 1,1191	0,30	7. 67 002) 39 44 45	z=0,1815 Correction z= 1,1118 1,1176 1,1254	0,34	7. 6 002 39 41
Vo 0,00 0,05 0,10 0,15	z=0,4644 Correction z== 1,4002 1,4034 1,4106 1,4158	0,28	6. 67 004 3 58 40 42 45	z=1,1673 Correction z== 1,1040 1,1094 1,1148 1,1203	0,29 0,29 54 54 55	f. 68 002	z=0,1746 Correction z== 1,1079 1,1455	0,30 0,30	7. 67 002 002	z=0,4845 Correction z= 4,4448 4,4476 4,4254 4,4295	0,34	5. 6 002 3: 4: 4:
Vo 0,00 0,05 0,10 0,15 0,20	z=0,1614 Correction z== 1,4002 1,4054 1,4106 1,4158 1,4210	0,00 0,28 52 52 52	58 40 42 45 47	z=1,1673 Correction z= 1,4040 1,4094 1,4148 1,4203 1,4257	0,29 0,29 54 54 55 54	59 41 45 45 47	z=0,4746 Correction z== 1,4079 1,4455 1,4194 4,1248 1,4304	0,30 0,30 56 56 57 56	5. 67 002) 39 44 45 45 48	z=0,4845 Correction z== 4,4448 4,4476 4,4295 4,4295 4,4552	0,34 0,34 58 58 59 59	5. 6 002 3.4 4.4 4.6 4.6
Vo 0,00 0,05 0,10 0,15 0,20 0,25	z=0,1614 Correction z== 1,4002 1,4054 1,4106 1,4158 1,4210 1,1262	0,28 52 52 52 52	58 40 42 45 47 50	z=1,1673 Correction z=- 1,1040 1,1094 1,1148 1,1203 1,1257 1,1312	0,29 0,29 54 54 55 54 55	59 41 43 45 47 49	z=0,4746 Correction z== 1,4079 1,4455 1,4194 1,1248 1,4304 1,4564	0,30 0,30 56 56 57 56 57	7. 67 002 002 39 44 45 45 48 50	z=0,4845 Correction z== 4,4448 4,4476 4,4254 4,4295 4,4552 4,4414	0,34 0,34 58 58 59 59	5. 6 002 39 49 40 40
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50	z=0,1644 Correction z== 1,4002 1,4054 1,4106 1,1158 1,4210 1,4262 1,1516	0,28 52 52 52 52 52	58 40 42 45 47 50 51	z=1,1673 Correction z=	0,29 0,29 54 54 55 54	59 41 45 45 47 49 51	z=0,1746 Correction z== 1,1079 1,1155 1,1191 1,1248 1,1504 1,1564	0,30 0,30 56 56 57 56	7. 67 002 002 39 44 45 45 48 50 52	z=0,1845 Correction z== 1,1448 1,4476 1,1254 1,1295 1,1552 1,1441 1,1470	0,34 0,34 58 58 59 59	5. 6 002 35 46 46 46 56
Vo 0,00 0,05 0,10 0,45 0,20 0,25 0,50 0,55	z=0,1644 Correction z== 1,4002 1,4054 1,4106 1,1158 1,4210 1,1262 1,1316 1,1369	0,28 52 52 52 52 52 52	58 40 42 45 47 50 51 55	z=1,1673 Correction z=	0,29 0,29 54 54 55 54 55 55	7, 68 002) 39 41 43 45 47 49 51 53	z=0,1746 Correction z== 1,1079 1,1155 1,1191 1,1248 1,1304 1,1564 4,1475	0,30 0,30 56 56 57 56 57 57	7. 67 002 002 39 44 45 45 48 50 52 54	z=0,1815 Correction z== 1,1118 1,1176 1,1254 1,1295 1,1529 1,1411 1,1470 1,1529	0,34 0,34 58 58 59 59 59	355 41 41 41 50
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40	z=0,4644 Correction z= 1,4002 1,4054 1,4106 1,1158 1,4210 1,1566 1,1569 1,4422	0,28 52 52 52 52 52 54 53	58 40 42 45 47 50 51 55	z=1,1673 Correction z= 1,1040 1,1094 1,1148 1,1203 1,1257 1,1312 1,1367 1,1477	0,29 0,29 54 55 54 55 55 55	59 41 45 45 47 49 51 53 55	z=0,1746 Correction z= 1,1079 1,1155 1,1494 1,1248 1,4304 1,4561 4,1418 1,1418 1,1475 1,1552	0,30 0,30 56 56 57 56 57 57 57	7. 67 002 002 39 44 45 45 48 50 52 54 57	z=0,1815 Correction z== 1,1118 1,1176 1,1254 1,1254 1,1252 1,1411 1,1470 1,1529 1,1589	0,34 58 58 59 59 59 59	39 41 41 41 50 51 51
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45	z=0,4644 Correction z== 1,4002 1,4054 1,4106 1,1158 1,4210 1,1262 1,1316 1,1369 1,4422 1,1475	0,00 0,28 52 52 52 52 54 53 53	58 40 42 45 47 50 51 55 55	z=1,1673 Correction z= 1,4040 1,4094 1,4108 1,4203 1,4257 1,4312 1,4367 1,4422 1,477 1,4532	0,00 0,20 54 54 55 54 55 55 55 55	7. 68 002 39 41 45 45 47 49 51 53 55 58	z=0,1746 Correction z== 1,1079 1,1155 1,1494 1,1248 1,1504 1,1564 1,1418 1,1475 1,1552 1,1559	0,30 0,30 56 56 57 56 57 57 57 57 57	59 44 45 45 48 50 52 54 57	z=0,4845 Correction z== 4,4448 4,4176 4,1254 4,1295 4,1552 4,1411 4,1470 1,1529 4,1589 4,1649	0,34 58 58 59 59 59 60 60	39 41 41 41 50 51 51
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45 0,50	z=0,4644 Correction z= 1,4002 4,4054 4,4106 4,1158 4,4210 4,1262 4,1316 4,1369 4,4422 4,1473 4,1528	0,00 0,28 52 52 52 52 52 54 55 53 53	58 40 42 45 47 50 51 55 55 57 60	z=1,1671 Correction z= 1,1040 1,1094 1,1148 1,1203 1,1257 1,4312 1,4367 1,457 1,477 1,1532 1,1588	0,29 0,29 54 54 55 55 55 55 55 56 56	59 41 45 45 47 49 51 53 55 58	z=0,1746 Correction z=	0,00 0,30 56 56 57 56 57 57 57 57 57 58 58	59 44 45 45 48 50 52 54 57 59 61	z=0,1815 Correction z==	0,34 58 58 59 59 59 60 60 60	39 41 41 41 50 51 51 51
Vo 0,00 0,05 0,10 0,25 0,20 0,25 0,50 0,40 0,45 0,50 0,55	z=0,4614 Correction z= 1,4002 4,4054 4,41054 4,41054 4,4262 4,1516 4,1569 4,4422 4,1475 4,4528 4,4528	0,00 0,28 52 52 52 52 54 53 53 53 53 54 53	58 40 42 45 47 50 51 55 55 57 60 62	z=1,1677 Correction z=1,1040 1,1094 1,4198 1,1257 1,1352 1,1357 1,1532 1,1532 1,1532 1,1532 1,1532 1,1532 1,1532 1,1532	0,00 0,29 54 55 55 55 55 55 55 56 56	59 41 45 45 47 49 51 53 55 58 60 62	z=0,4746 Correction z=1,4079 4,4453 4,4154 4,4248 4,4304 4,436 4,436	0,00 0,30 56 56 57 56 57 57 57 57 57 58 58 58	7. 67 002 39 44 45 45 48 50 52 54 57 59 61 63	z=0,1815 Correction z=	0,34 58 58 59 59 59 60 60 60 60 61	39 41 41 41 50 51 51 51 61 61
Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,40 0,45 0,50 0,55 0,40 0,55 0,60	z=0,4614 Correction z= 1,4002 1,1054 1,1106 1,1158 1,41210 1,1262 1,1516 1,1506 1,1508 1,44422 1,4475 1,1528 1,1528 1,1528	0,00 0,28 52 52 52 52 52 54 55 55 55 55 55	58 40 42 45 47 50 51 55 55 57 60	z=1,1671 Correction z=1,4040 1,4094 1,4148 1,4267 1,4257 1,4567 1,4567 1,477 4,1532 1,1588 1,4644 4,1700	0,20 0,20 54 55 55 55 55 55 56 56 56	59 41 45 45 47 49 51 53 55 58 60 62 64	z=0,1746 Correction z=	0,00 0,30 56 56 57 56 57 57 57 57 57 58 58 58	7. 67 7.	z=0,1815 Correction z= 4,4118 4,4176 4,1253 4,1253 4,1253 4,1253 4,1253 4,1470 1,1529 4,1769 4,1769 4,1769 4,1850	0,34 0,34 58 58 59 59 59 59 60 60 60 60 60	39 40 40 40 50 50 50 50 60 60
Pour 3 Vo 0,00 0,05 0,10 0,25 0,50 0,55 0,40 0,45 0,50 0,55 0,60 0,65	z=0,4614 Correction z= 4,4002 4,4054 4,4106 4,4166 4,4210 4,1516 4,4516 4,452 4,4542 4,4542 4,4548 4,4589 1,4658	52 52 52 52 52 54 55 53 53 54 55	6. 67 3 3 58 40 42 45 47 50 51 55 57 60 62 65	z=1,1671 Correction z= 1,4040 1,4094 1,4148 1,4267 1,4512 4,4567 1,452 1,4532 1,4588 1,4644 1,1700 1,4786	0,20 0,20 54 54 55 55 55 55 55 56 56 56 56 56	59 41 43 45 47 49 51 55 85 60 62 64 66	z=0,1746 Correction z=	56 56 57 56 57 57 57 57 57 57 58 58 58 58	7. 67 39 41 45 45 48 50 52 54 57 59 61 63 66 68	z=0,1815 Correction z= 4,4418 4,4176 4,1254 4,1255 4,4411 4,4470 4,1529 4,1589 4,1709 4,1769 4,1850 4,1850 4,1850	58 58 59 59 59 59 59 60 60 60 61 60 64	6. 6
Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,40 0,45 0,50 0,55 0,40 0,55 0,60	z=0,4614 Correction z= 1,4002 1,1054 1,1106 1,1158 1,41210 1,1262 1,1516 1,1506 1,1508 1,44422 1,4475 1,1528 1,1528 1,1528	52 52 52 52 52 53 55 55 55 55 55 55 55 55 55 55 55 55	6. 67 6. 67 6. 67 6. 67 6. 66 6. 67	z=1,1671 Correction z=1,4040 1,4094 1,4148 1,4267 1,4257 1,4567 1,4567 1,477 4,1532 1,1588 1,4644 4,1700	54 54 55 55 55 55 55 56 56 56 56	59 41 45 45 47 49 51 53 55 58 60 62 64	z=0,1746 Correction z=	36 56 57 56 57 57 57 57 57 58 58 58 58 58	7. 67 7.	z=0,1815 Correction z= 4,4118 4,4176 4,1253 4,1253 4,1253 4,1253 4,1253 4,1411 4,1470 1,1529 4,1769 4,1769 4,1769 4,1850	58 58 59 59 59 59 60 60 60 61 60 64 61	3.9 4.1 4.1 4.1 5.0 5.1 5.1 6.1 6.1 6.1 6.1 6.1
Pour 3 Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,40 0,45 0,40 0,55 0,40 0,55 0,60 0,65 0,70	z=0,4644 Correction z= 1,4002 4,4054 4,41054 4,41062 4,4262 4,1546 4,4526 4,4528 4,4528 4,4528 4,4528 4,4528 4,4528 4,4528 4,4528 4,4528 4,4528 4,4528	52 52 52 52 52 53 53 53 53 54 54 55	6. 67 69	z=1,1677 Correction z=1,1040 4,1094 4,1194 4,1203 4,1257 4,1352 4,1357 4,1452 4,1477 4,1532 4,1458 4,1454 4,1700 1,1756 4,1818	54 54 54 55 55 55 55 55 56 56 56 56 56	59 41 43 45 47 49 51 53 55 58 60 62 64 66 66	z=0,4746 Correction z=1,4079 4,4153 4,4154 4,4264 4,4364 4,4364 4,4473 4,4473 4,4473 4,452 4,473 4,4764 4,4764 4,4764 4,4764 4,4822 4,4822 4,4824 4,4824 4,4824 4,4824 4,4884	56 57 56 57 57 57 57 57 58 58 58 58 58 58	7. 67 7. 67 9 44 45 45 45 45 52 54 57 59 61 65 66 68	z=0,1815 Correction z=	58 58 59 59 59 59 60 60 60 60 64 64 64 64	3.5 4.1 4.1 5.6 5.5 5.5 6.7 6.7 7.7
Pour 3 Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,45 0,40 0,45 0,50 0,66 0,60 0,70 0,75	z=0,4644 Correction z= 1,4002 4,4054 4,41054 4,41062 4,4262 4,1516 4,4262 4,4475 4,4528	52 52 52 52 52 53 54 55 53 53 54 55 54 55	6. 67 69 70	z=1,1677 Correction z=1,4040 4,4094 4,4148 4,4203 4,4203 4,4367 4,4362 4,4367 4,452 4,4477 4,1532 4,4564 4,4700 1,4786 4,4812 4,4812 4,4812 4,4812	54 55 55 55 55 55 55 56 56 56 56 56 56 57	59 41 43 45 47 49 51 53 55 60 62 64 66 69 71	z=0,474¢Correction z= 1,4079 4,4155 4,1494 4,1204 4,1364 4,1364 4,1475 4,1418 4,1418 4,4766 4,1624 4,1824 4,1881 4,1959	0,30 0,30 56 57 56 57 57 57 57 57 58 58 58 58 58 58 59 58	7. 67 7. 67 7. 67 7. 67 7. 67 7. 67 7. 67 7. 68 7. 68 7. 68 7. 68 7. 78 7.	z=0,1815 Correction z=	0,34 0,34 58 58 59 59 59 59 60 60 60 60 61 61 61	5. 60 4.4 4.6 5.6 5.6 5.6 6.6 6.6 6.6
Pour 3 Vo 0,00 0,00 0,10 0,10 0,20 0,50 0,50 0,45 0,45 0,60 0,65 0,70 0,70 0,85 0,80 0,80	z=0,4644 Correction z= 1,4002 4,4054 4,41054 4,1158 4,4240 4,1262 4,1316 4,1356 4,4422 4,1475 4,4528 4,4528 4,4658 1,4658 1,4658 4,1795 4,1795 4,1907	52 52 52 52 52 52 53 54 55 53 54 55 55 54 55 55 55 55 55 55 55 55 55	5. 67 6. 67 67 67 67 67 67 67 67 67 67 67 67 67 6	\$ = 1,1677 Correction \$ 2 = 1,4040 4,4094 4,4148 4,4203 4,4367 4,4312 4,4367 4,4362 4,4367 4,1532 4,4364 4,1700 4,1786 4,4812 4,1868 4,1925 4,1982 4,1982	0,20 0,20 54 54 55 55 55 55 55 56 56 56 56 56 57 57	1. 68 1.	z=0,474¢Correction z= 1,4079 4,4155 4,1494 4,1248 4,4304 4,4364 4,4364 4,4475 4,4484 4,4766 4,1764 4,1882 4,4881 4,1959	0,30 0,30 56 57 56 57 57 57 57 57 58 58 58 58 58 59 59	7. 67 7. 74	z=0,1815 Correction z=	58 58 59 59 59 59 59 59 60 60 60 61 61 64 64 64	5. 66 4.6 4.6 5.6 5.6 5.6 6.6 6.7 7.7 7.8 7.8
Pour 5 Vo 0,00 0,05 0,10 0,25 0,50 0,50 0,50 0,50 0,60 0,75 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95	z=0,4614 Correction z= 1,4002 1,1054 1,4106 1,1158 4,4210 4,1262 4,1516 4,1528 4,4473 4,4528 4,1473 4,1528 1,1653 1,1743 1,1743 1,1743 1,1743 1,1743	0,28 52 52 52 53 53 54 55 54 55 54 55	6. 67 6. 67 6. 67 6. 69 70 75 75	z=1,1671 Correction z= 1,4040 1,4094 1,4108 1,4207 1,4512 4,4567 1,452 1,4588 1,4644 4,1700 1,4786 4,4812 1,488 1,1982 1,1982	0,20 0,20 54 54 55 55 55 55 55 56 56 56 56 56 57 57	1. 68 1.	z=0,1746 Correction z= 1,4079 4,4455 4,1494 4,4248 4,4364 4,4764 4,1418 4,4476 4,1468 4,4764 4,1881 4,1881 4,1959 4,1881 4,1959 4,1959 4,1959 4,1959	36 56 57 56 57 57 57 57 57 58 58 58 58 59 58 59 59 59 59	7. 67 67 67 67 67 67 67 67 67 67 67 67 67	z=0,1815 Correction z= 4,4118 4,4176 4,1254 4,1254 4,1455 4,1441 4,1470 4,1529 4,1649 4,1769 4,1769 4,1850 4,1951 4,2912 4,2012 4,2012 4,2012 4,2012	0,34 0,34 58 58 59 59 59 59 60 60 60 60 61 61 61	50002 44 46 46 50 50 50 50 70 71 71 80
Pour 3 Vo 0,00 0,05 0,10 0,15 0,20 0,50 0,50 0,45 0,50 0,45 0,50 0,65 0,70 0,75 0,80 0,75 0,80 0,85 0,90 0,95 4,00	z=0,4614 Correction z= 1,4002 1,1054 1,11054 1,1158 1,1158 1,1262 1,1516 1,1528 1,14758 1,1689 1,1743 1,4785 1,1689 1,1743 1,1793 1,1961 1,2016 1,2016	0,28 52 52 52 53 53 54 55 54 55 54 55 56	6. 67 6. 67 6. 67 6. 68 6. 68 68 68 68 68 68 68 68 68 68 68 68 68 6	\$ = 1,1671 Correction \$ 2 = 1,4040 1,4094 1,4198 1,4205 1,4367 1,4312 1,4367 1,4328 1,4477 1,1532 1,4388 1,4644 1,700 1,4756 1,4812 1,4868 1,1982 1,2039 1,2039 1,2039 1,2039 1,2036	0,00 0,20 54 55 55 55 55 55 55 56 56 56 56 56 57 57 57	1. 68 1. 68 1. 68 1. 69 1. 41 1. 42 1. 43 1.	z=0,1744 Correction z=	56 56 57 57 57 57 57 57 58 58 58 58 58 59 58 60	7. 67 7. 67 7. 67 7. 67 7. 67 7. 67 7. 67 7. 67 7. 68 7. 68 7. 68 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	z=0,1815 Correction z=4,4118 4,4176 4,1257 4,1257 4,1257 4,1470 1,1529 4,1470 4,1709 4,1769 4	58 58 59 59 59 60 60 60 60 60 60 60 60 60 60 60 60 60	5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
Pour 3 Vo 0,00 0,05 0,10 0,25 0,20 0,55 0,40 0,55 0,60 0,55 0,75 0,80 0,65 0,70 0,85 0,90 0,95 0,95	z=0,4644 Correction z= 1,4002 1,1054 1,1106 1,1158 1,4210 1,1262 1,1369 1,4422 1,1476 1,1588 1,1689 1,1743 1,1743 1,1798 1,1852 1,1901 1,1901 1,2016 1,2016	0,28 52 52 52 53 53 54 55 54 55 54 55	6. 67 6. 67 6. 65 6. 65 65 66 65 65 65 65 65 65 65 65 65 65 6	\$ = 1,1677 Correction \$ 2 = 1,4040 4,4094 4,4194 4,4195 4,4263 4,4267 4,4367 4,4367 4,4368 4,1470 4,1470 4,14819 4,1868 4,1925 4,1982 4,2039 4,2039 4,2154	0,00 0,20 54 54 55 55 55 55 55 56 56 56 56 56 57 57 57 57 58 58	1. 68 1.	z=0,474¢ Correction z= 1,1079 4,4155 4,1194 4,1248 4,1364 4,1456 4,1475 4,1458 4,1476 4,1851 4,1959 4,1959 4,2117 4,2176 4,2297	0,30 0,30 56 56 57 57 57 57 57 57 58 58 58 58 58 59 58 60 59 59 60 61	7. 67 44 45 45 45 45 45 45 46 50 52 54 57 59 61 66 66 68 70 77 76 79 82 84 84 86 86 86 86 86 86 86 86 86 86	z=0,1815 Correction z=	38 58 59 59 59 60 60 60 60 60 60 60 60 60 60 60 60 60	50002 44 46 46 50 50 50 50 60 60 60 70 71 71 80 80 81 81
Pour 3 Vo 0,00 0,05 0,10 0,05 0,15 0,50 0,50 0,50	z=0,4614 Correction z= 1,4002 4,4054 4,41054 4,41063 4,4262 4,1316 4,4262 4,4475 4,4528 4,4782 4,4658 4,1798 4,1798 4,1852 4,1907 4,1961 4,2016 4,2072 4,2127 1,2182	52 52 52 52 52 53 53 53 53 53 54 55 54 55 55 55 56 56	6. 67 6. 67 6. 65 6. 65 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ = 1,1677 Correction \$ 2	0,00 0,20 54 55 55 55 55 55 55 56 56 56 56 56 57 57 57	59 441 45 45 47 49 51 55 58 60 66 66 69 74 76 78 80 82 87	z=0,174¢ Correction z= 1,1079 1,1153 1,1191 1,1264 1,1364 1,1364 1,14764 1,14764 1,14764 1,1821 1,1939 1,1083 1,1939 1,2083 1,2176 1,2276 1,2236 1,2237	56 56 57 57 57 57 57 57 58 58 58 58 58 59 58 60	7. 67 4. 67 4. 67 4. 68 5. 66 6. 68 7. 66 6. 68 7. 7. 7. 66 7. 7. 7. 66 7. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	z=0,1815 Correction z=	58 58 59 59 59 60 60 60 60 60 60 60 60 60 60 60 60 60	5. 60 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4
Pour 3 Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,60 0,75 0,80 0,80 0,85 0,90 0,95 4,00 4,15	z=0,4614 Correction z= 1,4002 4,4054 4,4105 4,4262 4,41475 4,4262 4,4475 4,4528 4,4528 4,4528 4,4528 4,4528 4,15907 4,1961 4,2016 4,2072 4,2127 4,2127 4,2127	52 52 52 52 52 53 53 53 53 53 54 55 54 55 54 55 55 55 55 55 55 55 55	6. 67 6. 67 6. 67 6. 69 7. 75 7. 75 8. 80 8. 2 8. 85 8. 85 86 86 86 86 86 86 86 86 86 86 86 86 86	\$ = 1,1677 Correction \$ 2 = 1,4040 1,4094 1,4148 1,4205 1,4257 1,4312 1,4367 1,4584 1,477 1,4584 1,4786 1,4818 1,1868 1,1925 1,1982 1,2039 1,2039 1,2154 1,2213 1,2213	0,20 54 54 55 55 55 55 56 56 56 56 56 57 57 57 57 57 58 58 58 58 58 58 58 58 58 58	59 44 45 45 47 53 55 860 62 64 66 69 74 76 78 80 82 85 7 89	z=0,174¢ Correction z= 1,1079 1,1153 1,1191 1,1248 1,4304 1,1561 21,1418 1,457 1,1552 1,1890 1,1648 1,4706 1,1764 1,1822 1,1890 1,1959 1,2058 1,2117 1,2176 1,2236 1,2297 1,2417	56 56 57 57 57 57 57 57 58 58 58 58 58 59 59 60 60 64 60	7. 67 4. 67 4. 67 4. 67 4. 68 4.	z=0,1815 Correction z= 4,4118 4,4176 4,1253 4,4293 4,4592 4,1441 4,4470 4,1589 4,1649 4,1769 4,1850 4,1850 4,1951 4,2012 4,2075 4,2156 4,2196 4,2258 4,2520 4,2845 4,2508	58 58 59 59 59 59 59 60 60 61 61 61 62 62 62 62 63	5. 60 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4
Pour 3 Vo 0,00 0,00 0,05 0,10 0,20 0,25 0,50 0,40 0,45 0,50 0,60 0,75 0,70 0,75 0,70 0,85 0,90 0,41 0,41 1,41 1,42	z=0,4614 Correction z= 1,4002 1,1054 1,1106 1,1158 1,4210 1,1262 1,1516 1,1569 1,1745 1,1785 1,1689 1,1745 1,1785 1,1689 1,1745 1,1785 1,1785 1,1907 1,1961 1,2016 1,2017 1,2182 1,2284 1,2284 1,2294	52 52 52 52 52 52 53 53 53 53 53 54 55 54 55 55 55 56	C. 67 004 3 3 3 40 42 45 47 50 51 55 57 60 62 67 70 73 75 80 82 85 88 88 88 89 99	\$ = 1,1671 Correction \$ 2 = 1,4040 1,4094 1,4108 1,4257 1,4312 1,4367 1,4727 1,4338 1,4644 1,700 1,4756 1,4812 1,4868 1,1982 1,2039 1,2036 1,2154 1,2270 1,2328 1,2386	0,20 0,20 54 54 55 55 55 55 55 56 56 56 56 56 57 57 57 57 58 58 58 58 58 58 58 58 58 58 58 58 58	59 41 45 45 47 49 51 58 60 62 66 67 71 74 76 78 80 82 85 87 99	z=0,1746 Correction z= 4,4079 4,4155 4,1494 4,1254 4,4304 4,4561 4,4561 4,4562 4,4590 4,4648 4,4764 4,1881 4,4764 4,1881 4,1999 4,2058 4,2117 4,2176 4,2236 4,2236 4,2297 4,2557 4,2478	56 56 57 57 57 57 58 58 58 58 58 59 59 60 60 60	7. 67 44 45 45 45 48 50 52 54 57 59 61 63 66 68 70 77 77 78 98 98 98 98 98 98 98 98 98 9	x=0,1815 Correction x= 4,4148 4,4176 4,1254 4,1295 4,1352 4,1411 4,1470 4,1489 4,1649 4,1769 4,1769 4,1850 4,1850 4,1890 4,1951 4,2012 4,2073 4,2154	58 58 58 59 59 59 59 60 60 60 60 61 61 61 62 62 62 62 63	50002 44 46 46 50 50 50 50 50 50 50 50 50 50
Pour 3 Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,60 0,75 0,80 0,80 0,85 0,90 0,95 4,00 4,15	z=0,4614 Correction z= 1,4002 4,4054 4,4105 4,4262 4,41475 4,4262 4,4475 4,4528 4,4528 4,4528 4,4528 4,4528 4,15907 4,1961 4,2016 4,2072 4,2127 4,2127 4,2127	0,28 52 52 52 52 53 53 53 54 55 54 55 56 56	6. 67 6. 67 6. 67 6. 69 7. 75 7. 75 8. 80 8. 2 8. 85 8. 85 86 86 86 86 86 86 86 86 86 86 86 86 86	\$ = 1,1677 Correction \$ 2 = 1,4040 1,4094 1,4148 1,4205 1,4257 1,4312 1,4367 1,4584 1,477 1,4584 1,4786 1,4818 1,1868 1,1925 1,1982 1,2039 1,2039 1,2154 1,2213 1,2213	0,20 0,20 54 55 55 55 55 56 56 56 56 56 56	59 44 45 45 47 53 55 860 62 64 66 69 74 76 78 80 82 85 7 89	z=0,174¢ Correction z= 1,1079 1,1153 1,1191 1,1248 1,4304 1,1561 21,1418 1,457 1,1552 1,1890 1,1648 1,4706 1,1764 1,1822 1,1890 1,1959 1,2058 1,2117 1,2176 1,2236 1,2297 1,2417	0,30 56 56 57 56 57 57 57 57 58 58 58 58 59 59 59 60 61	7. 67 4. 67 4. 67 4. 67 4. 68 4.	z=0,1815 Correction z= 4,4118 4,4176 4,1253 4,4293 4,4592 4,1441 4,4470 4,1589 4,1649 4,1769 4,1850 4,1850 4,1951 4,2012 4,2075 4,2156 4,2196 4,2258 4,2520 4,2845 4,2508	58 58 58 59 59 59 59 60 60 60 60 61 61 61 62 62 62 62 63 65 65 65	5. 60 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4

Pour	z =	0.39		z=	0.33		:=	0.3/		z=	0.35	
ord. Vo	15(xV)			W. W. W. W. W.			vs(xV)			$\mathfrak{B}(xV)$		
-	-	.,0	(3)		2.0	13		2 10	Tal		2 10	
0,00	1,1157	60	40	1,1197	62	59	1,1256	65	40	1,1276	67	40
0,05	1,1217	64	44	1,1259 1,1522	63	42	1,1301	64	42	1,1545	66	42
0,15	1,1559	64	46	1,1585	63	46	1,1431	66	46	1,1477	68	47
0,20	1,1400	61	48	1,1448	63	48	1,1496	65	48	1,1544	67	49
0.25	1,1461	64	54	1,1512	64	50	1,1562	66	50	1,1612	68	54
0,50	4,4522	61	52	1,1574	64	33	4,4627	65	55	1,1680	68	54
0,35	1,1585	62	55	1,1658	64	55	1,1695	67	56	1,1749	68	55
0,40	1,1645	62	57	1,1702	65	58	1,1760	66	57	1,1817	69	58
0,45	1,1707	63	60	1,1767	64	59 62	1,1826	67	60	1,1886	69	61
0,50	1,1852	62	64	1,1896	65	64	1,1893	67	65	1,1955	70	65
0,60	1,1895	63	66	1.1961	65	66	1,2027	67	67	1,2025	69	68
0,65	1,1958	63	68	1,2026	63	69	4,2095	68	69	1,2164	70	70
0,70	1,2021	63	74	1,2092	66	71	1,2165	68	72	1,2235	74	72
0,75	1,2084	64	74	1,2158	65	73	1,2251	68	74	1,2505	71	75
0,80	1,2148	64	75	1,2223	66	76	1,2299	69	77	4,2576	74	77
0,85	1,2212	64	77 80	1,2289 1,2556	67	79	1,2368	69	79	1,2447	71	80
0.95	1,2340	64	85	1,2423	67	84	1,2457	70	84	1,2518 1,2590	72	85
1.00	1,2405	65	85	1,2490	67	86	1.2576	69	86	1,2662	72	87
1,05	1,2470	65	87	1,2557	67	89	1,2646	70	88	1,2754	72	90
1,10	1,2555	65	90	1,2625	68	90	4,2745	69	92	1,2807	75	92
1,15	1,2600	63	92	1,2692	68	95	1,2785	70	94	1,2879	72	95
1,20	1,2665	66	95	1,2760	68	96	4,2856	71	96	4,2952	74	98
1,25	1,2751	66	97	1,2828	69	99	1,2927	74	99	1,5026	75	100
_	_	1	-	_	1	101	1,2998	1	101	1,3099	101	105
Pour 3	correction			z=0,222 Correction			z=0,228 Correctio			z=0,235 Correction		f. 68 005
Vo	z=	0,30	3	z=	0,37	7	z =	0,38	8	z=	0,39)
0,00	1,1516	69	1 40	1,1366	71	41	1,1397	73	140	4,4437	les.	41
0,05	1,1585	69	42	1,1427	72	43	1,1470	74	45	-1,1513	76 76	45
0,10	1,1454	70	45	1,1499	74	45	1,1544	74	45	1,4589	76	45
0,20	4,1595	69	49	1,1642	72	48	1,1691	73	47	1,1665	75	48
0,25	1,1663	70	52	1,1715	73	54	1,1766	75	19	1,1740	78	51
0,50	1,1734	71	53	1,1787	72,	54	1,1841	75	55	1,1818	78	54
0,55	1,1804	71	56	1,1860	74	57	1,1917	76 75	56	1,1975	77	57
0,40	1,1875	72	59	1,1954	73	58	1,1992	76	59	1,2051	79	60
0,45	1,1947	71	60	1,2007	74	61	1,2068	76	62	1,2130	78	62
0,55	1,2090	72	66	1,2156	75	66	1,2144	78	64	1,2208	80	65
0,60	1,2162	72	68	1,2230	74	68	1,2298	76	66	1,2288	79	66
0,65	1,2234	72	74	1,2305	75	70	1,2375	77	69 74	1,2567	79	69 72
0,70	1,2307	73	73	1,2380	75 75	75	1,2455	78	75	1,2526	80	75
0,75	1,2580	75	75	1,2455	76	76	1,2551	78 78	76	1,2607	81	77
0,80	1,2455	74	78	1,2551	76	78	1,2609	79	79	1,2688	84	79
0,85	1,2527	74	80	1,2607	76	84	1,2688	79	84	4,2769	81	82
0,95	1,2675	74	82 85	1,2685	77	84 86	1,2767	79	85	4,2850	82	85
1,00	1,2749	74	88	1.2857	77	88	1,2925	79	86	4,2952	82	87
1,05	1,2824	75	90	1,2914	77	94	1,3005	80	89 92	1,5014	83	90
1,10	1,2899	75	95	1,2992	78	95	4,5085	80	95	1,5180	85	95
1,15	1,2974	76	96	1,5070	78	96	1,3166	81	97	1,5265	85 84	98
1,20	1,3050	76	98	1,5148	79	99	1,5247	84	100	1,5347	84	100
1,50	1,5126	76	104	1,3227	79	101	1,5328	82.	105	1,5434	84	105
Pour	z=0.242	n Di	-	2=0,249	9 D	f. 68	z=0,2560	n:	_		Di	_
N N	Correction			Correction			Correction		006	z = 0,2628 Correction		

Pour	1				_	_					_	_
ord.	s ==			The same and the	0,4		z ==			The second second	0,43	
Vo	w(xV)	D Vo	D. Z	$\mathfrak{V}_{b}(xV)$	D Vo	D. Z	$\mathfrak{V}_{\mathbf{b}}(xV)$	D Vo	D. Z	$\mathcal{H}(xV)$	D Vo	D. 3
0,00	1,1478	78	41	1,1519	80	41	1,1560	89	42	1,1602	84	41
0,05	1,1556	78	43	1,1599	80	45	1,1642	85	44	1,1686	85	44
0,10	1,1654	79	45	1,1679	81	46	1,1725	85	46	1,1771	86	46
0,10	1,1791	78	50	1,1841	81	50	1,1891	85	54	1,1942	85	54
0,25	1,1871	80 79	52	1,1925	82	55	1,1976	85	55	1,2029	87	53
0,50	4,1950	80	55	1,2005	82	55	1,2060	84	56	1,2116	87	54
0,55	1,2030	81	58	1,2088	82	57	1,2145	85	58	1,2205	88	58
0,40	1,2111	81	59 61	1,2170	85	60	1,2250	86	64	1,2291	87	60
0,45	1,2192	81	64	1,2255	84	65	1,2316	86	62	1,1578	89	64
0,55	1,2354	84	67	1,2421	84	67	1,2488	86	68	1,2556	89	65
0,60	4.2436	82	69	1,2505	84	70	1,2375	87	74	1,2646	90	7
0,65	1,2518	85	72	1,2590	85 85	72	1,2662	87	75	1,2755	89 94	74
0,70	1,2601	85	74	1,2675	86	75	1,2750	88	76	1,2826	90	76
0,75	1,2684	83	80		86	77	1,2858	89	78	1,2916	92	75
0,80	1,2767	84	82	1,2847	86	80 85	4,2927 4,5046	89	81	1,5008	91	8
0,90	1,2955	84	85	1,5020	87	85	1,3105	89	86	1,5291	92	8
0,95	1,5019	84	88	1,3107	87 87	88	1,5195	90	89	1,3284	95 92	81
1,00	1,3104	85	90	1,5194	88	91	1,5285	90	91	1,5376	94	93
1,05	1,5189	86	95	1,3282	88	95	1,3375	94	95	1,3470	95	91
1,10	4,3275	86	95 98	1,3570	89	96	1,5466	92	97 100	1,3563	95	10
1,20	1,5447	86	101	1,5548	89	102	1,3650	92	102	1,5752	94	10
1,25	1,3534	87	103	1,3657	89	105	1,5742	92	105	1,3847	95	10
1,50	4,3624	87	106	1,3727	90	107	1,3834	92	109	.1,5943	96	10
Pour	0 960	Di		~-0 976	ni.	f 68	0 9933	Di	68	n 9004	Di	1 6
Pour S Vo	z = 0,269° Correction	0,0		z = 0,2768 Correction z ==		800	z=0,2835 Correction z=	0,0	800	z=0,2904 Correction	0,0	009
V _o	Correction z ==	0,44	007	z=	0,4	008	Correction z ==	0,46	3	Correction z ==	0,0	009
V ₀	Correction	0,44	42	z = 1,1685 1,1774	0,45	800	Correction	0,46	800	Correction	0,47	009
Vo 0,00 0,03 0,10	z= 4,1643 4,1750 1,1817	0,44 0,44	42 44 47	z == 1,1685 1,1774 1,1864	0,45	008 42 45 47	z == 1,1727 1,1819 1,1911	0,46 0,46	008 45 45 47	z= 4,4770 4,4864 4,4958	0,47	4 4 4
Vo 0,00 0,03 0,10 0,15	z == 4,1643 4,1750 1,1817 1,1906	0,44	42 44 47 48	z == 1,1685 1,1774 1,1864 1,1954	0,45	42 45 47 50	z == 1,4727 4,4819 4,1914 1,2004	0,46	45 45 47 49	z == 4,1770 4,1864 4,1958 1,2055	0,47	4 4 5
Vo 0,00 0,03 0,10 0,15 0,20	z= 4,1643 4,1750 1,1817 1,1906 1,1995	0,44 0,44 87 87 89	42 44 47 48 52	z == 1,1685 1,1774 1,1864 1,1954 1,2045	0,45 0,45 89 90	008 42 45 47 50 52	z == 1,1727 1,1819 1,1911 1,2004 1,2097	0,46 0,46 92 92 95	008 3 45 45 47 49 52	z == 4,4770 4,4864 4,4958 4,2055 4,2149	0,47 0,47 94 94 95	4 4 5 5
Vo 0,00 0,03 0,10 0,15 0,20 0,25	z == 1,1643 1,1750 1,1817 1,1906 1,1995 1,2082	0,44 87 87 89 87 89 88	42 44 47 48 52 54	2 == 1,1685 1,1774 1,1864 1,1954 1,2045 1,2156	0,45 0,45 89 90 90 91 91 92	008 42 45 47 50 52 55	z == 1,1727 1,1819 1,1911 1,2004 1,2097 1,2191	92 92 93 95 94 94	008 43 45 47 49 52 54	z == 4,4770 4,4864 4,4958 4,2085 4,2149 4,2245	0,47 0,47 94 94 95 96 96	4 4 4 5 5
Vo 0,00 0,03 0,10 0,15 0,20 0,25 0,50	z= 4,1643 4,1750 1,1817 1,1906 1,1995	0,44 87 87 89 87 89 87 89	42 44 47 48 52	z == 1,1685 1,1774 1,1864 1,1954 1,2045	0,45 0,45 89 90 90 91 91 92 92	008 42 45 47 50 52	z == 1,1727 1,1819 1,1911 1,2004 1,2097	92 92 95 95 94 94	008 3 45 45 47 49 52	z == 4,4770 4,4864 4,4958 4,2055 4,2149	0,47 0,47 94 94 95 96 96 97 97	009 4 4 5 5 5
Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,55 0,40	Z= 1,1643 1,1750 1,1817 1,1906 1,1995 1,282 1,2170 1,2261 1,2551	0,44 87 87 89 87 89 87 89 88 91	42 44 47 48 52 54 59 62	z= 1,1685 1,1774 1,1864 1,1954 1,2945 1,2456 1,2228 1,2520 1,2415	0,45 0,45 89 90 90 91 91 92 92 93	008 42 45 47 50 52 55 57 59 62	z == 1,4727 4,4849 4,1914 4,2004 4,2097 4,2491 4,2285 4,2579 4,2475	92 92 95 93 94 94 96	008 43 45 47 49 52 34 57 60 62	Z=4,1770 1,4864 1,1958 1,2055 1,2149 1,2245 1,2542 1,2542 1,2557	0,47 0,47 94 94 95 96 96 97 97 98	4 4 4 4 5 5 5 6 6
Vo 0,00 0,03 0,10 0,15 0,20 0,25 0,50 0,35 0,40 0,45	Z=	0,44 87 87 89 87 89 87 89	42 44 47 48 52 54 58 59 62 64	z == 1,1685 1,1774 1,1864 1,1954 1,2045 1,2156 1,2228 1,2520 1,2415 1,2506	0,45 0,45 89 90 90 91 91 92 92	008 42 45 47 50 52 55 57 59 62 64	z= 1,1727 1,1819 1,1911 1,2004 1,2097 1,2191 1,2283 1,2579 1,2475 1,2570	92 92 95 95 94 94	008 43 45 47 49 52 54 57 60 62 63	Z = 4,1770 4,1864 4,1958 1,2055 4,2149 4,2245 1,2542 1,2459 1,2459 1,2655	0,47 0,47 94 94 95 96 96 97 97 98 98	4 4 4 5 5 5 6 6 6
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,40 0,45 0,50	Z=	87 87 87 89 87 89 87 89 89 91 91	42 44 47 48 52 54 58 59 62 64 67	2 == 1,1685 1,1774 1,1864 1,1954 1,2045 1,2156 1,2228 1,2520 1,2415 1,2506 1,2600	0,45 0,45 89 90 90 91 91 92 93 93	008 42 45 47 50 52 55 57 59 62 64 67	z == 1,4727 4,4849 4,1944 1,2004 4,2097 4,2494 1,2285 4,2579 4,2475 4,2570 4,2667	0,46 92 92 93 93 94 94 94 96	008 43 45 47 49 52 54 57 60 62 63 67	Z=4,1770 4,1864 4,1958 1,2055 4,2149 4,2245 1,2542 1,2542 1,2557 1,2655 1,2754	0,47 0,47 94 94 95 96 96 97 97 98	4 4 4 4 5 5 5 6 6 6 6
5 Vo 0,00 0,03 0,10 0,13 0,20 0,25 0,30 0,40 0,45 0,50 0,55	Correction z = 4,1643 4,4750 4,1817 4,1995 4,2082 4,2470 4,2264 4,2553 4,1442 4,2553 4,2625	87 87 87 89 87 89 87 89 89 91 90 91 91 92	42 44 47 48 52 54 58 59 62 64 67 69	z == 1,1683 1,1774 1,1864 1,1934 1,2045 1,2156 1,2228 1,2520 1,2415 1,2506 1,2600 1,2694	0,45 0,45 89 90 91 91 92 92 93 94 94	42 45 47 50 52 55 57 59 62 64 67 69	z == 1,4727 4,4849 4,4914 1,2004 4,2094 1,2494 1,2283 4,2579 4,2475 1,2570 4,2763	92 92 93 95 94 94 94 96 95 97	008 43 45 47 49 52 54 57 60 62 65 67 70	Z == 4,1770 4,1864 4,1958 4,2045 4,245 4,245 4,245 4,245 4,245 4,255 4,255 4,2754 4,2853	0,47 0,47 94 94 95 96 96 97 97 98 98 99	4 4 4 5 5 5 6 6 6 6 7
Vo 0,00 0,03 0,10 0,15 0,20 0,25 0,30 0,40 0,45 0,50 0,55 0,60	z == 4,4643 4,4750 1,4817 4,4995 4,2982 4,2170 4,2264 4,2551 4,1442 4,2552 4,2625 4,2747	0,44 87 87 89 87 89 87 89 91 90 91 91 92 92	42 44 47 48 52 54 58 59 62 64 67	2 == 1,1685 1,1774 1,1864 1,1954 1,2045 1,2156 1,2228 1,2520 1,2415 1,2506 1,2600	0,45 0,45 89 90 91 91 92 93 93 94 94 95	008 42 45 47 50 52 55 57 59 62 64 67	z == 1,4727 4,4849 4,1944 1,2004 4,2097 4,2494 1,2285 4,2579 4,2475 4,2570 4,2667	92 92 95 95 95 94 94 94 96 98 97	008 43 45 47 49 52 34 57 60 62 63 67	Z=4,1770 4,1864 4,1958 1,2055 4,2149 4,2245 1,2542 1,2542 1,2557 1,2655 1,2754	0,47 0,47 94 94 95 96 97 97 98 98 99 99	4 4 4 5 5 5 5 6 6 6 6 7 7 7
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,35 0,40 0,45 0,50 0,55 0,60 0,65	z == 4,4643 4,4750 4,1847 4,1995 4,2082 4,2470 4,2264 4,2551 4,1442 4,2553 4,2625 4,2747 4,2809 1,2902	87 87 87 89 87 89 87 89 89 91 90 91 91 92	42 44 47 48 52 54 59 62 67 69 71 74	Z == 1,1685 4,1774 4,1864 4,1874 4,1864 4,2156 4,2156 4,2228 4,2320 4,2415 4,2560 4,2600 4,2694 4,2788 4,2894 4,2788 4,2897	89 90 90 91 91 92 93 95 94 94 95	0008 42 45 47 50 52 55 57 59 62 64 67 69 73 75 77	z == 1,1727 4,4819 1,1914 1,2004 1,2097 1,2491 1,2283 1,2579 1,2475 1,25607 1,2667 1,2763 1,2864 1,2956 1,2864 1,2956	92 92 92 95 95 95 94 94 96 98 97 98	0008 3 43 45 47 49 52 34 57 60 62 65 67 70 72 76	Z == 4,4770 4,4864 4,4958 4,2055 4,2149 4,2245 4,2459 4,2657 4,2658 4,2758 4,2658 4,2658 4,2658 4,2658 4,2658 4,2658	94 94 94 95 96 96 97 97 98 98 99 99 100 101	4: 4: 5: 5: 5: 6: 6: 6: 6: 7: 7: 7:
Vo 0,00 0,00 0,00 0,15 0,20 0,50 0,40 0,45 0,50 0,65 0,60 0,65 0,60 0,75	z == 4,1643 4,1750 1,1817 4,1995 4,2082 1,2170 4,2261 4,2261 4,2531 4,1442 4,2532 4,2473 4,2833 1,2623 1,2747 4,2809 1,2995	0,44 87 87 87 89 87 89 87 89 91 91 92 92 92 92	1 42 44 47 48 52 54 59 62 64 67 69 74 77 80	z == 1,1683 4,1774 4,1864 4,4954 1,2045 4,2156 1,2228 4,2520 4,2600 4,2600 4,2694 4,2788 4,2885 4,2979 4,2979 4,2979	89 90 90 91 91 92 92 93 93 94 94 94 95	0008 42 45 47 50 52 55 57 69 73 77 80	z == 1,1727 4,1819 1,1911 1,2004 1,2097 1,2491 1,2285 1,2570 1,2475 1,2570 1,2661 1,2988 1,5058 1,5153	92 92 92 95 95 94 94 96 98 97 98 99	5 43 45 47 49 52 34 57 60 62 65 67 70 79 84	z=- 4,1770 4,1864 4,1955 4,2149 4,2245 4,245 4,245 4,245 4,255 4,2754 4,2655 4,2754 4,2853 4,2935 4,2556 4,2556	94 94 94 95 96 96 97 97 98 98 99 400 404 404	4: 4: 4: 5: 5: 5: 6: 6: 6: 6: 6: 6: 7: 7: 7: 8:
Vo 0,00 0,00 0,03 0,10 0,25 0,25 0,55 0,40 0,45 0,55 0,60 0,65 0,60 0,67 0,73 0,80	z == 4,1643 4,1750 1,1817 4,1906 4,1995 4,2082 1,2170 4,2261 4,2551 4,1442 4,2553 4,2625 1,2717 4,2809 1,2902 1,2902 1,2902 1,2908	0,44 87 87 87 89 87 89 87 89 91 91 92 92 92 93	1 42 44 47 48 52 54 58 59 62 64 67 67 74 77 80 82	z == 1,1683 1,1774 1,1863 1,1774 1,1864 1,2945 1,2156 1,2220 1,2415 1,2506 1,2694 1,2694 1,2788 1,2885 1,2979 1,3471	0,45 89 90 90 91 91 92 93 93 94 94 95 96 96	0008 42 45 47 50 52 55 57 59 62 64 67 67 75 77 80 84	z == 1,4727 4,4849 4,1944 1,2097 4,2494 1,2283 4,2570 1,2663 4,2576 4,2763 4,2763 4,2663 4,2864 4,2958 4,5058 4,5058 4,5058 4,5253	92 92 92 95 95 95 94 94 96 98 97 98	0008 43 45 47 49 52 53 57 60 62 65 67 70 76 79 84 85	Z = 4,1770 4,1864 4,1955 4,2045 4,245 4,245 4,245 4,245 4,245 4,245 4,245 4,245 4,245 4,265 4,265 4,265 4,265 4,565 4,565 4,565 4,566 4,566	94 94 94 95 96 96 97 97 98 98 98 99 100 404 404 404 404	4: 4: 4: 5: 5: 5: 6: 6: 6: 6: 6: 6: 6: 7: 7: 7: 7: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
Vo 0,000 0,000 0,000 0,000 0,100 0,150 0,200 0,500 0,400 0,550 0,600 0,650 0,700 0,700 0,800 0,800 0,800	Z == 4,1643 4,1750 1,1817 4,1905 4,2995 4,2470 4,2251 4,1442 4,2555 4,2625 4,2747 4,2809 4,2902 4,2908 4,3183	87 87 87 89 87 89 87 89 88 91 91 92 92 92 92 93 94 94	1 42 44 47 48 52 54 58 59 62 64 67 69 74 77 780 82 85	7 == 1,1688 4,1774 4,1864 4,1954 4,294 1,228 4,2520 4,2415 4,2506 1,2600 4,2694 4,2788 1,2805 1,2607 1,5073 1,3171 1,3174 1,5268	89 90 90 91 91 92 92 93 93 94 94 94 95	0008 42 45 47 50 52 55 57 59 62 64 67 69 73 75 77 80 84	z == 1,1727 4,4819 4,1914 1,2004 1,2097 4,2491 4,2475 4,2579 4,2475 4,2763 4,2763 4,2861 4,2958 4,5356 4,5455 4,5554	92 92 95 95 95 96 94 96 98 97 96 98 97 98	0008 45 45 47 49 52 57 60 62 65 67 70 72 76 81 85 87	Z = 4,4770 4,4864 4,4958 4,245 4,245 4,245 4,2542 4,2557 4,2655 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2754 4,2855 4,2855 4,2855 4,5454 4,5454	94 94 94 95 96 96 97 97 98 98 99 400 404 404	4: 4: 5: 5: 5: 5: 6: 6: 6: 6: 6: 7: 7: 7: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
Vo 0,00 0,03 0,10 0,13 0,20 0,50 0,50 0,44 0,50 0,55 0,40 0,55 0,70 0,70 0,85 0,85 0,80	z == 4,4643 4,4750 4,1817 4,1906 4,1995 4,2082 4,2470 4,2264 4,2551 4,1442 4,2553 4,2625 4,2747 4,2809 4,2995 4,3089 4,3089 4,5182	87 87 87 89 87 89 87 89 91 91 92 92 92 92 95 94 95 95	1 42 44 47 48 52 54 58 59 62 64 67 67 74 77 80 82	Z == 1,1685 4,1774 4,1864 4,1874 4,1864 1,2045 4,2156 4,2520 4,2415 4,2520 4,2600 4,2600 4,2694 4,2788 4,2857 4,3566 4,3566	0,45 89 90 90 91 91 92 93 95 96 96 96 96 97 98 98	0008 42 45 47 50 52 55 57 59 62 64 67 67 75 77 80 84	z == 1,1727 4,1819 1,1911 1,2004 1,2097 1,2491 1,2285 1,2579 1,2475 1,2576 1,25667 1,2667 1,26667 1,26667 1,2665 1,5155 1,5253 1,5354 1,5355 1,5354 1,5355	92 92 95 95 95 94 94 96 98 97 98 97 98 99 100 404	0008 43 45 47 49 52 53 57 60 62 65 67 70 76 79 84 85	Z == 4,1770 4,1864 4,1955 4,2055 4,2149 4,2245 4,2459 4,257 4,26754	94 95 96 96 97 97 98 98 99 99 400 404 404 402 402 402 402 402 402	4: 4: 4: 5: 5: 6: 6: 6: 6: 77 71 8: 8: 8: 8: 9:
Vo 0,00 0,03 0,10 0,13 0,20 0,55 0,40 0,45 0,50 0,55 0,70 0,75 0,70 0,75 0,80 0,85 0,95	z == 4,1643 4,1750 1,1817 4,1906 4,1995 4,2082 1,2170 4,2261 4,2551 4,1442 4,2553 1,2625 1,2747 4,2809 1,2905 1,3089 1,3183 4,3278	87 87 87 89 87 89 87 89 87 89 91 90 91 92 92 92 95 95 94 95 95	0007 42 44 47 48 52 54 58 59 62 67 69 74 74 78 80 82 88 88 88 88 88 88 88 88 88	7 == 1,1688 4,1774 4,1864 4,1954 4,294 1,228 4,2520 4,2415 4,2506 1,2600 4,2694 4,2788 1,2805 1,2607 1,5073 1,3171 1,3174 1,5268	89 90 90 91 91 92 93 95 95 94 94 96 96 96 97 98	008 42 45 47 50 52 55 57 69 67 69 73 75 77 80 84 86 88	z == 1,1727 4,1819 1,1914 1,2004 1,2097 1,2491 1,2579 1,2475 1,2567 1,2667 1,2667 1,2663 1,2861 1,2958 1,5155 1,5258 1,5358 1,5358 1,5358 1,5358 1,5358	92 92 95 95 95 94 94 96 98 97 96 98 97 98 91 100 401	0008 43 45 47 49 52 34 57 60 62 65 67 70 72 76 78 81 83 85 89	Z=	94 94 94 95 96 96 97 97 98 98 99 400 404 404 404 402 403 404 404 404	4: 4: 5: 5: 5: 5: 6: 6: 6: 6: 6: 6: 6: 6: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 8:
Vo 0,00 0,03 0,10 0,25 0,25 0,50 0,45 0,50 0,55 0,60 0,65 0,70 0,70 0,70 0,85 0,95 0,95 1,90 1,15 1,	z == 4,4643 4,4750 4,1817 4,1906 4,1995 4,2082 4,2470 4,2264 4,2551 4,1442 4,2553 4,2625 4,2747 4,2809 4,2995 4,3089 4,3089 4,5182	87 87 87 89 87 89 87 89 91 90 91 91 92 92 93 95 94 95 96	42 44 47 48 52 54 58 69 67 67 67 67 74 77 80 82 85 88 94 95	7 == 1,1685 1,1685 1,1774 1,1864 1,1864 1,2945 1,2126 1,2258 1,2258 1,2258 1,2600 1,2694 1,2694 1,2885 1,2885 1,2870 1,3075 1,3075 1,3176 1,3566 1,3664 1,3664 1,3664	89 90 90 91 91 92 93 93 94 94 95 96 96 96 97 98 98 98	008 42 45 47 50 52 55 57 69 67 69 73 77 80 84 86 88 89 94	z == 1,1727 4,1819 1,1911 1,2004 1,2097 1,2491 1,2285 1,2579 1,2475 1,2576 1,25667 1,2667 1,26667 1,26667 1,2665 1,5155 1,5253 1,5354 1,5355 1,5354 1,5355	92 92 92 95 95 95 94 96 98 97 98 99 100 99 100 101 101	0008 43 45 47 49 52 34 57 60 62 65 67 70 72 76 78 81 83 85 89	Z == 1,1770 1,4864 1,4958 1,2055 1,2149 1,2459 1,2557 1,2655 1,2555 1,2555 1,2555 1,55	94 94 94 95 96 96 97 98 98 99 99 99 100 404 404 404 405 402 403 404 404 404	44 44 55 56 66 67 77 77 77 88 88 99
Vo 0,00 0,03 0,10 0,23 0,20 0,55 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,50 0,50 0,50 0,50 0,70 0,	z= 4,4643 4,4750 4,1817 4,1995 4,2082 4,2470 4,2264 4,2551 4,1442 4,2553 4,2645 4,264	87 87 87 89 88 89 89 90 91 92 92 92 93 95 94 95 96	42 44 47 48 52 54 58 59 62 64 67 74 77 80 82 85 88 91 95 99	Z == 1,1685 4,1774 4,1864 4,1874 4,1864 4,2156 4,2258 4,2415 4,2500 4,2600 4,2694 4,2788 4,2875 4,2566 4,2566 4,3664 4,5566 4,5664 4,5664 4,5664 4,5664	89 90 90 91 91 92 92 93 95 94 94 95 96 96 97 98 98 98	0008 42 45 47 30 52 57 59 62 64 67 69 73 75 77 80 84 86 88 91 94	z == 1,1727 4,1819 1,1911 1,2004 1,2097 1,2491 1,2285 1,2579 1,2475 1,2576 1,2566 1,2667 1,2667 1,2665 1,3155 1,5656 1,5155 1,5656 1,5155 1,5656 1,5155 1,5656 1,5155 1,5656 1,5155	92 92 92 95 95 95 94 96 98 97 96 98 99 100 404 404 402	0008 43 45 47 49 52 57 60 62 65 77 76 77 81 85 87 89 92 92 400	Z=- 4,1770 4,1864 4,1955 4,2149 4,2245 4,2245 4,2459 4,2245 4,2557 4,2654 4,2754 4,2654 4,2754 4,2654 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,2754 4,3754 4,3754 4,3754 4,3754 4,3754 4,3754 4,3754	94 94 94 95 96 96 97 97 98 98 99 99 400 404 404 404 404 404 404 404 4	44 44 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9
Vo 0,00 0,03 0,10 0,20 0,50	z= 4,1643 4,1750 1,1817 4,1906 4,1995 4,2082 1,2170 4,2261 4,2551 4,1442 4,2553 1,2747 4,2809 1,2905 1,3089 1,3183 4,3278 1,3575 1,3669 1,3566 1,3789	87 87 87 89 87 89 87 89 91 90 91 91 92 92 93 95 94 95 96	1 42 44 47 48 52 54 58 59 62 67 74 77 78 0 82 85 88 94 95 69 99 101	z == 1,1683 4,1774 4,1864 4,1874 4,1864 4,2166 4,2228 4,2415 4,2506 4,2694 4,2788 4,2887 4,2507 4,3644 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664	89 90 90 91 91 92 93 93 94 94 95 96 96 96 97 98 98 98	42 45 47 50 52 55 57 59 62 64 67 69 75 77 80 88 88 91 94 100 405	z == 1,1727 4,1819 1,1911 1,2004 1,2097 1,2491 1,2579 1,2475 1,2567 1,2667 1,2667 1,2661 1,2958 1,5153 1,5153 1,5556 1,3755 1,3556 1,3758 1,3656 1,37860 1,3656	92 92 92 95 95 95 94 96 98 97 98 99 100 99 100 101 101	43 45 47 49 52 54 57 60 62 67 70 72 81 85 87 89 92 95 400 400 400 400 400 400 400 400 400 40	Z=- 4,1770 4,1864 4,1955 4,2149 4,2245 4,2245 4,2245 4,2459 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,3864 4,3864 4,3864 4,3864 4,3860 4,4066	94 94 94 95 96 96 97 98 98 99 99 99 100 404 404 404 405 402 403 404 404 404	4: 44 5: 5: 5: 5: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6:
Vo 0,00 0,00 0,00 0,00 0,00 0,00 0,10 0,10 0,20 0,50 0,50 0,50 0,60 0,65 0,70 0,85 0,90 0,95 1,00 1,10	Z == 4,1643 4,1750 1,1817 4,1906 4,1995 4,2082 1,2170 4,2261 4,2551 4,1442 4,2553 4,2625 1,2717 4,2809 1,3089 4,3183 4,3278 4,3578 4,3565 4,3669 4,3566 4,3669 4,3586	0,444 87 87 87 88 88 87 89 91 91 92 92 93 95 94 95 96 96 96	1 42 44 47 48 52 54 58 59 62 67 69 71 77 80 82 85 88 91 95 99 9101 104	z == 1,1683 1,1774 1,1863 1,1774 1,1864 1,2945 1,2156 1,2220 1,2415 1,2506 1,2694 1,2694 1,2788 1,2885 1,2975 1,3471 1,3268 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664 1,35664	899 900 91 91 91 92 92 93 95 95 96 96 96 96 97 98 98 98 99 99	008 42 45 47 50 55 57 59 62 67 69 73 77 80 84 86 88 91 94 94 100 105 106 106 106 106 106 106 106 106	z == 1,1727 4,1819 4,1911 1,2007 4,2491 1,2257 4,2475 4,2570 1,2667 4,2763 1,2861 4,2958 1,5055 1,5056 1,5355 1,5656 1,5758 1,5860 1,5758 1,5860 1,5758 1,5866	92 92 92 95 95 95 96 94 96 98 97 98 97 98 99 100 404 401 402 402	0008 45 45 47 49 52 54 57 60 62 67 70 72 76 81 85 87 89 92 95 91 100 100 100 100 100 100 100	Z = 4,1770 4,1864 4,1955 4,2045 4,245 4,245 4,245 4,245 4,245 4,2655 4,275 4,2655 4,275 4,2656 4,5558 4,3444 4,545 4,3564 4,558 4,3444 4,545 4,5667 4,5754 4,5855 4,3664 4,472	94 94 95 96 96 96 97 97 97 98 98 99 99 90 100 401 401 402 402 402 404 404 404 405	4: 44 5: 5: 5: 5: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6: 6:
Vo 0,00 0,03 0,10 0,20 0,25 0,50 0,55 0,40 0,55 0,60 0,55 0,60 0,60 0,70 0,70 0,80 0,90 0,95 1,00 0,95 1,00 1,05	z= 4,1643 4,1750 1,1817 4,1906 4,1995 4,2082 1,2170 4,2261 4,2551 4,1442 4,2553 1,2747 4,2809 1,2905 1,3089 1,3183 4,3278 1,3575 1,3669 1,3566 1,3789	0,444 87 87 87 88 88 88 88 91 91 92 92 93 95 95 95 96 96 96 98 97	1 42 44 47 48 52 54 58 59 62 67 74 77 78 0 82 85 88 94 95 69 99 101	z == 1,1683 4,1774 4,1864 4,1874 4,1864 4,2166 4,2228 4,2415 4,2506 4,2694 4,2788 4,2887 4,2507 4,3644 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664 4,3664	899 900 911 912 923 935 944 944 945 966 966 969 988 988 999 9100	42 45 47 50 52 55 57 59 62 64 67 69 75 77 80 88 88 91 94 100 405	z == 1,1727 4,1819 1,1911 1,2004 1,2097 1,2491 1,2579 1,2475 1,2567 1,2667 1,2667 1,2661 1,2958 1,5153 1,5153 1,5556 1,3755 1,3556 1,3758 1,3656 1,37860 1,3656	92 92 95 95 96 97 96 98 97 98 99 100 401 401 402 402 403 403	43 45 47 49 52 54 57 60 62 67 70 72 81 85 87 89 92 95 400 400 400 400 400 400 400 400 400 40	Z=- 4,1770 4,1864 4,1955 4,2149 4,2245 4,2245 4,2245 4,2459 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,2853 4,2754 4,3864 4,3864 4,3864 4,3864 4,3860 4,4066	94 94 95 96 96 97 97 97 98 98 99 99 100 404 404 404 404 404 405 406 406	44 44 55 56 66 67 77 77 77 88 88 99

Pour		0.10			0.10	7.5		0.50				
ord.	z =			2=			the same and the	0,50		z =		
Vo	15(xV)	D Vo	D. Z	us(xV)	D Vo	D. Z	$\mathfrak{V}(xV)$	D Vo	D. Z	$\mathfrak{V}_{\mathbf{b}}(xV)$	D Vo	D. Z
0,00	1,1812	97	45	1,4855	99	43	1,1898	101	45	1,1941	104	44
0,03	1,1909	97	45	1,1954	100	48	1,1999	101	46	1,2045	105	47
0,10	1,2006	97	48	1,2054	99	47 51	1,2101	103	30	1,2150	104	48
0,20	1,2204	98	53	1,2153	101	53	1,2307	103	53	1,2254	106	51
0,25	1,2300	99	55	1,2355	104	36	1,2411	104	85	1,2560	106	55 56
0,50	1,2399	99	58	4,2457	102	58	1,2515	104	58	1.2575	107	59
0,55	1,2499	100	60	1,2559	102	61	1,2620	105	61	1,2684	108	64
0,40	1,2600	101	62	1,2662	104	64	1,2726	106	63	1,2789	109	64
0,43	1,2701	101	65	1,2766	104	66	1,2832	107	66	1,2898	109	66
0,55	1,2802	102	74	1,2975	105	71	1,3046	107	71	1,3007	110	69 72
0,60	1,3007	103	73	1.5080	105	74	1,3454	108	74	1,5228	111	75
0,65	1,3110	103	76	1,5186	106	77	1,3263	109	77	1,3540	112	77
0,70	1,3213	103	79	1,3292	106	80	1,3572	109	79	4,5451	111	84
0,75	1,3317	105	82	1,5399	108	85	1,3482	110	82	1,5564	115	84
0,80	1.3528	106	85	1,5507	108	85	1,3392	111	83	1,3677	114	86
0,90	1,3528	105	90	1,3723	108	92	1,3815	112	94	1,5791	115	99
0,95	1,5740	107	93	1,3833	110	94	1,3927	112	94	1,4021	113	95
1,00	1,3847	107	96	1,5945	110	97	1,4040	113	97	1,4137	116	97
4,05	1,5954	107	98	1,4052	111	100	1,4132	112	100	1,4252	117	101
1,10	1,4062	109	101	1,4163	115	103	1,4266	115	103	1,4569	119	104
1,15	1,4171	108	105	1,4276	111	100	1,4581	115	107	1,4488	117	107
1,20	1,4279	110	108	1,4506	115	112	1,4496	116	112	1,4605	119	110
1,50	1,4500	111	114	1,4614	114	115	1,4729	117	114	1,4843	119	415
Pour	z = 0.524	1 Di	f. 68	z=0,334	o Di	f. 68	1000	o Di	f. 69		9 Di	-
3	Correction			Correctio	n 0,0		Correctio			Correction		
Vo	z=	0,52		z=	0,53		z =	0,54		z =	0,5	5
0,00	4.1985		43	1,2028		44	1,2072	500	44	1,2116		44
0,05	1,2092	107	46	1,2158	110	46	1,2184	111	46	1,2230	114	46
0,10	1,2198	107	48	1,2246	110	49	1,2295	115	49	1,2344	115	20
0,15	1,2505	108	51	1,2556	111	52	1,2408	113	51	1,2459	116	52
0,25	1,2513	109	54	1,2467	111	54	1,2521	114	54	1.2575	117	55
0,50	1,2652	110	58	1,2690	112	60	1,2750	115	59	1,2809	117	60
0,55	1,2742	110	61	1,2805	113	62	1,2865	115	62	1,2927	118	65
0,40	1,2855	111	64	1,2917	114	65	1,2982	116	64	1,5046	120	66
0,45	1,2964	112	67	1,5034	115	67 70	1,3098	118	68 70	1,5166	120	69
0,55	1,5076	113	70	1,3146	116	70	1,5216	119	70	1,5408	122	79 74
0,60	1,5303	114	75	1,3378	116	75	1.3453	118	76	1,3529	191	78
0,65	1,3417	114	78	1,3495	117	79	1,5574	121	78	1,3689	123	80
0,70	1,3532	116	80	1,3612	117	82	1,3694	120	82	1,5776	124	83
0,75	1,3648	115	85	1,3731	119	85	1,3816	121	84	1,5900	124	86
0,80	1,3763	117	87 89	1,5850	119	87 91	1,3957	123	94	1,4025	126	89
0,90	1,3880	118	92	1,3969	121	91	1,4060	123	94	1,4151	126	94
0,95	1,4116	118	95	1,4211	121	96	1,4507	124	97	1,4404	127	98
1,00	1,4254	118	99	1,4333	122	99	1,4432	125	100	1,4552	128	101
1,05	1,4553	119	102	1,4455	122	102	1,4557	125	104	1,4661	129	104
1,10	1,4475	122	105	1,4578	124	106	1,4684	127	106	1,4790	130	108
1,20	1,4393	120	111	1,4702	124	1	1,4811	127	113	1,4920	131	111
1,25	1,4715	122	114	1,4826	125	112	1,4938	128	116	1,5051	131	114
1,50	1,4958	121	117	1,5075	124	118	1,5193	127	119	1,5312	130	118
Pour	= 0,554	8 Di	f. 68	z=0,558	6 Di	f. 69		5 Di	f. 69	= 0,579		$\overline{}$
5	Correctio			Correction			Correction			Correctio	n 0,0	

Pour ord.	5 =	0,56		z=	0,57		3 =	0,58	3	3=	0,59	
Vo				$\mathfrak{V}(x\mathrm{V})$	B Vo	D. 2	$v_{\delta}(xV)$	D Vo	D. 2	$\mathfrak{w}(xV)$	D Vo	D. 2
0,00	1,2160	116	43	1,2205	118	48	4,2250	120	45	1,2295	125	45
0.05	1,2276	118	47	1,2525	120	47 50	4,2370	123	48 54	1,2418	126	49
0,10	1,2394	117	49 53	1,2443	121	52	1,2493	123	55	1,2544	125	50
0,20	1,2630	119	55	1,2685	121	35	1.2740	124	56	1,2796	127	56
0,25	1,2749	119	58	1,2807	122	58	1,2865	125	58	1,2923	127	59
0,50	1,2869	120	60	1,2929	122	61	1,2990	123	61	1,5051	128	62
0,55	1,2990	121	63	1,3053	124	64	1,5117	127	64	1,3184	150	64
0,40	1,3112	125	66	1,5178	126	66	1,5244	129	67	1,5511	131	67
0,45	1,3235	125	69 72	1,3304	126	69 72	1,3373	129	69 72	1,3442	152	70
0,50	1,5558	124	74	4,5430 4,5556	126	75	4,3502 4,5654	129	75	1,5574	152	75
0,60	1,5607	125	76	1,5685	127	79	1.5762	131	78	1.5840	134	79
0,65	1,3752	125	80	1,3812	129	81	1,5895	131	85	1,3976	136	80
0,70	1,3859	127	83	1,3942	130	84	1,4026	133	84	1,4110	134	85
0,75	1,5986	127	86	1,4072	131	87	1,4159	133	88	1,4247	137	87
0,80	1,4114	128	89	1,4203	152	90	1,4293	455	91	1,4584	157	90
0,85	1,4242	150	95	1,4355	135	93 96	1,4428	156	93 96	1,4524	159	94
0,95	1,4502	130	100	1,4468	134	99	1,4701	137	99	1,4800	140	100
4,00	1,4655	131	102	4,4755	133	102	4.4837	136	103	1.4940	140	104
1,05	1,4765	132	105	1,4870	135	106	1,4976	159	106	1,5082	142	107
4,10	1,4898	155	108	1,5006	136	109	1,5115	159	109	1,5224	142	110
1,15	4,5034	154	111	1,5142	138	115	4,5255	140	112	4,5567	145	114
4,20	1,5165	435	115	1,5280	158	445	1,5595	142	117	1,5512	145	117
1,25	1,5500	134	118	1,5418		119	4,5537 4,5679	142	120	4,5657	145	120
-		-		_	-	-	The second of th	-	_		-	_
Pour	correction			correction		. 69 018	t = 0,393 (Correction	Di		Correction		f. 69 020
Vo	z=	0,60		z=	0,61		z=0,62			z=	0,63	
0,00	1,2340	127	46	4,2386		45	1,2431	132	46	1,2477	1.00	47
0,05	1,2467	127	48	1,2515	129	48	1,2565	133	49	1,2612	133	49
0,10	1,2594	128	54	1,2645	131	54	1,2696	154	51	1,2747	157	52
0,15	1,2852	130	56	1,2776	132	56	1,2850	134	57	1,2884	137	57
0,25	1,2982	130	50	1,3041	133	59	1,2304	136	58	1,5021	137	62
0,30	1,5113	131	62	1,3175	134	62	1,3237	157	62	1,3299	141	53
0,55	1,5245	432 453	65	1,3510	135	64	1,3374	137	66	1,3440	141	65
0,40	1,5378	454	67	1,3443	137	68	1,3513	139	68	1,5581	143	69
0,45	1,5512	135	70	1,5582	136	70	4,3652	141	72	1,5724	143	71
0,50	1,3647	155	74	1,3718	140	75	1,3935	142	74	1,5867	145	75
0,60	1.3949	137	78	1.3997	139	80	1.4977	142	80	1,4157	145	84
0,65	1,4056	157	82	1,4138	141	83	1,4221	144	83	1,4504	146	84
0,70	1,4193	159	85	1,4280	142	85	4,4365	144	87	1,4452	148	87
0,75	1,4334	140	88	1,4422	143	89	1,4511	146	90	1,4601	149	90
0,80	1,4474	141	94	4,4565	145	92	1,4657	148	93	1,4750	454	93
0,85	1,4615	142	95	1,4710	145	95	1,4805	148	96	1,4901	151	96
0,95	1,4757	143	101	4,4855	146	101	1,5102	149	105	1,5052	153	100
1,00	1,5044	144	105	1,3149	148	105	1,5254	152	105	1,5559	154	106
1,05	1,5189	145	107	1,5296	147	108	1,5404	150	109	1,5513	154	110
1,10	1,5554	145	111	1,5445	149	111	1,5556	152	113	1,5669	456 457	113
1,15	1,5481	148	114	4,5595	154	113	1,5710	155	116	1,5826	158	116
1,20	1,5629	148	117	1,5746	152	119	4,5865	455	119	1,5984	159	120
1,25	1,5777	149	121	1,5898	153	122	1,6020	156	125	1,6143	159	123
Pour	= 0,406	n Tot	f. 69		o To	f. 68	_	e The			Di	
3	Correction			Correction			correction		f. 69 022	correction		

Pour ord.	z =	0,64		z=	0,65	5	z ==	0,60	3	z =	0,67	
Vo	$\mathfrak{B}(xV)$	D Vo	D. Z	$\mathfrak{B}(xV)$	D Vo	р. 2	$\mathfrak{B}(xV)$	D Vo	D. Z	$\mathfrak{B}(xV)$	D Vo	D. 3
0,00	1,2524	137	46	1,2570	140	47	1,2617	142	47	1,2664	145	47
0,05	1,2661	138	49	1,2710	141	49	1,2750	144	50	1,2809	146	50
0,40	1,2799	159	52	1,2854	142	52	1,2905	143	52 55	1,2955	148	55
0,15	1,2938	140	15.3	1,2993	145	1.50	1,5048	146	177.7	1,3103	149	1.52.5
0,20	1,5078	142	58 60	1,3136	144	64	1,3194	147	61	1,5402	150	58 64
0,25	1,5220	142	63	1,5280	145	63	1,3488	147	65	1,3553	454	64
0,35	1,3505	145	67	1.3572	147	66	1,3658	450	67	1,5705	152	67
0.40	1,3650	145	69	1,3719	147	70	1,5789	151	69	1,3858	153	74
0,45	1,3795	145	72	1,3867	148	75	1,3940	151	73	1,4013	135	73
0,50	1,3942	147	75	1,4017	151	76	1,4093	153	76	1,4169	156	76
0,55	1,4090	148	78	1,4168	151	78	1,4246	433	79	1,4325	159	79
0,60	1,4238	130	81	1,4519	153	82	1,4401	156	85	1,4484	159	82
0,65	1,4388	151	84	1,4472	154	88	1,4557	157	86 89	1,4645	160	86
0,70	1,4539	152	87 90	1,4626	455	92	1,4714	159	92	1,4805	162	92
	7 - 67 - 57 - 57	152	94	1,4957	156	95	1,5052	159	93	1.5127	162	96
0,80	1,4845	154	97	1,5094	157	98	1,3032	160	99	1,5127	164	100
0,90	1,5152	155	100	1,3252	158	102	1,5354	162	102	1,5456	165	109
0,95	1,5508	156	104	1,5412	160	104	1,5516	162	106	1,5622	166	106
1,00	4,5465	158	107	1,5572	161	108	1,5680	165	110	4,5790	167	109
4,05	1,5623	158	110	1,5733	165	112	1,5845	167	112	1,5957	170	113
1,10	1,5782	160	114	1,5896	164	116	1,6012	167	145	1,6127	171	117
1,15	1,5942	162	118	1,6060	165	119	1,6179	168	193	1,6298	172	10.50
1,20	1,6104	462	121	1,6225	166	122	1,6347	170	125	1,6470	173	123
1,25	1,6266	164	128		167	129	1,6687	170	150	1,6817	174	154
1,50 Done		- TO:	_	1,6558	Th.	_		o Thi	_		4 Di	_
Pour 3	z = 0,454/ Correction		f. 69	z - 0.441 Correction		f. 69	z = 0,448 Correctio	2 Di	f. 69	z=0,455 Correctio		f. 6
Pour	z = 0,454	1 0,0	f. 69 023	3 - 0.444	0,0	f. 69 024	z = 0,448	n 0,0	f. 69 025	z=0,455	n 0,0	f. 6
Pour 3 Vo	z = 0,454/ Correction	0,68	f. 69 023	z = 0.4441 Correction z = 1,2758	0,69	f. 69 024	z = 0,448 Correctio	0,70	f. 69 025	z = 0,455 Correctio z == 0	0,74	f. 6 026
Vo 0,00	z = 0,454/ Correction z == 1,2711 1,2859	0,68	f. 69 023 47 50	z = 0.4441 Correction z = 1,2758 1,2909	0,69	6. 69 024 48 51	z = 0,448 Correction z == 1,2806 1,2960	0,70	f. 69 025 48 50	z=0,455 Correctio z=0 1,2854 1,5010	0,71	f. 6 026 48 51
Vo 0,00	z = 0,454 Correction z == 1,2711 1,2859 1,5008	0,68	f. 69 025 47 50 55	z = 0.4443 Correction z = 1,2758 1,2909 1,5061	0,69	6, 69 024 48 51 55	z = 0,448 Correctio z == 1,2806 1,2960 1,3114	0,70	f. 69 025 48 50 54	z=0,455 Correctio z=0 1,2854 1,5010 1,5168	0,74	f. 6 026 48 51
Vo 0,00 0,05 0,10 0,15	z = 0,454 Correction z == 1,2711 1,2859 1,5008 1,5158	0,68	6. 69 023 47 50 55 56	z = 0,444: Correction z == 1,2758 1,2909 4,5064 1,5244	0,69	48 51 55 57	z = 0,448 Correctio z == 1,2806 1,2960 1,5114 1,3271	0,70	f. 69 025 48 50 54 56	z=0,455 Correctio z=	0,71	48 51 54 57
Pour 3 Vo 0,00 0,05 0,10 0,13 0,20	z=0,454/ Gorrection z== 1,2714 1,2859 1,5008 1,5158 1,5310	0,68	47 50 55 56 59	z = 0.444: Correction z == 1,2758 1,2909 1,5061 1,5214 1,3569	0,69	48 51 55 57	z = 0,448 Correctio z == 1,2806 1,2960 1,3114 1,3271 1,3428	0,70 0,70 454 454 457	f. 69 025 48 50 54 56 59	z=0,455 Correctio z=0 1,2854 1,5010 1,5168 1,5327 1,3487	0,71 156 158 159	48 51 54 57
Pour 3 Vo 0,00 0,05 0,10 0,15 0,20 0,25	z=0,454/ Gorrection z== 1,2714 1,2859 1,5008 1,5158 1,5340 1,5465	0,68 148 149 150 152 153 154	6. 69 023 47 50 55 56	z = 0.444: Correction z = 1,2758 1,2909 4,5061 1,5214 1,3569 1,5525	0,69 0,69 151 152 153 155 156 157	48 51 55 57	z = 0,448 Correctio z == 1,2806 1,2960 1,5114 1,5274 1,3428 1,3387	0,70 0,70 454 454 457 457 459 460	f. 69 025 48 50 54 56 59 62	z=0,455 Correctio z=	0,71 156 158 159 160 162 163	48 51 54 57 60
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50	z=0,454/ Correction z== 1,2714 1,2859 1,5008 1,5158 1,5310 4,5463 1,5617	0,68 148 149 150 152 153 154	47 50 53 56 59 62	z = 0.444: Correction z == 1,2758 1,2909 1,5061 1,5214 1,3569	0,69 0,69 151 152 153 155 156 157 158	48 51 55 57 59 62	z = 0,448 Correctio z == 1,2806 1,2960 1,3114 1,3271 1,3428	0,70 0,70 454 454 457 457 459 460 464	f. 69 025 48 50 54 56 59	z=0,455 Correctio z=0 1,2854 1,5010 1,5168 1,5327 1,3487	0,71 156 158 159 160 162 163 164	48 51 57 60 63
Vo 0,00 0,05 0,10 0,25 0,50 0,55 0,55	z=0,454/ Correction z== 1,2714 1,2859 1,5008 1,5158 1,5310 4,5463 1,5617 1,5772	148 149 150 152 153 154 155	47 50 53 56 59 62 65	z - 0.444; Correction z = 1,2758 1,2909 1,5061 1,5244 1,3544 1,3569 1,5525 1,3682	0,69 0,69 151 152 155 155 156 157 158 159	48 51 55 57 59 62 65	z = 0,448 Correctio z == 1,2806 1,2960 1,3114 1,3271 1,3428 1,3387 1,3747	0,70 0,70 454 454 457 457 459 460 464 465	f. 69 025 48 50 54 56 59 62 65	z=0,455 Correctio z=	0,71 156 158 159 160 162 163 164 166	48 54 54 57 60 63 66
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45	z=0,454/ Correction z== 1,2714 1,2859 1,5008 1,5158 1,5310 4,5463 1,5617	148 149 150 152 155 154 155 157	6. 69 025 47 50 53 56 59 62 65 68 70	z = 0.444: Correction z = 1,2758 1,2909 1,5064 1,5214 1,3569 1,5525 1,5682 1,5840 1,4999 1,4160	0,69 0,69 151 152 155 155 156 157 158 159 161	48 51 55 57 59 62 65 68 72 74	z = 0,448 Correctio z = 1,2806 4,2960 4,344 4,3274 4,3274 4,3587 4,3747 4,3908 4,4074 4,4254	0,70 0,70 454 454 457 457 460 464 465 465	f. 69 025 48 50 54 56 59 62 65 68 71	z=0,455 Correctio z=	0,71 156 158 159 160 162 163 164 166 167	48 51 54 57 60 63 66 69
Vo 0,00 0,05 0,15 0,20 0,25 0,50 0,55 0,40 0,45 0,50	z = 0,454/ Correction z = 1,2744	0,68 148 149 150 152 153 154 155 157 157	6. 69 025 47 50 53 56 59 62 65 68 70 74	z - 0,444; Correction z = 1,2758 1,2909 4,5064 4,5244 4,3569 4,5825 4,5840 4,4999 4,4169 4,4522	0,69 0,69 151 152 155 155 156 157 158 159	48 51 55 57 59 62 65 68 72 74 78	z = 0,448 Correctio z = 1,2806 4,2960 4,3414 4,3274 4,3427 4,3428 4,3747 4,3908 4,4071 4,4234 4,4400	0,70 0,70 454 454 457 457 459 460 464 465 465	f. 69 025 48 50 54 56 59 62 65 68 71 75 77	z=0,455 Correctio z=	0,71 156 158 159 160 162 163 164 166	48 51 54 57 60 63 66 69 72 75
Pour 3 Vo 0,00 0,05 0,15 0,20 0,25 0,50 0,55 0,40 0,45 0,55 0,55	x=0,454/Correction x= 1,2711 1,2859 1,5088 1,5188 1,5465 1,5465 1,5677 1,5772 1,5929 1,4085 1,4245 1,4404	148 149 150 152 155 154 155 157	47 50 53 56 59 62 65 68 70 74 77 80	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3529 4,5820 4,5840 4,4840 4,4999 4,4160 4,4322 4,44484	0,69 0,69 154 155 155 156 157 158 159 161 162	48 51 55 57 59 62 68 72 74 78 82	z = 0,448 Correctio z = 1,2806 4,2960 4,5414 4,5274 4,5274 4,5287 4,5747	0,70 0,70 454 454 457 457 460 464 465 465	48 50 54 56 59 62 65 68 71 75 77 81	z=0,455 Correctio z=	0,71 156 158 159 160 162 163 164 166 167 168	48 51 52 60 63 66 69 72 78 81
Pour 3 Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45 0,55 0,60	z = 0,454/ Correction z = 4,2744 4,2859 4,3088 4,3540 4,3647 4,3772 4,3792 1,4086 4,4243 4,4404 1,4566	0,68 148 149 150 152 153 154 155 157 159 159	47 50 53 56 59 62 65 68 70 74 77 80 84	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3569 4,5525 4,5682 4,5840 4,4999 4,4160 4,4752 4,4484 4,4650	0,69 0,69 154 155 155 156 157 158 159 161 169	48 51 55 57 59 62 65 68 72 74 78 82 85	z = 0,448 Correction z = 1,2806 4,2960 4,3444 4,3244 4,3747 4,3747 4,3747 4,3747 4,400 4,4400 4,4566 4,4735	0,70 0,70 454 454 457 457 459 460 464 465 465 466	48 50 54 56 59 62 65 68 74 75 77 81	z=0,455 Correctio z=	0,71 156 158 159 160 162 163 164 166 167 168	48 51 52 60 63 66 69 72 78 81
Pour 3 Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,50 0,40 0,55 0,40 0,55 0,60 0,65	z = 0,454/ Correction z =	0,68 148 149 150 152 155 154 155 157 157 159 169	f. 69 925 47 50 55 56 59 62 65 68 70 74 77 80 84 86	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3568 4,5525 4,5682 4,4660 4,4792 4,4484 4,460 4,4522 4,4845	0,69 0,69 154 155 155 155 156 157 158 169 169 169 169 166 165	48 51 55 57 59 62 63 64 68 72 74 78 82 83	z = 0,448 Correctio z = 1,2806 4,2960 4,3444 4,3244 4,344 4,344 4,344 4,344 4,344 4,400 4,445 4,4755 4,4902	0,70 0,70 154 154 157 157 159 160 165 166 166 167 169 171	48 50 54 56 56 62 65 68 74 75 77 81 85 88	z=0,455 Correctio z=-1 1,2854 1,5010 4,5468 1,5527 4,3649 4,3812 4,3976 1,4142 4,4509 1,4477 1,4647 1,4848 1,4990	0,74 156 158 159 160 163 164 166 467 168 170 171	48 51 52 60 63 66 69 72 78 84 88
Vo 0,00 0,05 0,10 0,20 0,25 0,35 0,40 0,45 0,55 0,60 0,65 0,60	x=0,454/Correction x= 1,2711 1,2859 1,3088 1,3188 1,3510 4,5465 1,3647 1,3772 1,3929 1,4084 1,4245 1,4246 1,4266 1,4292 1,4892	1 0,00 0,68 148 149 150 152 153 154 157 157 169 169 163 163 163 163	47 50 53 56 59 62 65 68 70 74 77 80 84	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3525 4,5840 4,4840 4,4999 4,4160 4,4522 4,4484 4,4630 4,4845 4,4845	0,69 0,69 154 153 155 155 155 156 157 169 169 169 169 169 169 169 169 169 169	48 51 55 57 59 62 65 68 72 74 78 82 85	z = 0,448 Correction z = 1,2806 4,2960 4,3444 4,3244 4,3747 4,3747 4,3747 4,3747 4,400 4,4400 4,4566 4,4735	0,700 154 154 157 157 159 160 464 165 166 166 167 169 171 174	48 50 54 56 59 62 65 68 74 75 77 81	z=0,455 Correctio z=	0,74 156 158 159 169 162 163 164 164 167 168 171 172 173 173	48 51 52 60 63 66 69 72 78 84 88
Pour 3 Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,55 0,40 0,55 0,50 0,55 0,60 0,65 0,70 0,75	x=0,454/Correction x= 1,2714 1,2859 1,3008 1,3405 1,5465 1,5465 1,5465 1,5472 1,5929 1,4086 1,4245 1,4245 1,4245 1,4245 1,425	148 149 150 152 153 154 157 157 157 159 162 163 163 163 163	6, 69 9925 47 50 53 56 59 62 65 68 70 74 77 80 84 86 90	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,524 4,5525 1,5840 4,4999 4,4160 4,4322 1,4484 1,4650 4,4815 4,4815	0,69 154 152 153 155 155 156 157 158 159 161 162 166 166 167 168 167	48 51 55 57 59 62 63 64 68 72 74 78 82 83 87 91	z = 0,448 Correctio z = 1,2806 4,2960 4,3414 4,3214 4,3214 4,3547 4,3747 4,3908 4,4074 4,4400 4,4400 4,4566 4,4733 4,4902 4,4902 4,4907	0,700 154 154 157 157 159 160 464 165 166 166 167 169 171 174 174	48 50 54 56 59 62 65 68 71 77 77 81 85 88	z=0,455 Correctio z=- 1,2884 1,5010 1,5168 4,3527 1,3487 1,5812 1,3976 1,4142 4,4509 1,4477 1,4647 1,4818 1,4936 1,5163	0,74 156 158 159 160 162 163 164 166 167 168 171 172 173 175 176	48 51 52 60 65 66 69 72 78 81 84 88 94 92
Pour 3 Vo 0,00 0,05 0,10 0,15 0,20 0,55 0,50 0,45 0,45 0,65 0,60 0,65 0,70 0,75 0,80	z=0,454/ Correction z= 1,2714 4,2859 1,5008 1,5108 4,5463 4,5647 4,5799 1,4086 1,4245 1,4456 1,4729 1,4892 1,5057 1,5225	148 149 150 152 153 154 157 157 159 162 163 163 166 166	6, 69 9923 47 50 53 56 59 62 65 68 70 77 77 80 84 86 90 93	z - 0,444; Correction z = 1,2758 1,2906 4,5969 4,5569 4,5582 4,5840 4,4999 4,4160 4,4522 4,4484 4,4650 4,4845 4,4845 4,5450 4,5450 4,5450 4,5450 4,5450	0,69 154 152 153 155 155 156 157 158 159 161 162 162 166 167 168 170	48 51 55 57 59 62 65 68 72 74 82 83 87 91	z = 0,448 Correctio z = 1,2806 4,2960 4,5414 4,5424 4,5424 4,5424 4,5444 4,5444 4,5444 4,5445 4,4400 4,4566 4,4735 4,5907 4,5944	0,700 454 454 457 457 457 469 464 465 466 466 467 469 471 473 474	48 50 54 56 59 62 65 68 71 77 77 81 85 88 90 94	z=0,455 Correctio z=- 1,2884 1,3010 1,5168 4,5527 1,3487 1,5812 1,5976 1,4142 4,4509 1,4477 1,4647 1,4647 1,4653 1,5165 1	156 158 159 160 162 163 164 166 167 168 170 171 172 173 175 176 177	48 51 52 60 65 66 69 72 78 81 84 88 94 92 98
Pour 5 Vo 0,00 0,05 0,10 0,20 0,20 0,55 0,40 0,45 0,50 0,65 0,70 0,65 0,70 0,70 0,85 0,80	x=0,454/Correction x= 1,2714 1,2859 1,3008 1,3405 1,5465 1,5465 1,5465 1,5472 1,5929 1,4086 1,4245 1,4245 1,4245 1,4245 1,425	1488 1499 1500 1522 1533 1544 1537 1547 1559 1652 1653 1664 1665 1666 1668 167	47 50 55 62 65 68 70 74 77 80 84 86 90 93 97 99	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3569 4,5840 4,4899 4,4160 4,4322 4,4484 4,4650 4,4815 4,4845 4,5840 4,5820 4,5820 4,5820 4,5662	0,69 154 152 153 155 155 155 157 158 159 161 162 162 163 167 168 170 170 170 170	48 51 55 57 62 66 68 72 74 82 83 87 94 94 94 104	z = 0,448 Correctio z = 1,2806 4,2960 4,5414 4,5424 4,5424 4,5747 4,5908 4,4074 4,4400 4,4566 4,4735 4,4907 4,4544 4,5447 4,5544 4,3447 4,5544 4,3447 4,5566	0,70 454 454 157 157 159 160 163 166 167 169 171 171 173 174 175	48 50 54 55 62 65 68 71 77 77 81 83 88 90 94	z=0,455 Correctio z=- 1,2884 1,3010 1,5168 4,5527 1,3487 1,5812 1,5976 1,4142 4,4509 1,4477 1,4647 1,4647 1,5165 1,5165 1,5358 1,5358 1,5358 1,5358	156 458 459 460 462 463 466 467 468 477 473 475 477 479	48 54 57 60 65 66 69 72 78 84 88 88 94 98 103 103 103 103 103 103 103 103 103 103
Vo 0,00 0,05 0,10 0,20 0,25 0,50 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,50 0,45 0,75 0,40 0,75 0,40 0,75 0,40 0,75 0,40 0,45 0,75 0,40 0,45 0,45 0,75 0,40 0,45 0,	z=0,454/Correction z= 1,2744 1,2859 1,5008 1,5453 1,5463 1,5463 1,5463 1,4086 1,4245 1,4404 1,456 1,4759 1,4892 1,5327	148 149 150 152 155 154 155 157 159 162 165 165 166 166 166 166 167	6. 69 90 47 50 53 62 65 68 70 74 77 77 80 84 86 90 93 97 99 9404 407	z - 0,444; Correction z = 1,2758 1,2906 4,5969 4,5569 4,5582 4,5840 4,4999 4,4160 4,4522 4,4484 4,4650 4,4845 4,4845 4,5450 4,5450 4,5450 4,5450 4,5450	0,69 154 153 155 155 155 155 155 169 169 169 169 169 169 170 170 170 170 170 170	48 51 55 57 69 62 66 68 72 74 78 82 83 87 94 94	z = 0,448 Correctio z = 1,2806 4,2960 4,3961 4,3414 4,3428 4,3587 4,5474 4,5908 4,4071 4,4234 4,4400 4,4755 4,4902 4,5075 4,5244 4,3447 4,5594 4,3746 4,3746	0,700 454 454 457 457 457 460 464 465 466 467 469 471 473 474 475 474	48 50 54 55 62 65 68 71 85 88 90 94 100 104 109	z=0,455 Correctio z=-1 4,2854 4,5010 4,5465 4,5527 4,3649 4,3639 4,4509 4,4509 4,4509 4,4647 4,6647	156 158 159 160 162 163 164 166 167 168 170 171 172 173 175 176 177	48 54 54 57 60 63 66 69 72 73 84 84 98 98 103 103
Pour 3 Vo 0,00 0,05 0,10 0,25 0,50 0,55 0,40 0,55 0,60 0,55 0,60 0,65 0,70 0,73 0,80 0,90 0,95 4,00	x=0,454/Correction x= 1,2714 1,2859 1,5008 1,5108 1,5108 1,5463 1,5463 1,5463 1,5463 1,4086 1,4245 1,4086 1,4245 1,4086 1,4729 1,4892 1,4892 1,5057 1,5225 1,5394 1,5398	0,688 148 149 150 152 153 154 157 157 159 162 163 165 166 168 168 167 170	6. 69 923 47 50 53 53 62 65 68 70 77 80 93 97 99 94 40 410	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,3549 4,5525 4,5682 4,5840 4,4999 4,4160 4,4522 4,4484 4,4845 4,4845 4,5450 4,5450 4,5450 4,5450 4,5450 4,5450 4,5450 4,5450 4,5450 4,5450 4,5550 4,5490 4,56009	0,69 154 152 153 155 155 155 155 156 169 169 169 169 169 169 169 170 170 170 170 170 170 170 170 170 170	48 51 55 57 59 62 65 68 72 74 78 82 85 87 94 97 404 104 107	z = 0,448 Correctio z = 1,2806 4,2960 4,344 4,3547 4,3747 4,3548 4,3587 4,4071 4,4254 4,4400 4,4566 4,4755 4,4902 4,5075 4,5244 4,5447 4,5594 4,5766 4,5942 4,6420	0,700 454 455 457 457 457 457 460 461 465 466 466 467 469 471 473 474 475 474 475 476	48 50 54 55 62 65 65 77 77 81 83 88 90 94 97 400 410 411	z=0,455 Correctio z=-1 4,2854 4,3010 4,5468 4,5527 4,3487 4,3649 4,5812 4,3976 4,4477 4,4647 4,4848 4,4990 4,4477 4,4848 4,4990 4,5477 4,5654 4,5538 4,5538 4,5536	0,74 156 158 159 160 162 163 164 163 164 163 174 172 173 175 176 177 179 181	48 54 54 57 60 63 66 69 72 78 84 84 98 98 103 103 103 103 103 103 103 103 103 103
Pour 3 Vo 0,00 0,00 0,00 0,10 0,10 0,20 0,50 0,50 0,50 0,50 0,50 0,50 0,70 0,7	x=0,454/Correction z= 1,2744 1,2859 1,5008 1,5463 1,5463 1,5463 1,5647 1,5929 1,4086 1,4245 1,4404 1,4566 1,4729 1,4892 1,5527 1,5227 1,5227 1,5228 1,5899 1,6070	148 149 150 152 155 154 155 157 159 162 165 165 166 166 166 166 167	6. 69 923 3 47 50 53 53 62 65 68 68 70 77 77 80 84 86 90 93 97 99 404 407 410 414	z - 0,444 Correction z = 1,2758 1,2906 1,5061 1,5244 1,3569 1,3582 1,3682 1,3682 1,4840 1,4999 1,4160 1,4845 1,4982 1,4982 1,5450 1,5662 1,5855 1,6602 1,6662 1,6662 1,6662	0,69 154 153 155 155 155 155 155 169 169 169 169 169 169 170 170 170 170 170 170	48 51 55 57 69 62 65 68 82 87 94 97 404 407 444 415	z = 0,448 Correctio z = 1,2806 4,2960 4,3414 4,3214 4,3224 4,3747 4,3908 4,4074 4,4400 4,4566 4,4733 4,4907 4,5244 4,3747 4,5244 4,3766 4,5942 4,6120 4,6290	0,700 454 454 457 457 457 460 464 465 466 467 469 471 473 474 475 474	6. 69 025 48 50 54 56 65 68 71 77 77 81 83 88 90 94 97 400 404 404 414 415	z=0,455 Correctio z=- 1,2854 1,5016 1,5168 1,5527 1,3487 1,5812 1,3976 1,4442 1,4597 1,4647 1,4647 1,5165 1,5538 1,5538 1,5544 1,5691 1	0,74 156 158 159 160 162 163 164 166 167 168 170 171 172 173 175 176 177 181 180	48 54 57 60 63 666 69 72 75 84 88 88 94 95 95 10
Pour 3 Vo 0,00 0,05 0,40 0,55 0,40 0,55 0,40 0,55 0,60 0,75 0,70 0,75 0,80 0,80 0,80 0,80 0,80 0,80 0,80 0,8	x=0,454/Correction x= 1,2714 1,2859 1,3088 1,3188 1,3510 4,5463 1,5403 1,5471 1,5772 1,5929 1,4086 1,4248 1,4248 1,4248 1,4248 1,4256 1,4248 1,4288 1,5285 1,5285 1,5285 1,5285 1,5281 1,5281 1,5281	1 0,068 148 149 150 152 153 154 155 157 159 162 163 166 168 167 170 171	6. 69 50 50 50 50 50 50 50 50 50 62 68 70 74 77 78 80 84 86 90 90 90 40 40 40 40 40 40 40 40 40 4	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3569 4,5840 4,4999 4,4160 4,4322 4,4484 4,4650 4,4815 4,4845 4,5450 4,5450 4,5450 4,5450 4,5661	0,69 154 152 153 155 156 157 158 159 156 157 158 159 166 167 168 170 170 172 173 174 175	48 51 55 55 57 59 62 68 72 74 78 82 83 87 91 94 104 107 111 115 118	z = 0,448 Correctio z = 1,2806 4,2960 4,3414 4,3274 4,342 4,3747 4,3908 4,4071 4,4234 4,4400 4,4575 4,5942 4,6420 4,6429 4,6479	0,700 154 154 157 159 160 161 165 166 167 171 171 174 173 174 175 174 175 174 175 174 175 174 175 176 177 177 177 178 179 179 179 179 179 179 179 179	48 50 54 56 59 62 65 68 74 75 77 81 85 88 90 94 100 104 109 111 118	z=0,455 Correctio z=- 1,2884 1,3010 1,5168 4,53527 1,3487 1,5812 1,5976 1,4142 4,4509 1,4477 1,4647 1,4647 1,5165 1,5165 1,5168 1,5169 1,5165 1,5169 1,5165 1,5169 1,6054 1,6054 1,6054 1,6054 1,6054	0,74 156 158 159 160 162 163 164 167 168 170 171 172 173 178 181 180 183 183	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6
Pour 3 Vo 0,00 0,05 0,10 0,20 0,20 0,55 0,50 0,40 0,55 0,60 0,65 0,60 0,65 0,70 0,73 0,80 0,80 1,00 1,10 1,10 1,10 1,11 1,10	x=0,454/Correction x= 1,2714 1,2859 1,3088 1,3108 1,3403 1,3463 1,3413 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,4404 1,4566 1,4729 1,4892 1,4892 1,4893 1,5728 1,5899 1,6074 1,6244 1,6418	1 0,068 148 149 150 152 153 154 155 157 157 157 157 165 165 165 166 168 167 170 171 171	6, 69 925 3 47 50 55 55 55 56 68 70 74 77 80 84 86 90 93 97 99 404 407 414 414 414 414 412	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5245 4,5840 4,4525 4,5840 4,4499 4,4160 4,4484 4,4650 4,4815 4,4884 4,4650 4,5150 4,5520 4,5490	0,69 154 152 153 155 156 157 158 159 161 162 162 166 165 167 170 170 171 173 174 175 177	48 51 55 57 59 62 66 68 72 74 78 82 83 87 94 94 104 107 111 113 118 118	z = 0,448 Correctio z = 1,2806 4,2960 4,2960 4,3144 4,3274 4,3274 4,3747 4,3908 4,4071 4,4234 4,4400 4,4366 4,4735 4,4902 4,5075 4,5244 4,3417 4,5594 4,5420 4,6420 4,6429 4,6429 4,6464	0,700 154 154 157 159 160 165 165 166 166 167 169 171 171 173 176 178 178 178 178 178 178 178 178	6. 69 025 48 50 54 56 62 65 68 71 77 81 85 88 90 94 100 100 111 111 111 111 111 111 111 11	z=0,455 Correctio z=-1 4,2854 4,5010 4,5465 4,5527 4,3649 4,3697 4,442 4,4509 4,44647 4,4647 4,4647 4,4690 4,5691 4,5691 4,5691 4,676 4,6851 4,6851 4,6854 4,6854 4,6854 4,6854	0,74 156 158 159 160 162 163 164 166 167 168 170 171 172 173 175 176 177 179 181 180 183 183	48 51 57 60 65 66 69 72 75 81 84 88 91 105 105 105 115 115 115 115 115 115 11
Pour 3 Vo 0,00 0,05 0,10 0,20 0,25 0,30 0,45 0,30 0,45 0,50 0,60 0,65 0,70 0,85 0,90 0,85 0,90 0,93 4,00 4,03 4,14 4,20	x=0,454/Correction x=	1 0,068 148 149 150 152 153 154 154 157 157 157 157 162 163 166 168 167 170 174 174 174	6. 69 50 53 56 56 58 68 70 74 77 80 84 86 86 90 93 97 99 104 147 147 147 147 147 147 147 14	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5244 4,3569 4,5525 4,5682 4,5840 4,4999 4,4160 4,422 4,4484 4,4630 4,4845 4,982 4,5440 4,5520 4,5490 4,5662 4,8855 4,6009 4,6184 4,6564	0,69 0,69 154 152 153 155 156 156 157 158 156 157 168 170 170 170 171 178	48 51 55 57 59 62 65 68 72 74 74 78 82 83 87 94 97 104 104 114 115 118 118 112 126	z = 0,448 Correctio z = 1,2806 4,2960 4,344 4,3547 4,5747 4,5747 4,4904 4,4753 4,4004 4,4753 4,4902 4,5766 4,5766 4,5764 4,6420 4,6299 4,6479 4,6664	0,700 0,700 154 154 157 157 157 159 166 165 166 167 169 171 174 173 174 175 176 176 177 178 178 178 178 178 178 178 178 178	6. 69 025 48 50 54 56 62 65 68 71 77 81 85 88 90 94 97 400 104 109 111 113 113 112 126	z=0,455 Correctio z=4,2854 1,3010 4,3487 4,3649 4,3812 4,3976 4,4477 4,4647 4,4848 4,4990 4,5165 4,5578 4,5694 4,5694 4,5694 4,6574 4,6654 4,6654 4,6654 4,6654 4,6678	0,74 456 458 458 469 462 463 464 466 467 468 470 471 472 473 475 475 475 476 477 481 481 481 483 483 483 483 484 485 485 485 485 485 485 485	6. 60 0 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Pour 3 Vo 0,00 0,05 0,10 0,20 0,20 0,55 0,50 0,40 0,55 0,60 0,65 0,60 0,65 0,70 0,73 0,80 0,80 1,00 1,10 1,10 1,10 1,11 1,10	x=0,454/Correction x= 1,2714 1,2859 1,3088 1,3108 1,3403 1,3463 1,3413 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,3403 1,4404 1,4566 1,4729 1,4892 1,4892 1,4893 1,5728 1,5899 1,6074 1,6244 1,6418	1 0,068 148 149 150 152 155 154 157 157 159 162 165 166 168 167 170 171 174 174 175	6, 69 925 3 47 50 55 55 55 56 68 70 74 77 80 84 86 90 93 97 99 404 407 414 414 414 414 412	z - 0,444; Correction z - 1,2758 1,2909 4,5064 4,5245 4,5840 4,4525 4,5840 4,4499 4,4160 4,4484 4,4650 4,4815 4,4884 4,4650 4,5150 4,5520 4,5490	0,69 0,69 154 152 153 155 156 156 157 158 156 157 168 170 170 170 171 178 178 179	48 51 55 57 59 62 66 68 72 74 78 82 83 87 94 94 104 107 111 113 118 118	z = 0,448 Correctio z = 1,2806 4,2960 4,2960 4,3144 4,3274 4,3274 4,3747 4,3908 4,4071 4,4234 4,4400 4,4366 4,4735 4,4902 4,5075 4,5244 4,3417 4,5594 4,5420 4,6420 4,6429 4,6429 4,6464	0,700 154 154 157 157 159 166 163 166 167 169 171 174 175 174 175 174 175 174 175 174 175 174 175 174 175 176 177 177 177 177 177 177 177	6. 69 025 48 50 54 56 62 65 68 71 77 81 85 88 90 94 100 100 111 111 111 111 111 111 111 11	z=0,455 Correctio z=-1 4,2854 4,5010 4,5465 4,5527 4,3649 4,3697 4,442 4,4509 4,44647 4,4647 4,4647 4,4690 4,5691 4,5691 4,5691 4,676 4,6851 4,6851 4,6854 4,6854 4,6854 4,6854	0,74 456 458 459 460 462 463 464 466 467 468 470 471 472 473 475 476 477 479 481 481 483 483 486 487	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6

Pour	z=	0,72		z ==	0,73		z =	0.74		z=	0,75	
Vo	100 miles 1000			$\mathfrak{B}(xV)$			B(xV)			A 100 - 1-10 - 1-1		
-	1,2902		48	1,2950		49	1,2999		49	1,5048	19)	49
0,00	1,3064	139	31	1,5412	162	52	1,3164	165	52	1,5246	168	52
0,10	1,5222	464	54	1,5276	164	54	1,3550	166	55	1,5585	169	55
0,45	1,3584	162	57	1,5441	165 166	57	1,3498	168	58	1,5556	171	58
0,20	1,5547	165	60	4,5607	168	60	1,5667	10000	61	1,5728	172	61
0,25	1,3712	165	65	4,5775	169	63	1,5858	171	64	1,5902	176	63
0,50	1,3878	167	66	1,5944	170	66	1,4010	174	67	1,4077	177	68
0,35	1,4045	169	69	1,4114	172	70	1,4184	175	70	1,4254	178	71
0,40	1,4214	170	72	1,4460	174	73	1,4559	177	73 76	1,4452	180	74
0,45	1,4555	174	79	1,4654	174	79	1,4713	177	80	1,4012	184	81
0,55	1,4728	173	82	4,4840	176	83	4,4895	180	85	1,4976	183	84
0,60	1,4902	174	85	1,4987	177	86	1,5075	180	87	1,5160	184	87
0,65	1,5078	176	88	4,5166	179	90	1,5256	185	90	1,5546	186	94
0,70	1,5254	176 179	92	1,5346	182	93	1,5439	185	94	1,5535	187	94
0,75	1,5453	179	95	1,5528	185	96	1,5624	187	97	1,5791	190	98
0,80	1,5612	181	99	1,5711	184	100	1,5811	188	100	1,5911	191	101
0,85	1,5795	182	102	1,5895	186	104	1,5999	189	103	1,6102	194	105
0,90	1,6160	185	109	1,6269	188	111	1,6380	192	110	1,6490	194	112
1,00	1.6544	184	113	4.6457	188	115	1,6572	192	114	1,6686	196	116
1,05	1,6530	186	117	1,6647	190	119	1,6766	194	118	1,6884	198	120
1,10	1,6747	187	121	1,6858	191	124	1,6962	196	121	1,7083	199	124
4,45	1,6907	194	124	1,7051	195	126	1,7157	199	127	1,7284	201	127
1,20	4,7098	192	128	1,7226	196	150	4,7356	199	150	1,7486	204	151
4,25	1,7290	195	152	1,7422	197	133	1,7555	201	155	1,7690	205	135
1,30	1,7483	7	136	1,7619		137	1,7756		139	1,7895		139
Pour 3	z=0,489 Correction		f. 69 030	z=0,496 Correction	0 Di n 0,0		z=0,503; Correction	5 Di	f. 70 034	z=0,510 Correction		
Vo	z=	0,76	3	z=	0,77	I	z =	0,78	3	z=	0,79	•
0,00	1,5097	171	50	1,5147	173	50	1,5197	176	50	1,5247	179	50
0,05	1,5268	172	52	1,3590	176	53	1,3373	178	53	1,3426	182	54
0,10	1,3440	174		1,5496	177	55	1,3554	481	57 59	1,3608	183	56 59
0,13	1,3789	175	62	1,5854	178	62	1,5945	181	62	1,3791	184	63
0,25	1,3967	178	6 K	1,4052	181	65	1,4097	184	65	1,3975	487	65
0,30	1,4145	178	68	1,4213	181	68	1,4284	184	69	1,4550	188	69
0,35	1,4525	180		1,4596	185	74	1,4467	186	73	1,4540	190 191	72
0,40	1,4506	183	75	1,4581	1000	74	1,4655	190	76	1,4754	195	76
0,45	1,4689	185	78	1,4767	186	78	1,4845	191	79	1,4924	195	79
0,50	1,4874	186	1 81	1,4953 1,5144	189	81	1,5056	193	82	1,5118	197	83 86
	1,5060	187	88	1,5144	194	88	1,5229	194	86	1,5512	197	91
0,60	1,5247	190	91	1,5528	195	92	1,5425	197	99	1,5712	200	94
0,70	1,5627	190	94	1,5724	193	96	1,5817	197	96	1,5913	204	98
0,75	4,5819	192	98	1,5917	196	99	1,6016	199	100	1,6116	205	101
0.80	1,6012	195	103	1,6115	198	103	1,6218	202	104	4,6522	(Sec. 1. S)	104
0,85	1,6207	195	100	1,6515	198	107	1,6420	202	108	1,6528	206	108
0.90	1,6404	198	109	1,6315	202	111	4,6624	206	111	1,6735	210	112
0,95	1,6602	200	113	1,6715	204	115	1,6850	207	115	1,6945	211	116
1,00	1,6802	202	117	1,6919	206	118	1,7037	210	119	1,7156	214	120
	1,7207	203	125	1,7123	207	126	1,7247	211	127	1.7585	215	128
1.10		204			208	150	1,7670	212	131	1,7801	216	152
1,10	1,7411		129	1,7540	0.10					1,7001	0.15	
1,10		206	129	1,7540	210	133		215	435	1,8018	217	137
1,10 1,15 1,20 1,25	1,7411 1,7617 1,7825	206 208	133	1,7750 1,7961	211	133 138	1,7885 1,8099	216	435 438	1,8018	219	137
1,10 1,15 1,20	1,7411	206	133	4,7750	100	133	1,7883	100	435	1,8018	100 100 100 100 100 100 100 100 100 100	137

ord.	* z=	0,80		z=	0,81		z =	0,82		z =	0,83	
Vo	$\mathfrak{V}_{\mathbf{b}}(xV)$	D Vo	D. 2	$\mathfrak{VS}(xV)$	D Vo	D. Z	$v_b(xV)$	D Vo	D. 2	$\mathfrak{V}_{\mathbf{b}}(xV)$	D Vo	D. 2
0,00	1,5297	5	51	4,5348		51	1,5599		52	1,5481		51
0,05	1,3480	183	54	1,3554	186	54	1,3588	189	53	1,3643	192	54
0,10	1,3664	184	57	1,3721	187	58	1,3779	191	58	1,3837	194	58
0,15	1,5850		61	4,3914	190	60	1,5971	192	61	1,4052	198	61
0,20	1,4058	188	64	1,4102	194	64	1,4166	0.5%	64	1,4250	1000	64
0,25	1,4227	189	68	4,4295	195	67	1,4362	196	67	1,4429	199	68
0,50	1,4419	192	70	1,4489	194	74	1,4560	200	74	1,4631	202	70
0,55	1,4612	195	74	1,4686	198	74	1,4760	202	74	1,4834	205	73
0,40	1,4807	196	77	1,4884	200	78	1,4962	203	77	1,5039	207	79
0,45	1,5003	198	84	1,5084	204	84	1,5165	205	81	1,5246	209	82
0,50	1,5201	200	84	1,5285	204	85	1,5370	207	85 88	1,5455	210	85
0,55	1,5401	202	88	1,5489	205	88	1,5577	208			215	a89
0,60	4,5605	205	94	4,5694	207	94	1,5785	211	93	1,5878	214	92
0,63	1,5806	205	95	1,5901	209	95	1,5996	213	99	1,6308	216	96
0,70	1,6011	206	103	1,6410	210	103	1,6209	214	104	1,6527	219	104
0,75	1,6217	209	100		212	1000		216	108		220	12.46
0,80	1,6426	210	106	1,6532	214	107	1,6659	218	111	1,6747	224	108
0,85	1,6656	211	445	1,6746	216	114	1,6857	219	116	1,7192	224	116
0,95	1,7061	214	118	1,7179	217	119	1,7298	222	120	1,7418	226	120
100000	1,7276	215	199	No. 2012 Co. 10 Co. 1	219	123	1,7524	225	124	1,7645	227	124
1,00	1,7494	218	195	1,7598	224	125	1,7745	224	128	1,7875	228	128
1,10	1,7713	219	129	1,7842	223	130	1,7972	227	132	1,8104	234	152
4,15	1,7935	220	133	1,8066	224	135	1,8201	229	136	1,8337	233	136
1,20	4,8455	222	158	1,8295	227	139	1,8452	234	140	1,8572	235	141
1,23	1,8378	225	144	1,8522	229	143	1,8665	233	144	1,8809	257	146
1,30	1.8604	226	147	1.8751	229	148	1,8899	234	149	1,9048	239	149
3	Correctio		f, 69 036	z=0,552 Correction		f. 70 057	z=0,559 Correctio			s=0,566 Correctio		6. 70 059
$\frac{3}{V_0}$	Correction		036	Correction		057		n 0,0	038	Correctio		059
Vo	z=	0,84	036	Correction z=	0,85	057	z=	0,86	038	Correctio z=	0,0 0,87	059
V ₀	Correctio	0,84	036	z= 1,5554	0,85	057	z =	0,86	038	Correctio	0,87	059
V ₀	z= 4,5502 4,5697	0,84	52	Correction z=	0,85	52	z=	0,86	038	Correctio	0,87	059
Vo	Correctio	0,84 198 198	52 55	z= 1,5554 1,5752	0,85 0,85 198 201 202	52 53	z = 4,5606 4,5807	0,86	52 56	z= 4,3658 4,3863	0,87	059 55 56
V ₀ 0,00 0,05 0,10	z= 4,5502 4,5697 4,5895 4,4095	0,84	52 55 58	z= 1,5554 1,5752 1,3953	0,85 198 201 202 204	52 55 58	z = 1,3606 1,3807 1,4011	0,86 204 204 206 207	52 56 59	# 4,3658 4,3658 4,5863 4,4070	0,87	059 53 56 59
Vo 0,00 0,05 0,10 0,15	z= 1,3502 1,5697 1,5895	0,84 195 198 198 201 205	52 55 58 62 63 68	Z= 1,5554 4,5752 1,3953 1,4155 4,4559 1,4565	0,85 198 201 202 204 206	52 53 58 62	z == 1,5606 1,5807 1,4011 1,4217 1,4424 1,4634	0,86 204 204 206 207 210	52 56 59 62 63 68	# 4,3658 1,3658 1,3863 1,4070 1,4279 1,4489 1,4702	0,87 205 207 209 210 213	55 56 59 62 66 69
V ₀ 0,00 0,05 0,10 0,15 0,20 0,25 0,30	4,3502 4,3697 4,5895 4,4095 4,4294 4,4497 4,4701	0,84 195 198 198 201 205 204	52 55 58 62 63 68 73	Z= 1,5554 1,5752 1,5953 1,4155 1,4559 1,4565 1,4774	0,85 198 201 202 204 206 209	52 53 58 62 65 69 74	z == 1,5606 1,5807 1,4011 1,4217 1,4454 1,4654 1,4845	0,86 204 204 206 207 210 211	52 56 59 62 63 68 72	### ##################################	0,87 0,87 203 207 209 210 213 213	55 56 59 62 66 69
V ₀ 0,00 0,05 0,10 0,15 0,20 0,25	4,3502 4,3697 4,5895 4,4095 4,4294 4,4497	0,84 195 198 198 201 203 204 208	52 55 58 62 63 68 73	1,5554 1,5752 1,5953 1,4155 1,4559 1,4565 1,4774 1,4985	0,85 198 201 202 204 206 209 211	52 53 58 62 65 69	z == 1,5606 1,5807 1,4011 1,4217 1,4424 1,4634	0,86 204 204 206 207 210 211	52 56 59 62 63 68 72 75	4,3658 4,3658 4,5863 1,4070 1,4279 1,4489 4,4702 4,4917 4,5154	0,87 205 207 209 210 213	55 56 59 62 66 69 73
V ₀ 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,55 0,40	2=	0,84 195 198 198 201 205 204 208 209	52 55 58 62 65 68 75 76	1,5854 1,5752 1,5953 1,4155 1,4259 1,4565 1,4774 1,4985 1,5197	0,85 0,85 198 201 202 204 206 209 211 212	52 58 58 62 65 69 74 74	z == 1,5606 1,5606 1,5807 1,4011 1,4217 1,4424 1,4654 1,4845 1,5059 1,5274	0,86 201 204 206 207 210 211 214 215	52 56 59 62 65 68 72 75	4,3658 4,3663 1,4070 1,4279 1,4489 1,4702 1,4917 1,5154 1,5653	0,87 205 207 209 210 213 215 217	059 56 59 62 66 69 73 76
V ₀ 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45	4,5502 4,5697 4,5895 4,4095 4,4497 4,4497 4,4490 4,5148 4,5528	0,84 195 198 198 201 203 204 208 209 210	52 55 58 62 63 63 75 76 79 82	7.5554 1,5554 1,5752 1,3953 1,4155 1,4559 1,4565 1,4774 1,4985 1,5197 1,510	0,85 198 201 202 204 206 209 211 212	52 58 58 62 65 69 74 77 82	z= 1,3606 1,3807 1,4014 1,4217 1,4424 1,4634 1,4843 1,5059 1,5274 1,5492	0,86 201 204 206 207 210 211 214 215 218	52 56 59 62 65 68 72 75 79 83	4,3658 4,3863 4,4070 4,4279 4,4489 4,4702 4,4917 4,54154 4,5653 4,5875	0,87 205 207 209 210 213 215 217 219	059 55 56 59 62 66 69 73 76 80 83
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,40 0,45 0,50	2	0,84 195 198 198 201 205 204 208 209	52 58 62 63 68 73 76 79 82 86	Z= 1,5854 1,5782 1,5782 1,3983 1,4183 1,4559 1,4565 1,4774 1,4985 1,5197 1,5410 1,5626	0,85 0,85 198 201 202 204 206 209 211 212	52 58 62 65 69 74 77 82 85	z == 1,5606 1,5807 1,4011 1,4217 1,4424 1,4654 1,5059 1,5274 1,5424 1,5711	0,86 201 204 206 207 210 211 214 215	52 56 59 62 65 68 72 75 83 87	# 1,3658 1,3658 1,5863 1,4070 1,4279 1,4489 1,4702 1,4917 1,5154 1,5653 1,5875 1,5798	0,87 205 207 209 210 213 215 217 219 222 223	55 56 59 62 66 69 73 76 80 83 87
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,45 0,50 0,55	z= 4,3502 4,3697 4,3893 4,4093 4,4497 4,4497 4,4497 4,4497 4,4701 4,4909 4,5148 4,3520 4,3784	0,84 195 198 198 201 205 204 208 209 210 212	52 55 58 62 63 68 75 76 79 82 86 90	Z= 1,5554 4,5752 1,5953 1,4155 1,4559 1,4565 1,4774 1,4985 1,5197 1,5410 1,5626 1,5844	0,85 198 201 202 204 206 209 211 212 215 216	52 53 58 62 65 69 74 77 82 85 89	z= 1,5606 4,5807 1,4011 1,4247 1,4424 1,4634 1,4845 1,5059 4,5274 1,5492 4,5714 1,5935	0,86 204 204 206 207 210 214 215 218 219	52 56 59 62 65 68 72 75 79 83 87	### ##################################	0,87 203 207 209 210 213 213 217 219 222 223	556 566 596 6266 6973 76680 837691
Vo 0,00 0,05 0,10 0,15 0,20 0,50 0,55 0,40 0,45 0,50 0,55 0,60	4,5502 4,5697 4,5895 4,4095 4,4294 4,4497 4,4701 4,4704 4,5148 4,5528 4,5540 4,5754 4,5754	0,84 198 198 201 205 204 208 209 210 212	52 55 58 62 63 68 73 76 79 82 86 90	Z=4,5554 4,5752 4,5752 4,5953 4,4455 4,4559 4,4565 4,4774 4,4985 4,5197 4,5440 4,5626 4,5844 4,6664	0,85 198 201 202 204 206 209 211 212 215 216 218	52 53 58 62 65 69 74 77 82 85 89 93	z == 4,5606 4,5807 4,4041 4,4247 4,4654 4,4654 4,4845 4,5059 4,5274 4,5492 4,5714 4,5935 4,5935 4,5935 4,5935 4,5935	0,86 204 204 206 207 210 214 215 218 219 222	52 56 59 62 65 68 72 73 79 83 87 90	\$\frac{1}{4,3658}\$ \$\frac{1}{4,3658}\$ \$\frac{1}{4,070}\$ \$\frac{1}{4,4279}\$ \$\frac{1}{4,4489}\$ \$\frac{1}{4,702}\$ \$\frac{1}{4,945}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,5653}\$ \$\frac{1}{4,6251}\$ \$\frac{1}{4,6251}\$	0,87 205 207 209 210 215 217 219 222 225 228 229	555 566 5962 66669 73766 8085 8791
Vo 0,00 0,05 0,10 0,15 0,20 0,50 0,55 0,40 0,45 0,50 0,55 0,60 0,65	4,5502 4,5697 4,5895 4,4895 4,4294 4,4497 4,4701 4,4701 4,54148 4,5528 4,5340 4,5754 4,5970 4,6188	0,84 495 498 498 201 205 204 208 209 210 212 214 216 218 221	52 55 58 62 63 68 73 76 79 82 86 90 94	z=- 4,5554 4,5752 4,5985 4,4559 4,4559 4,4559 4,4565 4,4774 4,4985 4,5440 4,5626 4,5844 4,6064 4,6286	0,85 198 201 202 204 206 209 211 212 215 216 218 220 222	52 53 58 62 65 69 74 74 77 82 85 89 93	z == 1,5606 1,5807 1,4011 1,4217 1,424 1,4654 1,5059 1,5711 1,5955 1,6157 1,6158 1,6158	0,86 204 204 206 207 210 214 215 218 219 222 224 226	52 56 59 62 65 68 72 75 79 83 87 90 94	\$\frac{\pi}{4,3658}\$\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0,87 205 207 209 210 215 217 219 222 225 228 229 232	556 566 596 6266 6973 76680 837691
Vo 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,45 0,40 0,45 0,50 0,65 0,60 0,65 0,70	### 1,5502 ### 1,5502 ### 1,5697 ### 1,5895 ### 1,4994 ### 1,4909 ### 1,4909 ### 1,5148 ### 1,5340 ### 1,5340 ### 1,5340 ### 1,5340 ### 1,6409	0,84 495 498 498 201 205 204 209 210 214 216 218 221	52 55 58 62 63 63 68 75 76 79 82 86 90 94 98	2	0,85 198 201 202 204 206 209 211 212 215 216 222 228 228	52 53 58 62 65 67 74 77 82 85 89 93 97 99	z == 1,5606 4,5807 4,4014 4,4247 4,4654 4,4845 4,5059 4,5274 4,5492 4,5714 4,5935 4,6457 4,6564 4,6664	0,86 204 204 206 207 210 214 215 218 218 219 222 244 226 227 230	52 56 59 62 65 68 72 73 79 83 87 90 94 97	7 == 1,3658 4,5863 4,4893 4,4279 4,4489 4,702 4,947 4,5454 4,5454 4,5653 4,578 4,6025 4,6254 4,6480 4,6742	0,87 203 207 209 210 213 217 219 225 228 229 232 255	53 56 59 62 66 69 73 76 80 83 87 91
Vo 0,00 0,05 0,10 0,15 0,20 0,35 0,50 0,40 0,45 0,50 0,65 0,66 0,65 0,70 0,78	### 1,5502 ### 1,5697 ### 1,5697 ### 1,5697 ### 1,4994 ### 1,4909 ### 1,4909 ### 1,5148 ### 1,5340	0,84 495 498 498 201 205 204 208 209 210 212 214 216 218 221	52 55 58 62 63 68 73 76 90 94 98 402 404	2	n 0,0 0,85 198 201 202 204 206 209 214 212 215 216 218 220 222 224 228	52 53 58 62 65 69 71 74 77 82 85 89 93 97 99	T == 1,5606 1,5807 1,4041 1,424 1,4654 1,5059 1,505	0,86 204 204 204 206 207 210 214 215 218 219 222 224 226 227 230 252	52 56 59 62 65 68 72 79 83 87 90 94 97	\$\frac{1}{4,3658}\$ \(\frac{1}{4,5658}\$ \(\frac{1}{4,5865}\$ \(\frac{1}{4,070}\$ \(\frac{1}{4,4489}\$ \(\frac{1}{4,702}\$ \(\frac{1}{4,947}\$ \(\frac{1}{4,5154}\$ \(\frac{1}{4,5653}\$ \(\frac{1}{4,5875}\$ \(\frac{1}{4,5875}\$ \(\frac{1}{4,5680}\$ \(\frac{1}{4,6480}\$ \(\frac{1}{4,6945}\$ \(\frac{1}{4,6945}\$ \(\frac{1}{4,6945}\$ \end{array}	0,87 205 207 209 210 213 215 217 219 222 235 228 239 239	059 53 56 59 62 66 69 73 76 80 83 87 94 95
Vo 0,00 0,05 0,10 0,15 0,20 0,50 0,50 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,75	4,5502 4,5697 4,5895 4,4294 4,4497 4,4701 4,5148 4,5328 4,5340 4,5754 4,6754 4,	n 0,0 0,84 198 198 201 203 204 208 209 210 212 214 216 218 221 222 224	52 55 58 62 63 68 75 76 79 82 86 90 94 98 102 104	Z=4,5554 4,5752 4,5752 4,5953 4,4455 4,4754 4,4559 4,4774 4,4985 4,5197 4,5440 4,5626 4,6753 4,6965 4,6753 4,6965	0,85 0,85 198 201 202 204 206 209 211 212 215 216 218 220 222 224 228	52 53 58 62 65 69 71 74 77 82 85 89 93 97 99 103	z == 1,5606 1,3807 1,4041 1,4247 1,4424 1,4634 1,4845 1,5059 1,5274 1,5492 1,5741 1,5935 1,6187 1,6385 1,68610 1,6860 1,7072	0,86 204 204 204 206 207 210 214 215 218 219 222 224 225 225 235	52 56 59 62 65 68 72 75 79 85 87 90 94 902 403 409	4,3658 4,3865 4,4070 4,4279 4,4947 4,4702 4,4947 4,5453 4,5653 4,5675 4,5798 4,6025 4,6025 4,6045 4,6045 4,6045 4,6742 4,6945 4,7484	0,87 203 207 209 210 213 217 219 222 223 228 229 232 236 238	059 53 56 59 62 66 69 73 76 80 83 87 94 95 102
Vo 0,00 0,05 0,10 0,20 0,20 0,50 0,50 0,50 0,50 0,65 0,65 0,65 0,70 0,78 0,85	4,5302 4,5697 4,5895 4,095 4,499 4,4497 4,4701 4,4701 4,4909 4,5448 4,5384 4,5784 4,5784 4,6631 4,6631 4,6631 4,6885	0,84 198 198 198 201 203 204 209 210 212 214 216 218 221 222 224 222 224 222 222 222 222 222	52 55 58 62 63 68 73 76 90 94 98 402 404	Z=	198 204 206 209 214 212 245 246 218 220 222 225 225 235 235 235	52 53 58 62 63 69 71 74 77 82 85 89 93 97 105 109	z == 1,5606 1,5807 1,4011 1,4217 1,4243 1,4634 1,4845 1,5059 1,5714 1,5973 1,6157 1,6185 1,6610 1,7072 1,7572	0,86 204 204 206 207 210 214 214 215 218 219 222 224 226 227 250 252 253	52 56 59 62 65 68 72 79 83 87 90 94 97	\$\frac{1}{4,3658}\$ \(\frac{1}{4,5658}\$ \(\frac{1}{4,5865}\$ \(\frac{1}{4,070}\$ \(\frac{1}{4,4489}\$ \(\frac{1}{4,702}\$ \(\frac{1}{4,947}\$ \(\frac{1}{4,5154}\$ \(\frac{1}{4,5653}\$ \(\frac{1}{4,5875}\$ \(\frac{1}{4,5875}\$ \(\frac{1}{4,5680}\$ \(\frac{1}{4,6480}\$ \(\frac{1}{4,6945}\$ \(\frac{1}{4,6945}\$ \(\frac{1}{4,6945}\$ \end{array}	0,87 203 207 209 210 213 215 217 219 222 235 228 229 236 238 240	059 53 56 59 62 66 69 73 76 80 83 87 94 95
Vo 0,00 0,05 0,10 0,15 0,20 0,50 0,50 0,50 0,40 0,45 0,50 0,65 0,66 0,65 0,70 0,70 0,85 0,60 0,65 0,65 0,66 0,70 0,65 0,65 0,65 0,65 0,65 0,70 0,85 0,	### 1,5502 4,5697 4,5697 4,5895 4,4994 4,4994 4,4909 4,5418 4,5328 4,5328 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,5754 4,7755 4,7756 4,6651 4,6855 4,7080 4,7080	0,84 195 198 198 198 201 205 204 208 219 212 214 216 218 221 222 224 225	52 55 58 62 63 63 67 76 79 82 86 90 94 98 104 108	Z=4,5554 4,5752 4,5752 4,5953 4,4455 4,4754 4,4559 4,4774 4,4985 4,5197 4,5440 4,5626 4,6753 4,6965 4,6753 4,6965	0,85 198 204 206 209 244 212 245 228 220 222 224 228 250 222 225 225	52 53 58 62 65 69 71 74 77 82 85 89 93 97 99 103	z == 1,5606 1,3807 1,4041 1,4247 1,4424 1,4634 1,4845 1,5059 1,5274 1,5492 1,5741 1,5935 1,6187 1,6385 1,68610 1,6860 1,7072	0,86 204 204 206 207 210 214 215 218 219 222 235 255 259	52 56 59 62 65 68 72 75 79 83 87 90 94 405 409 414	4,3658 4,3863 4,4070 4,4279 4,4947 4,5454 4,5453 4,5798 4,6025 4,5478 4,6251 4,6480 4,6712 4,6945 4,7449	0,87 203 207 209 210 213 217 219 222 223 225 225 236 238 240 245	556 562 666 669 73 766 80 83 87 91 102 107
Vo 0,000 0,005 0,10 0,25 0,50 0,58 0,40 0,58 0,60 0,65 0,70 0,78 0,85 0,70 0,78 0,85 0,90 0,85	### 1,3502 ### 1,3502 ### 1,3697 ### 1,3693 ### 1,4994 ### 1,4909 ### 1,4909 ### 1,3148 ### 1,3540 ### 1,3540 ### 1,5540 ### 1,6631	0,844 198 198 198 201 203 204 208 209 210 212 214 221 222 224 222 224 225 225 231	52 55 58 62 63 63 76 79 82 86 90 94 102 104 108 145 1417	Z=4,5554 4,5752 4,5752 4,5455 4,4559 4,4565 4,4774 4,4985 4,4985 4,5410 4,56286 4,6733 4,6662 4,6733 4,6663 4,7425 4,7425 4,7425 4,7425 4,7458	198 204 204 205 204 214 212 215 216 218 222 225 224 228 230 252 253 256	52 53 58 62 65 67 74 77 82 85 89 93 97 99 105 109 142	z == 1,5606 1,3807 1,4041 1,4424 1,4634 1,4845 1,5045 1,5045 1,5045 1,505 1,5074 1,505 1,5085 1,6157 1,6157 1,6167 1,6840 1,7072 1,7505 1,7504 1,7780	0,86 204 204 206 207 210 214 215 218 219 222 225 236 239 240	52 56 59 62 65 68 72 73 79 83 87 90 94 97 102 403 409 414 418	7 == 1,3658 4,5863 4,4893 4,4279 4,4489 4,702 4,5454 4,545	0,87 203 207 209 210 213 217 219 222 223 225 225 236 245 245 245 245 245	555 562 666 673 766 80 83 87 91 102 107 110 114
Vo 0,00 0,05 0,10 0,25 0,50 0,55 0,40 0,55 0,55 0,70 0,75 0,65 0,70 0,75 0,65 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,75	4,5502 4,5697 4,5895 4,4095 4,4294 4,4497 4,4701 4,5714 4,5714 4,5754 4,7755 4,7769	195 198 198 198 198 201 203 204 208 209 210 212 214 218 221 222 224 225 231 232	52 55 58 62 65 68 75 76 79 82 86 90 94 98 102 104 108 415 117	Z=- 4,5554 4,5752 4,5953 4,4559 4,4565 4,4774 4,4985 4,4985 4,5197 4,5410 4,5626 4,5844 4,6064 4,6286 4,6344 4,6733 4,7425 4,7658 4,7793 4,7425 4,7658 4,7894	198 201 202 204 206 209 214 212 215 216 218 220 222 224 228 224 228 235 235 237	52 53 58 62 65 69 74 77 77 82 85 89 93 99 103 109 112 116 122	z == 1,5606 1,3807 1,4041 1,424 1,4634 1,4845 1,5059 1,5274 1,5492 1,5741 1,6365 1,6840 1,7072 1,7505 1,7541 1,7780 1,8020	0,86 204 204 206 207 210 211 214 215 218 218 222 235 236 259 240 241	52 56 59 62 65 68 72 75 79 85 79 94 97 102 103 109 414 418 422	\$\frac{1}{4,3658}\$\\\ 4,3658\$\\\ 4,3865\$\\ 4,4070\$\\ 4,4279\$\\ 4,4947\$\\ 4,5454\$\\ 4,5653\$\\ 4,5653\$\\ 4,5798\$\\ 4,6025\$\\ 4,6251\$\\ 4,6480\$\\ 4,7484\$\\ 4,7449\$\\ 4,7459\$\\ 4,7692\$\\ 4,7690\$\\ 4,7692\$\\ 4,7692\$\\ 4,7690\$\\ 4,7692\$\ 4,7692\$\\ 4,7692\$\\ 4,7692\$\\ 4,7692\$\\ 4,7692\$\\ 4,7692\$\\ 4,76	0,87 205 207 209 210 213 215 217 219 222 228 229 232 232 236 245 245 245 245 245 245 245 245 245 245	059 56 59 62 66 69 73 76 80 83 87 91 92 402 410 410 4118
Vo 0,00 0,05 0,10 0,15 0,20 0,55 0,50 0,45 0,55 0,60 0,75 0,75 0,60 0,75 0,70 0,75 0,75 0,70 0,45 0,70 0,45 0,70 0,45 0,70 0,45 0,55 0,50 0,40 0,45 0,55 0,50 0,45 0,55 0,50 0,45 0,75 0,	4,5302 4,5697 4,5895 4,093 4,4294 4,4497 4,4701 4,4909 4,5418 4,5340 4,5754 4,5754 4,5970 4,6188 4,6409 4,6631 4,6885 4,7588 4,7588 4,7588 4,7588 4,7588 4,7588 4,7588 4,7588	0,844 198 198 198 201 203 204 208 209 210 212 214 216 218 221 221 222 228 225 232 232 232 232 232 232 232 232 233 233 233 234 235 235 236 236 237 237 237 237 237 237 237 237 237 237	52 55 58 68 68 75 76 76 79 82 86 90 94 102 104 115 117 120 125	Z=4,5554 4,5752 4,5752 4,5455 4,4559 4,4565 4,4774 4,4985 4,4985 4,5410 4,56286 4,6733 4,6662 4,6733 4,6663 4,7425 4,7425 4,7425 4,7425 4,7458	198 201 198 201 202 204 209 211 212 215 216 222 225 225 225 227 229	52 58 58 62 65 69 71 74 77 82 85 89 93 109 112 416 412 126	T == 1,5606 1,5807 1,4011 1,4247 1,4247 1,4247 1,4845 1,5059 1,5274 1,5492 1,5714 1,5955 1,6610 1,6840 1,7072 1,7541 1,7780 1,8261 1,784 1,7780 1,8261 1,8261 1,780	0,86 204 204 206 207 210 214 214 215 212 224 226 227 232 236 240 241 245	52 56 59 62 65 68 72 75 75 83 87 90 94 403 403 414 418 422 428	7.5658 4,3863 4,4070 4,4279 4,4489 4,4702 4,4947 4,5154 4,5653 4,5954 4,6025 4,6251 4,6480 4,71484 4,7419 4,7629 4,8459 4,7902 4,8445 4,8659	0,87 205 207 209 215 217 219 222 228 229 232 245 246 248	55 56 59 62 66 69 73 76 80 83 87 94 95 92 407 410 414 418 422 427 436
Vo 0,00 0,05 0,10 0,25 0,50 0,55 0,40 0,55 0,55 0,70 0,75 0,65 0,70 0,75 0,65 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,70 0,75 0,75	4,5502 4,5697 4,5895 4,4095 4,4294 4,4497 4,4701 4,5714 4,5714 4,5754 4,7755 4,7769	0,84 195 198 198 198 198 198 201 205 204 208 211 212 214 222 244 2224 225 251 2525 257	52 55 58 62 68 73 76 79 82 86 90 94 94 102 104 108 115 120 125 130	7.5554 4,5554 4,5752 4,3955 4,4153 4,4559 4,4565 4,4774 4,4985 4,4985 4,5410 4,6064 4,626 4,6344 4,6753 4,7493 4,7493 4,7493 4,7495 4,7	0,855 1988 2014 2022 2029 2044 2066 2099 2144 215 216 218 220 222 225 225 225 237 239 244	52 58 58 62 65 69 71 74 77 82 85 89 93 99 103 409 412 416 426 430	z == 1,5606 1,3807 1,4041 1,424 1,4634 1,4845 1,5059 1,5274 1,5492 1,5741 1,6365 1,6840 1,7072 1,7505 1,7541 1,7780 1,8020	0,86 204 204 206 207 210 214 214 214 218 219 222 246 227 250 252 240 244 245	52 56 59 62 65 68 72 75 87 90 94 102 103 109 114 118 122 125 130	7 == 1,3658 4,3658 4,5863 4,4070 4,4279 4,4489 4,702 4,5454 4,5454 4,5454 4,5454 4,5758 4,6025 4,6251 4,6480 4,6742 4,6945 4,7449 4,7449 4,7659 4,7902 4,8484 4,8484 4,8484	0,87 0,87 203 207 219 213 215 215 215 225 225 225 225 225 240 245 245 245 245 245 245 245 245 245 245	55 56 59 62 66 69 73 76 80 83 87 94 95 99 402 407 410 414 422 427
Vo 0,00 0,05 0,10 0,20 0,35 0,40 0,45 0,50 0,65 0,70 0,78 0,85 0,90 0,95 1,00 1,03 1,40 1,44 1,44	### 1,3502 ### 1,3697 ### 1,3697 ### 1,4994 ### 1,4909 ### 1,4909 ### 1,4909 ### 1,5148 ### 1,5340	0,84 195 198 198 198 198 198 201 203 204 208 212 214 216 221 222 235 237 240	52 55 58 62 68 68 75 76 79 82 86 80 90 94 98 102 104 115 115 115 115 115 115 115 115 115 11	2	0,855 1988 204 2022 204 2022 204 2042 215 215 216 218 220 224 228 220 225 227 228 237 237 237 237 244 244	52 55 58 62 65 69 71 74 77 82 85 89 93 97 99 105 112 1126 1126 1126 1136 1136	T == 1,5606 1,5807 1,4011 1,4247 1,4247 1,4654 1,5059 1,5274 1,5955 1,6157 1,6610 1,6840 1,7072 1,7504 1,7780 1,8020 1,8504	0,86 204 204 206 207 210 214 214 214 212 212 212 224 227 230 235 240 241 245 248	52 56 59 62 65 68 72 75 79 85 87 87 90 94 97 102 403 414 418 422 423 425	### ##################################	0,87 205 207 209 210 213 217 219 222 225 228 229 232 245 246 248 250 252	55 56 59 62 66 69 73 76 80 83 87 94 95 92 407 410 414 418 422 427 436
Vo 0,00 0,05 0,10 0,25 0,50 0,40 0,45 0,40 0,45 0,70 0,70 0,78 0,85 0,70 0,78 0,85 0,70 0,78 1,90 1,10 1,	### 1,5502 4,5697 4,5697 4,5695 4,4994 4,4994 4,4909 4,5148 4,5340 4,5754 4,5970 4,6188 4,6631 4,6885 4,7089 4,7578 4,7588 4,7769 4,8256	0,84 195 198 198 198 198 198 201 205 204 208 211 212 214 222 244 2224 225 251 2525 257	52 55 58 62 68 68 75 76 79 82 86 90 94 98 102 104 115 125 120 125 154 158	2	0,855 1988 2014 2022 2029 2044 2066 2099 2144 215 216 218 220 222 225 225 225 237 239 244	52 55 58 62 65 69 71 74 77 82 85 89 93 97 99 103 112 116 1122 1126 1134 1134 1134	T = 1,5606 1,5807 1,4041 1,424 1,4634 1,4845 1,5059 1,5274 1,5935 1,6137 1,6137 1,6137 1,6137 1,6137 1,6137 1,7703 1,7703 1,7703 1,7780 1,8020 1,8020 1,8749	0,86 204 204 206 207 210 214 214 214 218 219 222 246 227 250 252 240 244 245	52 56 59 62 65 87 79 90 94 102 103 118 122 125 140	7.5658 4,3863 4,4070 4,4279 4,4489 4,4702 4,4947 4,5454 4,5653 4,5875 4,5798 4,6025 4,6251 4,6480 4,6742 4,6945 4,7489 4,7649 4,7649 4,7649 4,7649 4,7649 4,8659 4,8859 4,8859	0,87 0,87 203 207 219 213 215 215 215 225 225 225 225 225 240 245 245 245 245 245 245 245 245 245 245	5356 5962 669 736 808 8376 808 8376 940 107 140 144 148 142 143 143 144 144

-			•	. , , ,		с с	,	,
Pour			·					
ordon. Vo	z:1,08	z:1,09	z:1,10	z:1,11	z:1,12	z:1,13	z:1,14	z : 1,15
0,00	1,4826 1,5103	1,4885 1,5166	1,4944	1,5004 1,5293	1,5064 1,5357	1,5124	1,8185	1,8246
0,40	1,5383	1,5450	1,5517	1,5584	1,5652	1,5720	1,5485 1,5789	1,5550 1,5858
0,15	1,5667	1,5738	1,5809	1,5880	4,5951	1,6024	1,6096	1,6169
0,20 0,25	1,5954	1,6029	1,6104	1,6179	1,6255	1,6531	1,6408	1,6485
0,30	1,6245 1,6539	1,6324 1,6622	1,6403 1,6705	1,6482	1,6862 1,6873	1,6642 1,6957	1,6725 1,7043	1,6805
0,35	1,6836	4,6923	1,7011	1,7099	1,7187	1,7276	1,7866	1,7428 1,7456
0,40	1,7187	1,7229	1,7320	1,7413	1,7505	1,7599	4,7693	1,7788
0,45 0,50	1,7442	1,7537	1,7633 1,7950	1,7730 1,8051	1,7827 1,8153	1,7925	1,8024	1,8125
0,55	1,8060	1,8165	1,8270	1,8376	1,8482	1,8255 1,8589	1,8389 1,8697	1,8462 1,8806
0,60	1,8374	1,8483	1,8593	1,8704	4,8815	1,8927	1,9039	1,9155
0,65	1,8692	1,8806	1,8920	1,9035	1,9151	1,9268	1,9386	1,9504
0,70 0,75	1,9014 1,9338	1,9132	4,9254	1,9871	1,9492	1,9613	1,9786	1,9860
0,80	1,9666	1,9401	1,9585 1,9923	1,9740 2,0053	1,9836 2,0184	1,9962 2,0315	2,0090	2,0219
0,85	1,9998	2,0131	2,0265	2,0400	2,0104	2,0515	2,0448 2,0840	2,0582 2,0949
0,90	2,0352	2,0470	2,0609	2,0749	2,0890	2,4032	2,1176	2,4320
0,95	2,0671	2,0814	2,0958	2,1103	2,1250	2,1397	2,1546	2,1695
1,00	2,4019 2,4359	2,1161 2,1512	2,1310	2,1461	2,1612	2,1765	2,1919	2,2074
4,05	2,1707	2,1312	2,1667 2,2026	2,1822 2,2187	2,1979 2,2349	2,2137 2,2513	2,2296 2,2678	2,2458 2,2844
4,45	2,2059	2,2223	2,2389	9,2555	2,2723	2,2892	2,3068	2,5255
1,20	2,2414	2,2584	2,2755	2,2927	2,5101	2,3276	2,5452	2,5629
1,25	2,2772	2,2948	2,3125	2,3302	2,5481	2,3662	2,3844	2,4028
1,30	2,3135	2,8317	2,3500	2,3683	2,3868	2,4054	2,4242	2,4451
S Co	0,7419 r 0,0071	0,7490 0,0072	0,7561	0,763%	0,7703	0,7773	0,7844	0,7918
La	0,0071	0,0072	0,0071	0,0075	0,0077	0,0078	0,0080	0,0084
V _o	7 · 1 16	z · 1 17	7 . 1 18	7 . 4 49	7 . 4 90	7 . 4 94	7 . 4 99	z:1,23
	,	~ ,	2 . 1,10	2 . 1,10	2 . 1,20	. 1,21	2.1,22	z:1,20
0,00	1,5308	1,5370	1,5432	1,5494	1,5557	1,5620	1,5683	1,5747
0,05	1,5615	1,5681	1,5747	1,5814	1,5880	1,5948	1,6015	1,6083
0,10	1,5927	1,5997	1,6067	1,6138	1,6209	1,6280	1,6352	1,6424
0,13	1,6243	1,6317	4,6392	1,6467	1,6542	1,6617	1,6694	1,6770
0,20 0,25	1,6563 1,6887	1,6641	1,6720 1,7053	1,6800 1,7136	1,6879 1,7220	1,6959 1,7305	1,7039 1,7390	1,7120 1,7475
0,30	1,7215	1,7302	1,7390	1,7478	1,7220	1,7655	1,7745	1,7835
0,33	1,7547	1,7638	1,7731	1,7823	1,7916	1 8010	1,8104	1,8199
0,40	1,7883	1,7979	4,8076	1,8173	1,8271	1,8369	1,8468	1,8567
0,45	1,8223 1,8567	1,8324	1,8425	1.8528	1,8630 1,8993	1,8733	1,8837 1,9210	1,8941 1,9319
0,55	1,8915	1,9026	1,9137	1,9249	1,8993	1,9101	1,9587	1,9519
0,60	1,9268	4,9383	1,9499	1,9616	1,9733	1,9854	1,9970	2,0089
0,65	1,9624	1,9744	1,9865	1,9987	2,0110	2,0233	2,0357	2,0481
0,70 0,75	1,9984 2,0349	2,0110 2,0479	2,0236 2,0611	2,0363 2,0743	2,0491 2,0876	2,0649 2,1009	2,0748 2,1144	2,0878 2,1279
0,75	2,0349	2,0479	2,0990	2,1127	2,1266	2,1009	2,1144	2,1685
0,85	2,1089	2,1231	2,1373	2,1516	2,1660	2,1403	2,1950	2,2096
0,90	2,1466	2,1612	2,1760	2,1909	2,2058	2,2208	2,2359	2,2512
0,93	2,1846	2,1998	2,2151	2,2305	2,2460	2,2616	2,2773	2,2931
1,00 1,05	2,2234 2,2649	2,2388 2,2782	2,2547 2,2946	2,2706 2,3442	2,2867 2,3279	2,3029 2,3446	2,3192 2,3615	2,5356 2,5785
1,10	2,3012	2,3180	2,3351	2,3522	2,3695	2,3446	2,4043	2,4219
1,15	2,3408	2,3583	2,3759	2,3937	2,4115	2,4295	2,4476	2,4658
1,20	2,3809	2,3990	2,4172	2,4333	2,4540	2,4725	2,4942	2,5101
1,25 1,30	2,4214 2,4622	2,4400 2,4815	2,4588 2,5010	2,4778 2,5205	2,4969 2,5402	2,5161 2,5601	2,5554 2,5800	2,5549 2,6002
Ľ								
R ~ 3 =	= 0,7987	0,8038	0,8129	0,8200	0,8274	0,8343	0,8444	0,8485
3 Co.	г 0,0083	0.0084	0,0086	0,0088	0,0090	0,0092	0,0094	0.0096

						, c		,
Pour								
ordon. Vo	z:1,24	z:1,25	z:1,30	z:1,35	z:1,40	z:1,45	z:1,50	z:1,55
0,00	1,5814	1,5876	1,6205	1,6542	1,6889	1,7247	1,7615	1,7993
0,05 0,10	1,615 2 1,6497	1,6221 1,6570	1,6571 1,6943	1,6930 1,7325	1,7301 1,7719	1,7683 1,8125	1,8076	1,8479
0,15	1,6847	1,6924	1,7320	1,7725	1,8144	1,8575	1,8344 1,9019	1,8974 1,9476
0,20	1,7202	4,7284	1,7702	1,8131	1,8574	1,9031	1,9503	1,9987
0,25	1,7561	1,7648	1,8089	1,8543	1,9011	1,9495	1,9993	2,0507
0,30 0,55	1,7925 1,8294	1,8016 1,8390	1,8489 1,8880	1,8960 1,9384	1,9454 1,9904	1,9965 2,0443	2,0492	2,1034
0,40	1,8668	1,8769	1,9283	1,9813	2,0360	2,0927	2,0998 2,1512	2,1570
0,45	1,9046	1,9152	1,9692	2,0248	2,0823	2,1418	2,2033	2,2114 2,2666
0,50	1,9429	1,9540	2,0106	2,0689	2,1292	2,1917	2,2562	2,3226
0,55	1,9817	1,9933	2,0525	2,1136	2,1768	2,2422	2,3098	2,3795
0,60 0,65	2,0210 2,0607	2,0334 2,0734	2,0951 2,1381	2,1589 2,2047	2,2249 2,2738	2,2934 2,3454	2,3642 2,4194	2,4372
0,70	2,1009	2,1141	2,1816	2,2514	2,3232	2,3980	2,4755	2,4957 2,5550
0,75	2,1416	2,1554	2,2257	2,2982	2,3733	2,4513	2,5320	2,6153
0,80	2,1828	2,1971	2,2703	2,3438	2,4940	2,5053	2,5894	2,6762
0,85 0,90	2,2244 2,2665	2,2393 2,2820	2,3454 2,3611	2,3939 2,4427	2,4754 2,5274	2,5601 2,6155	2,6476 2,7066	2,7880
0,95	2,3094	2,3252	2,4073	2,4921	2,5800	2,6716	2,7663	2,8007 2,8641
1,00	2,3521	2,3688	2,4540	2,5420	2,6334	2,7284	2,8268	2,9284
1,05	2,3957	2,4129	2,5013	2,5926	2,6873	2,7859	2,8880	2,9935
1,10 1,15	2,4397 2,4842	2,4576 2,5027	2,5494 2,5974	2,6437 2,6954	2,7418 2,7970	2,8444 2,9030	2,9500	3,0595
1,20	2,5291	2,5483	2,6463	2,7477	2,8529	2,9626	3,0128 5,0763	3,1262
1,25	2,5745	2,5944	2,6957	2,8006	2,9093	8,0227	3,1406	5,1938 5,2622
1,50	2,6205	2,6409	2,7456	2,8540	2,9664	3,0836	3,2056	8,3314
χ [8	0,8556	0,8628	0,8986	0,9344	0,9703	1,0064	1,0426	1,0787
ა [c₀	r 0,0097	0,0099	0,0109	0,0119	0,0130	0,0142	0,0154	0,0166
Vo	z:1,60	z:1,65	z:1,70	z:1,75	z : 1,80	z : 1,85	z : 1,90	z : 1,95
0,00	1,8382	1,8784	1,9197	1,9621	2,0059	0.0810	2,0975	0 15 77
0,05	1,8895	1,9323	1,9767	2,0220	2,0689	2,0510 2,1172	2,1674	2,1453 2,2183
0,10	1,9417	1,9875	2,0346	2,0834	2,1332	2,1848	2,2380	2,2929
0,15	1,9948	2,0435	2,0937	2,1453	2,1986	2,2536	2,3104	2,3689
0,20 0,25	2,0488 2,1036	2,1005	2,1538	2,2086	2,2653	2,3237	2,3842	2,4464
9,80	2,1594	2,1584 2,2174	2,2149 2,2771	2,2730 2,3386	2,3332	2,3952 2,4679	2,4593 2,5359	2,5254 2,6060
0,55	2,2161	2,2772	2,5403	2,4052	2,4726	2,5420	2,6139	2,6880
0,40	2,2756	2,3384	2,4046	2,4734	2,5441	2,6173	2,6932	2,7745
0,45	2,3321 2,3914	2,3999 2,4627	2,4699	2,5420	2,6168	2,6940	2,7740	2,8566
0,50	2,5914	2,4027	2,5362 2,6036	2,6121 2,6832	2,6907 2,7659	2,7720 2,8512	2,856 2 2,9597	2,9431 5,0311
0,60	2,5128	2,5911	2,6724	2,7556	2,8422	2,9318	3,0247	5,0311 5,1207
0,65	2,5748	2,6568	2,7416	2,8290	2,9198	3,0136	3,1111	8,2117
0,70	2,6377 2,7015	2,7234	2,8121	2,9036	2,9986	3,0968	3,1988	8,3043
0,75 0,80	2,7613	2,7910 2,8596	2,8837 2,9563	2,9793 3,0564	3,0786 3,1598	3,1813	5,2880 5,3786	3,3983
0,85	2,8318	2,0390	5,0299	3,4540	3,1598 3,2423	8,2674 8,3341	3,4705	5,4938 3,5909
0,90	2,8983	2,9997	3,1047	3,2131	3,3259	3.4425	3,5639	3,6894
0,95	2,9657	3,0742	3,1804	3,2933	3,4107	3,5322	3,6586	3,7895
1,00	3,0340 3,1032	3,1436 3,2170	3,2572	3,3746	3,4968	3,6232	3,7548	3,8910
1,10	5,1783	5,2914	3,3350 3,4139	3,4574 3,5406	3,5844 3,6726	3,7153 3,8094	3,8524 3,9313	5,9944 4,0986
4,45	3,2442	8,8667	8,4939	5,6253	3,7623	3,9040	4,0517	4,0986
1,20	3,3161	3,4434	3,5748	3,7112	3,8532	4,0002	4,4534	4,5122
4,25	5,3888 5,4625	3,5203 3,5986	3,6569	7,7981	3,9453	4,0977	4,2566	4,4212
			3,7399	3,8862	-4,0387	4,1965	4,3612	4,5318
3 c.	= 1,1150 r 0,0179	1,1515 0,0192	4,1881	1,2246	1,2613	1,2952	1,3354	1,3721
	. 0,01/7	V,0192	0,0206	0,0221	0,0256	0,0253	0,0270	0,0289

Pour vites. $z=0,40$ $z=0,42$ $z=0,44$ $z=0,46$ 0 0 0 0 0 0 0 0 0 0	$z = 0,48$ $\otimes (xV)$ \downarrow 1,2742 1,2848 1,2984 1,5149 1,5594 1,5594 1,5596 1,5596 1,5596 1,5596 1,4509 1,4109 1,4109 1,4176 24 1,4611 1,4611 1,4747 24 1,4618 24 1,4747 24 1,4882 25 1,5048 25
0,00	1,2742 12 1,2848 44 1,5119 44 1,5119 44 1,5255 45 1,5594 45 1,5562 17 1,5562 17 1,5562 17 1,5963 18 1,4064 49 1,474 22 1,414 21 1,424 49 1,4340 20 1,4476 24 1,444 22 1,448 22 1,448 22 1,448 22 1,448 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2848 13 1,2894 44 1,3419 45 1,525 45 1,5594 45 1,5596 46 1,5526 46 1,5652 16 1,5652 18 1,4560 49 1,4540 20 1,4476 24 1,4614 24 1,4644 24 1,4644 24 1,4747 24 1,4882 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2984 14 1,5119 14 1,5253 15 1,5596 16 1,5596 16 1,5595 17 1,5955 18 1,4069 19 1,4240 20 1,4540 20 1,4540 21 1,4611 21 1,4747 21 1,4882 25
0,45 4,2546 444 1,2687 445 1,2850 444 1,2974 445 0,20 4,2687 447 1,2804 449 4,2955 450 4,3105 452 0,25 4,2768 455 4,2921 455 4,5076 456 4,3552 489 0,50 4,2878 460 4,5058 46f 4,5199 465 4,5562 464 0,55 4,2989 466 4,5135 467 4,5322 469 4,5491 471 0,40 4,5405 478 4,5274 474 4,5445 475 4,5620 477 0,45 4,5240 478 4,5588 480 4,5568 482 4,5750 485 0,50 4,5321 484 4,5505 486 4,5694 488 4,5879 490 0,55 1,3432 490 4,3622 492 4,3844 494 4,4008 496 0,60 4,5542 497 4,5752 498 4,5957 200 4,4457 205 0,66 4,5652 203 4,3856 204 4,4660 207 4,4267 209 0,70 4,5764 208 4,5972 214 4,4185 215 4,4596 215 0,70 4,5878 244 4,4089 217 4,4506 249 4,4525 222 0,80 4,5985 221 4,206 225 4,4845 256 4,4784 254 0,90 4,4207 253 4,440 255 4,4565 258 4,4945 244 0,90 4,457 209 0,80 4,5972 214 4,4185 215 4,4596 215 0,85 4,4096 227 4,4525 222 4,4655 227 0,85 4,4096 227 4,4525 229 4,4552 256 4,4784 254 1,00 4,4428 245 4,4040 255 4,4675 258 4,4945 244 1,00 4,4428 245 1,4675 248 4,4924 251 4,5304 286 1,00 4,4428 245 1,4675 248 4,4924 251 4,5304 286 1,00 4,4428 245 1,4675 248 4,4924 251 4,5470 258 1,00 4,4649 258 1,4097 266 4,5996 270 4,5560 272 4,5560 272 4,5560 272 4,5562 272 4,5562 272 4,5572 270 4,5560 272 4,55	1,5119 44 1,5255 45 1,5594 45 1,5594 45 1,5662 17 1,5797 17 1,5953 48 1,4069 49 1,4204 49 1,4340 20 1,4476 24 1,4611 24 1,4611 24 1,4747 22 1,4882 25
0,20	4,5255 45 4,5594 45 4,5526 46 4,5662 47 4,3797 17 4,5953 48 4,4020 49 4,4200 20 4,4476 24 4,4641 24 4,4477 22 4,4482 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3526 16 1,5662 17 1,5797 17 1,5933 18 1,4069 19 1,4204 19 1,4340 20 1,4476 24 1,44611 24 1,4747 22 1,4882 23
0,55	1,5662 17 1,5797 17 1,5953 18 1,4069 19 1,4204 19 1,4340 20 1,4476 24 1,4611 24 1,4747 22 1,4882 25
0,40	4,5797 47 4,5953 48 4,4069 49 4,4204 49 4,4340 20 4,4476 24 4,4644 24 4,4747 22 4,4882 23
0.50	1,4069 19 1,4204 19 1,4340 20 1,4476 21 1,4611 21 1,4747 22 1,4882 23
0.55	1,4204 19 1,4340 20 1,4476 21 1,4611 21 1,4747 22 1,4882 23
0.65	1,4340 20 1,4476 24 1,4611 24 1,4747 22 1,4882 23
0,70	1,4611 21 1,4747 29 1,4882 23
0.75	1,4747 22 1,4882 23
0.80	1,4882 23
0,90 1,4207 255 1,4440 255 1,4675 258 1,4915 246 1,00 1,4547 240 1,4557 244 1,4798 245 1,4042 246 1,00 1,4428 245 1,4675 248 1,5044 257 1,504 255 1,4559 251 1,4790 254 1,5044 257 1,5504 259 1,40 1,4649 258 1,4907 260 1,3467 265 1,8450 266 1,4545 1,4760 264 1,5024 266 1,5267 267 1,5560 272 24.20 1,4874 270 1,4874 270 1,545 276 1,5689 278	1,5018 23
0.95 1,4547 240 1,4557 244 1,4798 245 1,5045 246 1,00 1,4428 245 1,4675 248 1,4921 251 1,5172 255 1,05 1,4559 251 1,4790 258 1,5044 257 1,5301 259 1,40 1,4649 258 1,4907 260 1,5167 265 1,5450 266 1,456 1,4760 264 1,5024 266 1,5295 270 1,5560 272 24.20 1,4874 270 1,4874 272 1,5445 276 1,5689 278	
1,00 1,4428 245 1,4675 248 1,4924 254 1,5172 255 1,05 1,4559 254 1,4790 254 1,5044 257 1,5501 259 1,10 1,4649 258 1,4907 260 1,5467 265 1,5450 266 1,4567 1,4760 264 1,5024 266 1,5295 270 1,5560 272 1,20 1,4874 270 1,4874 279 1,5445 276 1,5689 278	1,5154 24
1,10 1,4649 258 1,4907 260 1,5167 265 1,5450 266 1,15 1,4760 264 1,5024 266 1,5290 270 1,5560 272 2,20 1,4874 270 1,5144 272 1,5445 276 1,5689 278	1,5425 25
1,15 1,4760 264 1,5024 266 1,5295 270 1,5560 272 4,20 1,4874 270 1,5164 272 1,5645 276 1,5689 278	1,5560 26
4.20 4.4874 270 4.5444 272 4.5445 276 4.5689 278	1,5696 26 1,5852 27
	1,5967 28
4,25 1,4982 276 1,5258 278 1,5556 282 1,5848 285	1,6103 28
1,50 4,5092 282 4,5574 285 4,5659 289 4,5948 294 D. 444 D. 447 D. 425 D. 429	1,6259 29 D. 156
Pour D. 111 D. 117 D. 125 D. 129 D. 25 D. 129 D. 25 D. 129 D. 25 D.	0,9244 d. 5
	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	z = 0.58
0,00 1,2840 129 1,2969 450 1,5099 152 1,5251 455	1,5364 13
0,05	1,3532 14
0.45 1,5266 149 1,3415 149 1,5564 152 1,5746 155	1,5869 15
0.20 4,3408 455 1,3563 456 4,3749 458 4,5877 460	1,4037 46
0,25	1,4206 16
0.55 1,3834 174 1,4008 176 1,4184 178 1,4562 180	1,4542 18
0,40 1,5976 184 1,4157 482 1,4559 185 1,4524 186 0,45 1,418 487 1,4505 189 1,4594 491 1,4685 193	1,4710 18
0,45 1,4148 187 1,4505 189 1,4494 191 1,4685 195 0,50 1,4260 194 1,4454 195 1,4649 198 1,4847 199	1,4878 19 1,5046 20
0,55 1,4402 200 1,4612 202 1,4804 204 1,5008 207	1,5215 20
0,60 1,4844 207 1,4751 208 1,4959 211 1,5170 213	1,5383 21
0,65 4,4686 243 4,4899 245 1,5144 247 1,5554 220 0,70 4,4828 220 1,5048 224 1,5269 224 1,5495 226	1,5551 22 1,5719 22
0,75 4,4970 226 4,5196 228 4,5424 254 1,5655 252	1,5887 25
0,80 1,5112 255 1,5545 254 1,5579 257 1,5846 240	4,6056 24
0.85 4,5254 259 1.5495 244 1,5754 244 1,5978 246 0.90 4,5596 245 1,5641 248 1,5889 250 1,6459 255	1,6224 24 1,6392 25
0,95 4,5558 252 4,5790 254 1,6044 257 4,6301 259	1,6560 26
4.00 1,5681 257 1,5958 261 1,6199 263 1,6462 266	1,6728 26
1,03 1,3823 264 1,6087 267 1,655h 270 1,662h 273 1,40 1,5965 270 1,6255 274 1,6509 276 1,6785 280	1,6897 27 1,7065 28
1.15 1.6107 277 1.6384 280 1.6664 283 1.6947 286	1,7255 28
1,20 1,6249 283 1,6532 287 1,6819 290 1,7109 292	1,7401 29
1,25 1,6291 290 1,6681 295 1,6974 296 1,7270 299 1,50 1,6333 296 1,6829 500 1,7129 303 1,7452 306	1,7569 50 1,7758 50
Pour D. 142 D. 148 D. 155 D. 162	D. 168
© = 0,9816 d. 570 0,9986 d. 368 1,0554 d. 567 1,0721 d. 367	D. 100

Pour vites.	z=0	,60	z=0	,62	z=0	,64	z=0	.66	z=0	.68
Vo	$\mathfrak{O}(xV)$	D.z	$\mathfrak{O}(x\mathrm{V})$		$\mathfrak{O}(xV)$		$\mathfrak{O}(xV)$	No. I. F.	O(xV)	
0,00	1,5499	135	1.5654	457	1.3771	159	1.5940	159	1,4049	149
0,08	1,5674	142	1,3816	144	1,3960	145	1,4105	147	1,4252	148
0,10	1,5848	150	1,5998	150	1,4148	155	1,4504	153	1,4454	156
0,15	1,4023	156	1,4179	458	1,4557	159	1,4496	161	1,4657	162
0,20	4,4498	163	1,4561	164	1,4525	466 475	1,4691	168	1,4859	170
0,50	1,4548	176	1,4724	178	1,4902	180	1,5082	182	1,3264	184
0,35	1,4723	185	1,4906	185	1,5091	187	1,5278	189	1,5467	190
0,40	1,4898	190	4,8088	192	1,5280	195	1,5475	196	1,5669	198
0,45	1,5073	197	1,5270	198 206	1,5468	201	1,3669	203	1,5872	204
0,55	1,5248	210	1,5451	242	1,5657	207	4,5864 4,6060	210	1,6074	212
0,60	1,5598	217	4,5815	249	1,6034	221	1,6255	224	1,6479	226
0,68	1,5773	225	1,3996	226	1,6222	229	1,6451	231	1,6682	233
0,70	1,5948	230	4,6178	255	1,6411	235	1,6646	238	1,6884	240
0,75	1,6123	237	1,6560	240	1,6600	242	1,6842	244	1,7086	248
0,80	1,6299	244	1,6541	247 254	1,6788	249 256	1,7057	252	1,7289	254
0,90	1,6647	258	1,6905	260	1,7165	265	1,7200	266	1,7491	268
0,95	1,6822	265	1,7087	267	1,7354	270	1,7624	272	1,7896	276
1,00	4,6997	271	1,7268	274	1,7542	277	1,7819	280	4,8099	282
1,05	1,7172	278	1,7450	281	1,7751	284	1,8015	286 294	1,8504	290 296
1,15	1,7522	291	1,7813	295	1,7949	294	1,8210	300	1,8504 1,8706	504
1,20	1,7697	298	4,7995	502	1.8297	504	1.8604	508	1,8909	340
1,25	1,7872	505	1,8177	308	1,8485	312	1,8797	314	1,9111	318
1,50	1,8047	512	4,8559	345	1,8674	548	1,8992	522	4,9344	525
Pour	D. 175		D. 182		D. 189		D. 495		D. 202	
(D) 2	=1,1454		1,1820	d. 364	1,2184	1, 562	1,2546	1. 362	1,2808	1. 360
Vo	z=0	,70	z=0	,72	z=0	,74	z=0	,76	z=0	,78
0,00	1,4191	142	1,4555	144	1,4477	146	1,4623	147	1,4770	148
0,05	1,4400	150	4,4550	151	1,4701	153	1,4854	184	1,5008	456 463
0,10	1,4610	157	1,4767 1,4985	158 166	1,4925	160 167	1,5085	162	1,5247	171
0,20	1,5029	170	1,5200	175	1,8573	174	1,5547	177	4,5724	178
0,25	1,5258	179	1,5417	180	4,5597	184	1,5778	184	4,5962	186
0,50	1,5448	185	1,5653	187	1,5820	190	1,6010	191	1,6201	193
0,55	1,5657	190	1,5850	194	1,6044	197	1,6241	198	1,6439	201
0,40	1,5867	199	1,6066	202	1,6268 1,6492	204	1,6472	206	1,6678	208
0,50	1,6286	214	1,6500	216	1,6716	218	1,6954	221	4,7455	222
0,55	1,6496	220	1,6716	224	1,6940	225	1,7165	228	4,7595	250
0,60	1,6705	228	1,6955	251	1,7164	252	1,7596	256	4,7652	237
0,65	1,6913	235	1,7450	237	1,7587	244	1,7628	242 250	1,7870	245
0,70	1,7124	242	1,7585	252	1,7855	255	1,7859	257	1,8347	260
0.80	1,7545	257	1,7800	259	1,8059	262	1,8521	265	1,8586	267
0,85	4,7755	263	1,8016	267	1,8283	269	1,8552	272	1,8824	275
0,90	1,7962	274	1.8255	274	1,8507	276	1,8783	280 287	1,9065	282 290
0,95	1,8172	278	1,8450	284	1,8731	283	1,9014	294	1,9504	290
1,00	1,8584	292	1,8885	295	1,9178	291	1,9477	504	1,9559	504
1,10	1,8800	500	1,9100	302	1,9402	306	1,9708	508	2,0016	342
1,15	1,9010	506	4,9516	510	1,9626	543	1,9959	316	2,0255	319
1,20	1,9219	514	4,9555	347	1,9850	320	2,0170	323	2,0495	327
1,25	1,9429	524 527	1,9750	324 332	2,0074	527 354	2,0404	554 558	2,0732	554 542
	D. 210	941	D. 217	002	D. 224		D. 234	500	D. 258	
Pour		d 360	1,5628	1. 560		1. 588	1,4546	1. 357	1,4708	1. 557
W 007	-1,0208	u. 500	1,0010	. 000	1,0000	000	1,4040		-,-,-,	

								,		
Pour vites.	z=1	,20	z=1	,22	s=1	,24	s=1	,26	z=1	,28
Vo	$\mathfrak{O}(x\mathrm{V})$	D. 3	$\mathfrak{O}(xV)$	D. z	$\mathfrak{O}(xV)$	D. z	$\mathfrak{O}(x\mathrm{V})$	D. z	$\mathfrak{O}(xV)$	37 33 L
0,00	1,8221	183	1,8404	185	1,8589	187	1,8776	189	1,8965	190
0,03	1,8632	192	1,8824	195	1,9019	196	1,9215	198	1,9413	205
0,10	1,9943	202	1,9245	203	1,9448	206	1,9654	207	1,9861	210
0,20	1,9865	220	2.0085	222	2,0307	224	2,0092	217	2,0509	220
0,25	2,0276	229	2,0505	254	2,0756	254	2.0970	256	2,1206	258
0,50	2,0688	237	2,0925	241	2,1166	245	2,1409	245	2,1654	248
0,35	2,1099	247	2,1546	249	2,1595	253	2,1848	254	2,2102	258
0,40	2,1510	256 265	2,1766 2,2186	259	2,2025 2,2454	261	2,2286	265	2,2554	267
0,50	2,2342	274	2,2606	278	2,2454	274 280	2,2725	274 285	2,2999 2,3447	276 286
0,55	2,2743	284	2,5027	286	2,5513	290	2,5603	292	2,3895	295
0,60	2,3434	293	2,5447	296	2,5745	299	2,4042	502	2,4544	305
0,65	2,5565	302	2,3867	505	2,4172	308	2,4480	512	2,4792	514
0,70	2,3976 2,4587	544	2,4287 2,4707	515	2,4602	547	2,4919	521	2,5240	524
0.80	2,4798	550	2,5128	532	2,5051	527 557	2,5558	551	2,5689	555
0,85	2,5209	559	2,5128	342	2,5460 2,5890	546	2,5797 2,6256	549	2,6157	545 552
0,90	2,5620	548	2,5969	551	2,6319	555	2,6674	359	2,7053	565
0,95	2,6054	357	2,6388	361	2,6749	364	2,7113	368	2,7481	372
1,00	2,6442	366	2,6808	570	2,7178	574	2,7552	577	2,7929	582
1,05	2,6853 2,7264	576 585	2,7229 2,7649	579 588	2,7608 2,8057	383 393	2,7991	587	2,8378	591 400
1,15	2,7676	393	2,8069	598	2,8467	401	2,8450 2,8868	596 406	2,8826	410
1,20	2,8087	402	2,8489	407	2,8896	411	2,9307	445	2.9722	420
1,25	2,8498	411	2,8909	417	2,9526	420	2,9746	425	3,0171	429
1,50	2,8909	421	2,9350	425	2,9755	430	5,0183	454	5,0649	458
Pour	D. 411		D. 420		D. 429		D. 439	1-	D. 448	
(D) 2	=2,2002	d. 339	2,2241	. 558	2,2679 d	. 357	2,3016	1, 556	2,5342	1.555
Vo	z=1	,30	z=1	,32	z=1	,34	z=1	,36	z=1	,38
0,00	1,9135	192	1,9347	195	1,9542	196	1,9738	199	1,9937	204
0,05	1,9615	202	1,9815	204	2,0019	206	2,0225	209	2,0454	210
0,10	2,0529	221	2,0282 2,0750	214	2,0496	216	2,0712	218	2,0930	221
0,20	2.0986	234	2,1217	233	2.1450	236	2,1686	238	2,1924	244
0,25	2,1444	240	2,1684	243	2,1927	246	2,2173	248	2,2421	254
0,30	2,1902	250	2,2152	252	2,2404	256	2,2660	258	2,2918	261
0,55	2,2560 2,2818	259	2,2619	262	2,2884	265	2,5146	269	2,3415	271
0,40	2,2818	268 279	2,3086 2,3554	272	2,3558	275 285	2,3653	278 288	2,3911	282
0,50	2,3755	288	2,4021	292	2,4313	294	2,4607	298	2,4905	301
0,55	2,4190	299	2,4489	501	2,4790	304	2,5094	508	2,3402	511
0,60	2,4649	307	2,4956	511	2,5267	514	2,3581	318	2,5899	521
0,65	2,5106 2,5564	317 327	2,5423	524 550	2,3744	324	2,6068	328	2,6396	351
0,75	2,6022	356	2,5894 2,6558	340	2,6224	334	2,6555	537 547	2,6892 2,7389	549 559
0,80	2,6480	345	2.6825	350	2,7175	354	2,7529	357	2,7886	362
0,85	2,6937	556	2,7295	559	2,7652	564	2,8016	567	2,8585	871
0,90	2,7396	364	2,7760	369	2,8129	373	2,8502	378	2,8880	381
0,95	2,7833	375	2,8228	378	2,8606	583	2,8989	388	2,9377	594
1,00	2,8311	384 393	2,8695	388	2,9083 2,9560	393 403	9,9476	397 407	2,9873 3,0370	402
1,10	2,9226	404	2,9630	408	5,0058	412	2,9965 3,0450	417	5,0867	412
1,15	2,9684	413	5,0097	418	3,0515	422	3,0937	427	5,1364	452
1,20	5,0142	422	3,0564	428	5,0992	432	3,1424	437	5,1861	442
1,25	5,0600 5,1057	432	5,1032	437	3,4469	442	3,1911	447	5,2558	454
1,50	D. 458	442	5,1499 D. 467	447	5,1946 D. 477	452	5,2398 D. 487	456	3.2854 D. 497	462
Pour	_	4 ===		774				-	-	
1 00 2	= 2,0687	u, 555	2,4022 6	. 064	2,4556 6	. 554	2,4690 (1. 555	2,8028 (1. 555

Pour	z=1	40	s=1	49	4	4.4	- 4	10	s=1	40
vites.	'	•	•		3=1		≥ =1	•		•
Vo	O(xV)	D. 3	$\mathbf{O}(xV)$	D. 2	$\mathfrak{O}(x \vee)$	D. 5	$\mathcal{O}(xV)$	D. 2	$\mathfrak{O}(xV)$	D. 2
0,00	2,0138	202	2,0340	204	2.0544	207	2,0751	208	2,0959	211
0,05	2,0644	218	2,0857	214	2,1071	217	2,1288	219	2,4507	224
0,10	2,1151	228	2,1374	225	2,1599	227	2,1826	229	2,2055	252
0,15	2,1658 2,2165	243	2,1891 2,2408	235	2,2426 2,2653	237 248	2,2363 2,2904	240 250	2,2603 2,8154	253
0,25	2,2672	253	2,2925	255	2,3480	258	2,3438	261	2,3699	263
0,80	2,3179	263	2,3442	263	2,3707	269	2,3976	274	2,4247	274
0,55	2,3686	273	2,3939	276	2.4235	278 289	2,4513 2,5031	282	2,4795 2,5343	284
0,40 0,45	2,4193 2,4699	283 294	2,4476 2,4993	286 296	2,4762 2,5289	299	2,5588	303	2,5894	805
0,50	2,5206	304	2,3510	306	2,5816	310	2,6126	813	2,6439	316
0,55	2,5713	314	2,6027	816	2,6343	320	2,6663	824	2,6987	526
0,60 0,65	2,6220 2,6727	524 534	2,6544 2,7061	327 337	2,6874 2,7398	330 341	2,7201 2,7739	334 344	2,7835 2,8083	537 348
0,70	2,7234	344	2,7578	847	2,7925	351	2,8276	855	2,8634	358
0,75	2,7744	334	2,8095	337	2,8452	362	2,8814	865	2,9179	568
9 ,80 9 .85	2,8248	364	2,8612	867	2,8979 2,9507	372 382	2,9351 2,9889	376 386	2,9727 3,0275	579 589
0.90	2,87\$4 2,9264	378 388	2,9129	378 388	3,0034	392	3,9889 3,0426	397	5,0275 5,0825	400
0,95	2,9768	393	8,0163	398	3,0864	403	8,0964	407	8,1371	410
1,00	3,0275	405	3,0680	408	5,1088	413	3,1301	418	8,1919	421
1,08	3,0782 3,1289	415	3.1197 3,1714	419	3,1616 3,2143	423 433	8,2039 8,2576	427 488	3,2466 3,5014	432
1,48	3,1796	438	3,2234	439	3,2670	444	8,3114	448	3,3562	453
4,20	3,2303	445	3,2748	449	3,3197	454	3,3651	459	3,4110	464
1,25 1,30	5,2809	456	5,3265	459 471	3,3724	465	3,4189 3,4726	469 480	3,4658 3,5206	474 485
Pour	8,3516 D. 507	403	5,3781 D. 817	4/1	3,4252 D. 527	4/4	D. 538	400	D. 548	400
	=2,5356	4 339		330	2,6018	330	2,6348	. 330	2,6678	1. 328
	- 2,0000								}	
V_{o}	z=1	,50	z=1	,52	z=1	,54	z=1	,56	2=1	,58
		1		215	2,1598	217	2.1813	219	2,2034	221
0,00 0,05	2,1170 2,1728	213	2,1383	225	2,1598	228	2,1813	231	2,2636	252
4,10	2,2287	234	2,2521	236	2,2737	239	2,2996	241	2,3237	244
0,48	2,2845	245	2,3090	247	2,3337	250	2,3587	253	2,3839	255
6,20 6,25	2,3404 2,3962	255	2,3659 2,4229	258 268	2,3917 2,4497	260 274	2,4177 2,4768	264 274	2,4444 2,5042	265 277
0,30	2,4591	276	2,4797	280	2,5077	282	2,5359	285	2,5644	288
●,35	2,3079	288	2,5367	290	2,5657	293	2,3950	296	2,6246	299
●,40 ⊕,45	2,5638 2,6196	298 309	2,8936	300 314	2,6236 2,6816	304	2,6540 2,7131	307 318	2,6847 2,7449	511 521
0,50	2,6735	319	2,7074	322	2,7396	326	2,7722	329	2,8054	832
0,83	2,7513	330	2,7643	333	2,7976	337	2,8313	539	2,8652	344
0,60	2.7872	340	2,8212	344	2,8336 2,9136	347 358	2,8903 2,9494	351 362	2,9254 2,9856	855 365
0,65 ●,70	2,8434 2.8989	350 361	2,8781 2,9350	366	2,9156	369	3,0085	373	3,0438	376
0,75	2,9547	378	2,9920	376	3,0296	379	3,0675	384	3,1059	388
0,80	3,0106	383	3,0489	386	3,0873	394	3,1266	395 406	3,1661	399
●,85 ●,90	3,0664 3,1223	394 404	3,1038 3,1627	397 408	3,1455 3,2035	402	3,1837 3,2448	416	3,2263 3,2864	409 421
0,95	3,1781	412	3,2193	422	3,2615	423	3,3038	428	3,3466	432
1,00	3,2340	423	3,2763	430	3,3495	434	8,3629	439	3,4068	443
1,10	3,2898	436	3,3334 3,3904	441	5,3775 5,4355	445 456	3,4220 3,4811	449 460	3.4669 3,5274	455 465
1,10	8,8457 3,4015	447	5,8904 5,4473	462	5,4935 5,4935	466	3,5401	472	3,5873	476
4,20	3,4574	468	3,5042	472	3,8814	478	3,5992	482	8,6474	488
4,25	3,5132	479	8,5644	483	3,6094	489	3,6583	493 505	3,7076 3,7678	499 809
4,50	5,5694 D. 388	489	5,6180 D. 569	494	3.6674 D. 580	499	5,7173 D. 591	303		209
4,80 Pour	D. 558		D. 569	l	D. 580	<u> </u>	D. 594 2,7988	<u> </u>	D. 602	

						·				
Pour vites.	≈ =1	60	z=1	62	z=1	64	z=1	66	z=1	68
Vo.	$\mathfrak{V}(xV)$		$\mathfrak{V}(xV)$			•	$\mathfrak{V}(xV)$	•		
	<u> </u>			•				2.4	<u> </u>	
0,00	2,2255 2,2868	224 235	2,2479 2,3103	226 237	2,2705 2,3340	228 240	2,2933 2,3580	231 242	2,3164 2,3822	232 244
0,10	2,3481	246	2,3727	248	2,3975	251	2,4226	254	2,4480	256
0,15	2,4094	257	2,4354	260	2,4611	262	2,4873	265	2,5138	268
0,20 0,25	2,4706 2,5319	269 280	2,4975 2,5599	274 282	2,5246 2,5884	274 285	2,5520 2,6166	276 288	2,5796 2,6454	280 292
0,30	2,5952	291	2,6223	293	2,6346	297	2,6843	300	2,7113	50 2
0,35	2,6545	302 313	2,6847	304	2,7151	309	2,7460	344	2,7774	314
0,40	2,7158 2,7770	324	2,7471 2,8094	316 328	2,7787 2.8422	319 331	2,8106 2,8753	323 334	2,8429 2,9087	326 338
0,80	2,8383	535 546	2,8718	339	2,9057	343	2,9400	345	2,9745	350
0,55	2,8996 2,9609	357	2,9342 2,9966	350 362	2,9692 3,0328	354 365	3,0046 3,0693	358 369	3,0404 3,406 2	364 37 2
0,65	3,0221	869	8,0590	373	3,0963	376	3,4339	381	3,1720	384
0,70 0,75	3,0834 3,1447	380 391	3,1214 3,1838	384 393	3,4598 3, 22 33	388 400	3,1986 3,2633	392 403	3,2378 3,3036	896 408
0,73	3,2060	402	3,2462	407	3,2869	410	3,2033	445	3,3694	420
0,85	3,2672	414	3,3086	418	3,3504	422	3,3926	427	3,4353	480
0,90	5,3285 3,3898	425 436	3,3710 3,4334	429 440	3,4139 3,4774	434	3,4578 3,5219	438 450	3,5011 8,566 9	442
1,00	3,4514	447	5,4958	452	3.5410	456	3,5866	461	3,6327	466
1,05	3,5124	458	3,5582	463	5,6045	468	3,6313	472	3,6985	478
1,10	5,5736 3,6349	470 481	3,6206 5,6830	474 485	3,6680 3,7315	479 491	3,7459 3,7806	485 496	5,7644 5,830 2	489 500
1,20	3,6962	492	3,7454	497	3,7951	502	8,8453	507	3,8960	512
1,25	3,7378	503 515	3,8078 3,8702	508 519	3,8386	513 525	3,9099	519	3,9618	524 536
Pour	3,8187 D. 613	515	D. 674	319	3,9224 D. 635	323	3.9746 D. 647	550	4,0276 D. 658	330
	= 2,8639	4 395	2,8864	7 7 9 /	2,9288					
		u. 323	4,0004 (1. 324	2,9200 0	. 523	2,9611	1. 323	2,9934 (1, 322
$\overline{v_o}$	z=1		z=1		2=1		z=1		z = 1	
!!	z=1		z=1	,72	z=1	,74	z=1	,76	z=1	,78
0,00	z=1 2,3596 2,4066	253	2=1 2,5634 2,4513	,72 238 249	2=1 2,3869 2,4562	,74 240 252	$ \begin{array}{c} z = 1 \\ 2,4109 \\ 2,4814 \end{array} $,76 242 255	z=1 2,4334 2,5069	,78 245 257
0,00 0,05 0,10	z=1 2,3596 2,4066 2,4756	253 247 259	z=1 $2,5634$ $2,4513$ $2,4995$,72 238 249 261	2=1 2,3869 2,4562 2,5256	,74 240 252 264	$ \begin{array}{c} z = 1 \\ \hline 2,4109 \\ 2,4814 \\ 2,5320 \end{array} $,76 242 255 266	$ \begin{array}{ c c c c c } \hline z = 1 \\ \hline 2,4334 \\ 2,5069 \\ 2,5786 \end{array} $,78 245 257 270
0,00	z=1 2,3596 2,4066	253	2=1 2,5634 2,4513	,72 238 249	2=1 2,3869 2,4562	,74 240 252	$ \begin{array}{c} z = 1 \\ 2,4109 \\ 2,4814 \end{array} $,76 242 255	z=1 2,4334 2,5069	,78 245 257
0,00 0,05 0,10 0,15 0,20 0,25	z=1 2,3596 2,4066 2,4736 2,5106 2,6076 2,6746	253 247 259 270 282 293	z=1 2,5654 2,4513 2,4995 2,5676 2,6558 2,7059	,72 238 249 261 275 283 297	2 = 1 2,5869 2,4562 2,5256 2,5949 2,6645 2,7356	,74 240 252 264 276 288 500	z=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636	,76 242 255 266 279 290 503	z=1 2,4354 2,5069 2,5786 2,6504 2,7224 2,7939	,78 245 257 270 284 294 306
0,00 0,05 0,40 0,45 0,20 0,25 0,50	z=1 2,5596 2,4066 2,4756 2,5406 2,6076	253 247 259 270 282	2 == 1 2,5654 2,4513 2,4995 2,5676 2,6358	,72 238 249 261 275 285	2 = 1 2,5869 2,4562 2,5256 2,5949 2,6645	,74 240 252 264 276 288	$ \begin{array}{c} z = 1 \\ \hline 2,44109 \\ 2,4814 \\ 2,5320 \\ 2.6225 \\ 2,6954 \end{array} $,76 242 255 266 279 290	z=1 2,4354 2,5069 2,5786 2,6504 2,7224	,78 245 257 270 284 294
0,00 0,05 0,40 0,15 0,20 0,25 0,50 0,55 0,40	2.5596 2,4066 2,4756 2,5406 2,5406 2,6746 2,7415 2,8085 2,8755	233 247 259 270 282 293 306 347 329	z=1 2,5634 2,4513 2,4995 2,5676 2,6358 2,7039 2,7721 2,8402 2,9084	,72 238 249 261 275 283 297 309 321 532	2 = 1 2,5869 2,4562 2,5256 2,5949 2,6645 2,7356 2,8050	240 252 264 276 288 500 341 324 336	z=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8544 2,9047 2,9752	,76 242 255 266 279 290 503 346 527 340	z=1 2,4334 2,5069 2,5786 2,6504 2,7224 2,7939 2,8657	,78 245 257 270 284 294 306 318 334 342
0,00 0,05 0,40 0,45 0,20 0,25 0,50 0,55 0,40 0,45	2.3596 2,4066 2,4736 2,5406 2,5406 2,6076 2,6746 2,7413 2,8085 2,8755 2,9425	253 247 259 270 282 293 306 347 329 541	z=1 2,5634 2,4513 2,4995 2,5676 2,6538 2,7039 2,7721 2,8402 2,9084 2,9766	,72 238 249 261 275 283 297 309 321 332 344	2 = 1 2,3869 2,4562 2,5256 2,5949 2,6645 2,7356 2,8050 2,8725 2,9446 5,0140	240 252 264 276 288 500 341 324 336 348	z=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8544 2,9047 2,9752 3,0458	,76 242 255 266 279 290 503 346 527 340 551	z=1 2,4354 2,5069 2,5786 2,6504 2,7224 2,7939 2,8657 2,9374 5,0092 3,0809	,78 245 257 270 284 294 306 318 334 342 355
0,00 0,05 0,40 0,15 0,20 0,25 0,50 0,55 0,40	2.5596 2,4066 2,4756 2,5406 2,5406 2,6746 2,7415 2,8085 2,8755	233 247 259 270 282 293 306 347 329	z=1 2,5634 2,4513 2,4995 2,5676 2,6358 2,7039 2,7721 2,8402 2,9084	,72 238 249 261 275 283 297 309 321 532	2 = 1 2,5869 2,4562 2,5256 2,5949 2,6645 2,7356 2,8050 2,8725 2,9416	240 252 264 276 288 500 341 324 336	z=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8544 2,9047 2,9752	,76 242 255 266 279 290 503 346 527 340	z=1 2,4354 2,5069 2,5786 2,6504 2,7224 2,7939 2,8657 2,9374 5,0092	,78 245 257 270 284 294 306 318 334 342
0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,40 0,45 0,50 0,85 0,60	z=1 2.3596 2,4066 2,4736 2,5106 2,6746 2,6746 2,7445 2,8083 2,8753 2,9423 3,0093 3,4754	253 247 259 270 282 293 306 347 329 341 352 364 576	2 = 1 2,5654 2,4513 2,4995 2,5676 2,6538 2,7029 2,7721 2,8402 2,9084 2,9766 3,0447 3,4429 3,4840	,72 238 249 261 275 283 297 309 321 332 344 356 368 380	2.5869 2.4562 2.5256 2.5256 2.5949 2.6645 2.7356 2.8050 2.8725 2.9446 5.0140 5.08497 5.2490	240 252 264 276 288 500 341 324 336 348 360 372 384	2=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8536 2,9047 2,9782 5,0458 5,4463 5,4869 3,2574	,76 242 255 266 279 290 303 346 327 340 351 364 375	2 = 1 2,4354 2,5069 2,3786 2,6504 2,7224 2,79374 5,0092 3,0809 5,1527 5,2244 3,2962	,78 245 257 270 284 294 306 314 342 355 367 379
0,00 0,05 0,40 0,45 0,20 0,50 0,55 0,40 0,45 0,55 0,60 0,65	z=1 2.5596 2,4066 2,4756 2,5406 2,6746 2,6746 2,7415 2,8755 2,9425 3,0093 5,0765 3,4454	253 247 259 270 282 293 306 317 329 341 352 364 576 588	z=1 2,5654 2,4513 2,4995 2,5676 2,6358 2,7059 2,7721 2,8402 2,9766 3,0447 5,4429 5,4849	,72 238 249 261 275 283 297 309 321 332 344 356 368 380 392	2=1 2.3869 2.4562 2.5256 2.5256 2.8959 2.6643 2.8050 2.8725 2.9446 3.0805 5.4497 5.2190 5.2888	240 252 264 276 288 500 341 324 336 348 360 372 384 396	2=1 2,4109 2,4814 2,5320 2,623 2,6934 2,7636 2,8544 2,9047 2,9782 3,1463 3,1463 3,1869 3,2578 3,2578 3,380	,76 242 255 266 279 290 303 346 527 340 551 564 375 388 399	z=1 2,4354 2,5069 2,5786 2,6504 2,7294 2,7939 2,8657 2,9374 5,0092 3,0809 3,1527 5,224 3,2962 3,3679	,78 245 257 270 284 294 306 318 351 342 355 367 379 392 404
0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,40 0,45 0,50 0,85 0,60	z=1 2.3596 2,4066 2,4736 2,5106 2,6746 2,6746 2,7445 2,8083 2,8753 2,9423 3,0093 3,4754	253 247 259 270 282 293 306 347 329 341 352 364 576	2 = 1 2,5654 2,4513 2,4995 2,5676 2,6538 2,7029 2,7721 2,8402 2,9084 2,9766 3,0447 3,4429 3,4840	,72 238 249 261 275 283 297 309 321 332 344 356 368 380	2.5869 2.4562 2.5256 2.5256 2.5949 2.6645 2.7356 2.8050 2.8725 2.9446 5.0140 5.08497 5.2490	240 252 264 276 288 500 341 324 336 348 360 372 384	2=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8536 2,9047 2,9782 5,0458 5,4463 5,4869 3,2574	,76 242 255 266 279 290 303 346 327 340 351 364 375	2 = 1 2,4354 2,5069 2,3786 2,6504 2,7224 2,79374 5,0092 3,0809 5,1527 5,2244 3,2962	,78 245 257 270 284 294 306 318 334 342 355 367 379
0,00 0,05 0,40 0,45 0,20 0,50 0,55 0,40 0,55 0,60 0,65 0,67 0,67 0,75 0,80	z = 1 2.5596 2,4066 2,4756 2,5406 2,6746 2,6746 2,7415 2,8085 2,9425 3,0095 3,4454 5,2104 5,2774 5,2104 5,3444	253 247 259 270 282 293 306 341 352 364 576 588 399 411 425	z=1 2.5654 2,4513 2,4998 2,5676 2,6538 2,7039 2,7721 2,8402 2,9766 5,0447 5,4129 5,41840 5,2492 5,5173 5,5833 5,4537	72 238 249 261 275 283 297 309 321 356 368 380 392 404 416 427	2=1 2.5869 2.4562 2.5256 2.5256 2.8050 2.8050 2.8725 2.9446 5.0140 5.0805 3.1497 5.2190 5.2884 5.3577 5.4274 5.4964	240 252 264 276 288 300 341 324 336 348 360 372 384 396 408 419	z=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8544 2,9045 3,4163 3,4163 3,4163 3,2574 3,3280 3,3983 5,4596 5,5596	,76 242 255 266 279 290 503 346 527 340 551 564 575 388 399 412 425	z=1 2,5354 2,5069 2,5786 2,6504 2,7939 2,8657 2,9376 3,0809 3,1527 3,2244 3,2962 3,3679 3,4397 3,3415 3,5852	,78 245 257 270 284 294 306 318 331 342 355 367 379 392 404 416 428
0,00 0,40 0,40 0,20 0,25 0,50 0,55 0,40 0,85 0,60 0,65 0,60 0,65	z = 1 2.5596 2.4066 2.40766 2.5706 2.6076 2.6746 2.7416 2.8085 2.8753 2.9425 3.0093 3.0093 3.4154 5.2104 5.2774 3.3444	253 247 257 270 270 282 293 306 317 329 541 352 364 576 588 399 411	2=1 2,5654 2,4513 2,4995 2,5676 2,6358 2,7059 2,7721 2,8402 2,9786 5,0447 5,4129 3,1840 3,2492 3,5173 5,5218	,72 238 249 264 275 285 297 309 321 532 344 356 368 380 392 404 416	2=1 2.3869 2.4562 2.5256 2.5949 2.66645 2.7356 2.8753 2.9416 5.0140 3.0805 3.0805 5.4497 5.2190 5.2888 5.3577 5.4271	240 252 264 276 288 500 541 524 336 348 360 572 384 408 419	2=1 2,4109 2,4814 2,5320 2,625 2,6954 2,7636 2,8544 2,9045 5,1463 5,1463 5,257 3,257 3,257 5,3985 5,4690 5,33985 5,6101	,76 242 255 266 279 290 346 527 340 551 564 575 388 399 412 425	z=1 2,5354 2,5069 2,5786 2,6506 2,7921 2,7939 2,8537 3,0092 3,0809 3,1527 3,2244 3,2962 3,3679 3,4397 3,5113	,78 245 257 281 294 306 318 351 342 355 367 379 392 404 416 428
0,00 0,05 0,40 0,45 0,20 0,55 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85	z = 1 2.5596 2,4066 2,4076 2,5406 2,6746 2,6746 2,7415 2,8085 2,8753 2,9425 3,0095 3,4154 5,2104 5,2774 5,3444 5,4114 5,4785 5,5455 3,6125	253 247 259 270 282 295 306 347 329 341 352 364 576 588 399 411 425 455 457 458	2=1 2.5654 2,4513 2,4995 2,5676 2,6538 2,7059 2,7721 2,8402 2,9084 2,9766 3,04429 3,4840 3,2492 3,4840 3,2492 3,5173 5,5173 5,5218 5,5900 5,6581	7,72 238 249 261 275 283 297 309 3521 352 344 556 368 392 404 416 427 451 465	2=1 2.5869 2.4562 2.5256 2.5926 2.5926 2.8943 2.6645 2.7356 2.8050 2.8725 2.9446 5.0140 5.0807 5.2490 5.2888 5.3577 5.4274 5.4964 5.3657 5.6557 5.6575 5.7044	74 240 252 264 276 288 500 341 336 348 360 372 384 408 419 436 448 456 468	2=1 2,4109 2,4814 2,5320 2,6234 2,7636 2,8534 2,7636 2,9047 2,9782 3,0458 3,4463 3,2574 3,3280 3,2574 3,3280 5,5396 5,6807 3,7342	,76 242 258 266 279 290 303 346 551 364 378 388 399 412 428 436 449 460 473	z=1 2,5354 2,5069 2,5786 2,6504 2,7939 2,8657 2,9378 3,0092 3,0809 3,1527 3,2244 3,2962 3,3679 3,4397 3,5143 3,5852 3,6550 5,7267 3,7985	,78 245 257 270 284 296 306 318 334 345 367 379 392 404 428 444 453 477
0,00 0,05 0,40 0,45 0,20 0,25 0,50 0,55 0,40 0,55 0,60 0,65 0,70 0,70 0,75 0,85 0,85 0,85 0,85	z=1 2.5596 2,4066 2,4756 2,5406 2,5406 2,6746 2,7415 2,8085 2,9425 3,0095 3,4454 5,2104 5,2774 3,3444 3,414 3,4785 5,5455 3,6125 3,6125	253 247 259 270 282 295 306 347 329 364 576 588 364 411 425 455 457	2=1 2.5654 2,4513 2,4998 2,3676 2,7039 2,7721 2,8402 2,9766 3,0447 3,4142 3,5457 3,4840 3,2492 3,5173 5,5218 5,5900 5,6581 5,7265	772 238 249 261 273 285 397 309 321 334 368 380 392 416 427 459 451 463 475	2=1 2.5869 2.4562 2.5256 2.5926 2.5936 2.8030 2.87336 2.8030 3.73497 3.2490 3.2884 5.3577 5.4274 5.4964 5.3657 5.6577 5.6577 5.7074 3.7738	74 240 252 264 276 288 500 541 524 536 548 549 549 449 444 456 488	2=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8544 2,9045 3,4463 3,1463 3,1463 3,2574 3,3280 3,585 3,469 3,585 3,690 5,6101 3,6807 3,7512 3,8218	,76 242 255 266 279 290 305 316 527 340 351 388 399 442 423 436 449 460	2=1 2,4354 2,5069 2,5786 2,6504 2,7939 2,8657 2,9374 2,9374 3,0809 5,1527 5,2245 3,2962 3,3679 3,4357 3,5143 3,5852 3,6550 5,7267 3,7985 3,7985 3,8702	,78 245 257 270 284 306 318 354 355 367 379 392 404 416 428 441 453 463 467 477
0,00 0,05 0,40 0,45 0,20 0,35 0,50 0,55 0,60 0,65 0,75 0,76 0,75 0,80 0,85 0,80 0,85	z=1 2.5596 2,4066 2,4076 2,5406 2,6076 2,6746 2,7416 2,8085 2,8785 2,9425 3,0095 3,4154 5,2104 5,2774 5,3444 5,414 5,4785 3,6125 3,6125 5,6795 5,7465 5,7465	253 247 259 270 270 282 295 506 541 552 564 576 578 588 599 441 425 447 458 470 481 495	2=1 2,5654 2,4513 2,4995 2,5676 2,6538 2,7059 2,7721 2,8402 2,9084 2,9766 3,04429 3,4429 3,4429 3,4453 5,4557 5,5218 5,5900 5,6581 3,7263 3,7944 5,8626	772 238 249 261 273 283 297 309 321 334 356 368 380 404 416 427 431 463 473 487 499	2=1 2.3869 2.4562 2.5949 2.6643 2.7536 2.8050 2.8723 2.9446 5.0140 5.08497 5.2490 5.2884 5.3577 5.4274 5.4964 5.3557 5.4274 5.7964 5.7074 5.7738 5.8431 5.7044	74 240 252 264 276 288 500 341 324 336 348 360 372 384 408 408 408 448 486 486 480 492 504	2=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8541 2,9047 2,9752 3,0458 3,4169 3,2574 3,3280 3,3985 5,4690 5,5596 5,6101 5,6807 3,7542 3,8923 3,8923 3,9629	,76 242 255 266 279 290 346 527 340 351 364 373 388 436 449 460 473 484 497 509	2=1 2,5354 2,5069 2,5786 2,6506 2,7921 2,7939 2,8637 3,0809 3,1527 3,0809 3,1524 3,2962 3,3679 3,4397 3,5145 3,5852 3,6530 3,7267 3,7985 3,8702 3,9420 4,0438	,78 245 257 270 284 306 318 335 334 357 379 392 404 418 418 453 477 490 508
0,00 0,05 0,40 0,45 0,20 0,55 0,50 0,55 0,40 0,45 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,85 0,85	z = 1 2.5596 2,4066 2,4756 2,5406 2,6746 2,6746 2,7445 2,8083 2,8753 2,9425 3,0095 3,4454 5,2104 5,2774 5,4155 5,5455	253 247 259 270 282 293 364 374 352 364 376 376 458 477 478 477 478 478 479 479 479 479 479 479 479 479 479 479	2=1 2,5654 2,4513 2,4998 2,5676 2,6358 2,7039 2,7721 2,8402 2,9766 3,0447 3,4129 3,41840 3,2492 3,5173 5,5218 5,5803 5,6581 3,7265 5,7944 5,8626 5,9508	258 249 261 275 283 297 309 352 344 356 380 392 404 416 427 459 463 475 487 487	2=1 2.5869 2.4562 2.5256 2.5256 2.8050 2.6763 2.8072 2.9746 5.0140 5.0805 5.4274 5.4964 5.3575 5.4274 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054 5.7054	240 252 264 276 276 288 500 541 336 348 360 572 384 499 499 449 449 456 468 488 480 492 504 516	2=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8544 2,70458 3,4463 3,1463 3,14869 3,2374 3,3280 3,54690 5,56807 5,6807 5,7512 3,8218 3,8218 3,8929 4,0354	,7G 242 255 266 279 305 316 527 340 551 564 579 388 399 412 425 436 449 4473 484 497 509 524	2=1 2,5354 2,5069 2,5786 2,6504 2,7939 2,8637 2,9374 2,7939 3,0809 3,1527 3,2264 3,2264 3,2679 3,4374 3,5852 3,6550 5,7267 3,7985 3,8702 3,9404 4,0438 4,0835	,78 245 257 270 284 306 318 305 354 355 367 379 392 408 418 418 428 441 453 477 490 308 518 556
0,00 0,05 0,10 0,15 0,20 0,25 0,50 0,55 0,40 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,80 0,85 0,40 0,45 0,45 0,45 0,45 0,45 0,45 0,4	z=1 2.5596 2,4066 2,4076 2,5406 2,6076 2,6746 2,7416 2,8085 2,8785 2,9425 3,0095 3,4154 5,2104 5,2774 5,3444 5,414 5,4785 3,6125 3,6125 5,6795 5,7465 5,7465	253 247 259 270 270 282 295 506 541 552 564 576 578 588 599 441 425 447 458 470 481 495	2=1 2,5654 2,4513 2,4995 2,5676 2,6538 2,7059 2,7721 2,8402 2,9084 2,9766 3,04429 3,4429 3,4429 3,4453 5,4557 5,5218 5,5900 5,6581 3,7263 3,7944 5,8626	72 258 249 261 275 283 297 309 321 352 354 356 360 392 401 427 459 451 475 487 499 521	2=1 2.3869 2.4562 2.5949 2.6643 2.7536 2.8050 2.8723 2.9446 5.0140 5.08497 5.2490 5.2884 5.3577 5.4274 5.4964 5.3557 5.4274 5.7964 5.7074 5.7738 5.8431 5.7044	74 240 252 264 276 288 500 341 324 336 348 360 372 384 408 408 408 448 486 486 480 492 504	2=1 2,4109 2,4814 2,5320 2,6225 2,6954 2,7636 2,8541 2,9047 2,9752 3,0458 3,4169 3,2574 3,3280 3,3985 5,4690 5,5596 5,6101 5,6807 3,7542 3,8923 3,8923 3,9629	,76 242 255 266 279 290 346 527 340 351 364 373 388 436 449 460 473 484 497 509	2=1 2,5354 2,5069 2,5786 2,6506 2,7921 2,7939 2,8637 3,0809 3,1527 3,0809 3,1524 3,2962 3,3679 3,4397 3,5145 3,5852 3,6530 3,7267 3,7985 3,8702 3,9420 4,0438	,78 245 257 270 284 306 318 353 357 357 392 404 428 444 453 477 490 508
0,00 0,05 0,40 0,45 0,20 0,55 0,50 0,55 0,40 0,45 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,85 0,85	z=1 2.5596 2,4066 2,4756 2,5406 2,6746 2,6746 2,7445 2,8083 2,8783 2,9423 3,0098 3,4454 5,2104 5,2774 3,414 5,4785 5,5455 3,6125 5,6795 5,7465 3,8165 3,8165 3,8165 3,8165 3,8165 4,9472 4,014 4,0812	700 233 247 259 270 289 295 306 376 588 596 441 425 455 447 484 485 876 886 847	2=1 2,5654 2,4513 2,4998 2,5676 2,6358 2,7039 2,7721 2,8402 2,9766 3,0447 3,4129 3,41840 3,2492 3,41840 3,2492 3,5185 3,5853 5,5853 5,5853 5,5853 5,7964 5,8626 5,9308 3,9989 4,0674	258 249 261 275 283 297 309 352 344 356 380 392 404 416 427 459 463 475 487 487	2=1 2.5869 2.4562 2.5256 2.5256 2.8050 2.6763 2.8073 2.9746 5.0140 5.0805 5.4274 5.4964 5.3577 5.4274 5.4964 5.3657 5.6551 5.6551 5.6551 5.7044 5.7758 5.8421 4.1205 4.1205	240 282 264 276 288 300 341 352 366 348 360 372 384 396 408 419 452 448 486 489 492 504 516 527	2=1 2,4109 2,481h 2,5320 2,6235 2,6954 2,7636 2,8534 2,9047 2,9782 3,0458 3,4463 3,1463 3,1463 3,2374 3,3280 3,3985 3,4690 3,53985 3,4690 3,5398 3,54690 4,0354 4,1039 4,1748 4,12430	,7G 242 255 266 279 303 346 527 340 551 564 575 388 399 412 436 449 460 449 450 484 497 509	2=1 2,5354 2,5069 2,5786 2,6507 2,7924 2,7939 2,8657 2,9374 3,0809 3,1527 3,2264 3,2264 3,2679 3,4371 3,5852 3,6550 5,7267 3,7985 3,8702 3,9404 4,0438 4,0438 4,0858 4,1575 4,25008	,78 245 257 270 284 298 306 318 353 367 379 309 404 418 428 441 455 463 463 477 490 508 518 526 538
0,00 0,05 0,40 0,45 0,20 0,25 0,50 0,55 0,60 0,65 0,75 0,75 0,80 0,85 0,95 0,95 1,40 4,15 1,20 1,25 1,20 1,25 1,20 1,25 1,20 1,25 1,20 1,25 1,20 1,25 1,20 1,25 1,20 1,20 1,20 1,20 1,20 1,20 1,20 1,20	z=1 2.5596 2,4066 2,4756 2,5406 2,6746 2,6746 2,7445 2,8083 2,8753 2,9423 3,0098 3,4454 5,2104 5,2774 3,414 5,4785 5,5455 5,5455 5,5455 5,8165 3,8165 3,8165 3,8165 3,8165 3,8165 3,8165 3,8165 3,8165 4,074 4,0812 D,670	253 247 259 270 282 293 364 374 352 364 376 376 437 458 477 488 470 481 493 596 497 493 596 497 493 596 497 497 498 498 498 498 498 498 498 498 498 498	2=1 2,5654 2,4513 2,4998 2,5676 2,6358 2,7039 2,7721 2,8402 2,9766 3,0447 3,4129 3,41840 3,2492 3,41840 3,2492 3,4853 3,5853 5,5853 3,5853 3,7265 3,7944 3,8626 5,9508 3,9989 4,0674 4,4552 D, 682	258 249 261 275 283 297 309 352 344 356 380 392 403 416 427 459 463 475 487 510 525 534 546	2=1 2,3869 2,4362 2,5256 2,8949 2,6643 2,7356 2,8050 2,8723 2,9416 3,0805 5,4497 5,2884 5,3577 5,4271 5,4964 3,7738 5,7657 5,6551 5,7048 3,7738 5,8431 3,9125 5,9818 4,0512	240 252 264 276 288 500 541 524 536 548 560 57 584 499 449 456 468 488 489 456 468 566 57 540 57 540 57 540 57 540 57 57 584 584 584 584 584 584 584 584 584 584	2=1 2,4109 2,481h 2,5320 2,6225 2,6954 2,7636 2,8541 2,90458 3,4163 3,1869 3,2374 3,3280 3,53690 5,6101 5,6807 5,6101 5,6807 3,7312 3,8218 3,8923 3,7312 3,8218 4,1039 4,0354 4,1039 4,17450 D,705	,7G 242 255 266 279 305 316 527 340 551 564 575 388 399 412 425 436 449 4497 484 497 509 524 554 558	2=1 2,5354 2,5069 2,5786 2,6506 2,7921 2,7939 2,8537 3,0092 3,0809 5,1527 5,2244 3,2962 3,3679 3,4397 3,5115 3,5852 3,6350 3,7267 3,7985 3,8702 3,9420 4,0438 4,0835 4,1527 4,1528	,78 245 257 270 284 306 318 305 354 355 367 379 392 408 418 418 453 477 490 308 556 556 558

)						_		_		
Pour vites.	z=1	,80	z=1	,82	z=1	,84	z=1	,86	z=1	,88
Vo	$\mathfrak{O}(xV)$		The second second		$\mathfrak{V}(xV)$	Acres 1	The state of the s	$\mathbf{D}.\mathbf{z}$	$\mathfrak{O}(xV)$	D. 2
0,00	2,4596	247	2,4845	250	2,5093	252	2,5348	258	2,5600	237
0,05	2,5326	259	2,5585	262	2,5847	265	2,6112	268	2,6380	270
0,10	2,6056 2,6785	271 285	2,6327	275	2,6602 2,7557	277	2,6879 2,7647	281	2,7160	283 296
0,10	2,7313	297	2,7812	287	2,8111	303	2,8414	506	2,7940 2.8720	509
0,25	2,8245	509	2,8554	312	2,8866	515	2,9181	319	2,9500	321
0,30	2,8975	321	2,9296	323	2,9621	327	2,9948	332	3,0280	334
0,35	2,9705	333	3,0038	537	3,0375	544	5,0716	344	3,1060	347
0,40	3,0434	346	5,0780	550	3,1130	335	5,1485	557	3,1840	360
0,45	3,1164 3,1894	358 571	5,4522 5,2265	362 374	5,1884 5,2659	366 378	3,2250 3,3017	570 585	5,2620 5,3400	373 386
0,55	5,2624	585	3,3007	387	3,3394	391	3,3785	395	3,4180	399
0,60	3,3334	395	3,3749	399	5,4148	404	3,4552	408	3,4960	411
0,65	3,4083	408	5,4491	412	5,4903	416	3,5519	421	3,5740	424
0,70	3,4813 5,5543	420 432	3,5233	425	5,5658 5,6412	428	5,6086 5,6854	455	3,6519	458
0,75	3,6273	445	5,8978	457	3,7167	454	3,7621	445	3,7299 3,8079	454
0,85	3,7003	457	3,7460	464	3,7167	467	5,8588	474	3,8859	477
0,90	5,7752	470	3,8202	474	3,8676	479	3,9155	484	3,9639	489
0,95	5,8462	482	5,8944	487	5,9451	492	40,62,0,000	496	4,0419	302
1,00	3,9192	494	3,9686	499	4,0185	505	4,0690	309	4,1199	515
1,05	3,9922 4,0652	306 318	4,0428	512	4,0940	517 529	4,1457	522	4,1979	528
1,15	4,1381	532	4,1913	536	4,2449	343	4,2992	547	4,3559	554
1,20	4,2111	544	4,2653	549	4,5204	553	4,5759	360	4,4519	367
1,25	4,2841	556	4,3397	562	4,3959	567	4,4526	575	4,5099	379
1,30	4,5571 D. 750	568	4,4139	574	4,4713	580	4,5293 D. 767	586	4,5879 D. 780	592
Pour	_		D. 742		D. 755				_	-
(0):2	=5,1857	d. 319	3,2176	1. 317	5,2493	1.317	3,2810	1. 317	5,5127	1. 317
Vo	z=1	,90	z=1	,92	z=1	,94	z=1	,96	z=1	,98
0,00	2,5857	260	2,6117	262	2,6379	265	2,6644	268	2,6912	271
0,05	2,6650 2,7443	273	2,6923 2,7728	273 289	2,7198	280	2,7477	284	2,7758	284
0,15	2,8236	285	2,8554	502	2,8017 2,8856	202	2,8509 2,9141	294 308	2,8603	298
0,20	2,9029	514	2,9340	515	2,9655	518	2.9973	522	5,0295	324
0,25	2,9821	323	3,0146	328	5,0474	551	5,0805	535	3,1140	339
0,50	3,0614	558 551	3,0952	344 334	3,1293	345	5,1658	348	5,1986	550
0,55	3,1407 3,2200	364	5,1758	367	5,2112	358 371	5,2470	362	5,2832 5,3677	365
0,45	3,2200	576	3,2564 3,5369	381	3,2931 3,5750	384	5,5509	389	5,4525	579 592
0,50	3,3786	389	3,4175	394	5,4569	398	5,4967	401	5,5568	406
0,55	5,4579	402	5,4981	407	3,5388	411	5,5799	415	5,6214	419
0,60	3,5571 3,6164	416	3,5787 3,6593	420 433	5,6207	424	5,6631	429	3,7060 3,7903	455
0,03	5,6957	442	3,6593	446	3,7026	450	5,7465 5,8295	456	3,7905	460
0,75	5,7750	454	5,8204	460	3,8664	464	5,9128	468	3,9596	474
0,80	5,8545	467	3,9010	473	3,9485	477	3,9960	482	4,0442	487
0,85	5,9336	480	3,9816	486	4,0302	490	4.0799	196	4,1288	500
0,90	4,0128	494 507	4,0622	499 511	4,1121	503 517	4,1624	509	4,2133	514 527
1.00	4.1714	520	4.2234	524	4.2758	334	4.3289	555	4.5824	842
4,05	4,2507	552	4,5039	538	4,5577	344	4,4121	549	4,4670	533
1,10	4,5500	5/45	4,5843	554	4,4396	357	4,4955	563	4,5316	568
1,15	4,4093	558	4,4651	364	4,5215	570	4,5785	576 589	4,6361	582
4,25	4,4886	585	4,5457	577 590	4,6054	597	4,6618	603	4,7207	608
1,50	4,6471	598	4,7069	603	4,7672	610	4,8282	616	4,8898	622
Pour	D. 795		D. 806		D, 819		D. 852		D. 846	
	=5,5444	d. 515	3,3739	1. 515	3,4074 (1, 514	5,4388 (1. 514	3,4702	1. 314

$$=\frac{\alpha x}{c}$$
, $V_0 = \frac{\alpha V_t}{r}$

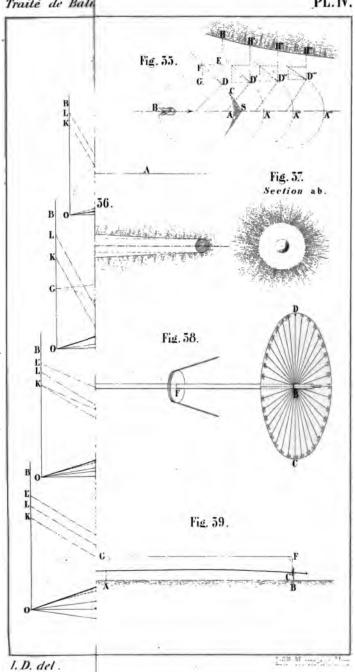
				с,		·				
Pr 13 ordon.	z = 0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
	0,00 1,017	1,034	1,052	1,070	1,089	1,108	1,128	1,148	1,169	1,190
	0,05 1,018	1,036	1,055	1,074	1,093	1,114	1,134	1,156	1,177	1,200
	0,10 1,019	1,038	1,057	1,077	1,098	1,119	1,141	1,163	1,186	1,2 0
	0,45 1,020	1,039	1,060	4,084	1,108	4,125	1,148	1,171	1,195	1,220
	0,20 1,020	1,041	1,063	4,085	1,107	4,130	1,154	1,179	1,205	1,231
	0,25 1,024	1,043	1,065	4,088	1,112	4,136	1,161	1,187	1,214	1,241
	0,30 1,022 0,85 1,023 0,40 1,024	1,045 1,046 1,048	1,068 1,071 1,073	1,09% 1,096 1,099	1,117 1,121 1,126	1,142 1,148 1,153	1,168 1,175 1,182	1,195 1,203 1,211	1,223	
y Vo.	0,48 1,025	1,080	1,076	1,103	1,151	1,189	1,189	1,219	1,251	1,285
	0,50 1,025	1,082	1,079	1,107	1,135	1,165	1,196	1,227	1,260	1,294
	0,85 1,026	1,083	1,082	1,110	1,140	1,171	1,203	1,235	1,269	1,305
Valeurs de	0,60 1,027	1,055	1,084	1,114	1,145	1,176	1,209	1,244	1,279	1,315
	0,65 1,028	1,057	1,087	1,118	1,149	1,182	1,216	1,252	1,288	1,326
	0,70 1,029	1,059	1,090	1,122	1,154	1,188	1,224	1,260	1,298	1,337
Vale	0,75 1,030	1,060	1,092	1,125	1,159	1,194	1,231	1,268	1,308	1,348
	0,80 1,034	1,062	1,095	1,129	1,164	1,200	1,238	1,277	1,517	1,359
	0,85 1,054	1,064	1,098	1,133	1,169	1,206	1,245	1,285	1,3 2 7	1,370
	0,90 1,032	1,066	1,101	1,137	1,173	1,212	1,252	1,294	1,337	1,382
	0,95 1,033	1,067	1,103	1,140	1,178	1,218	1,259	1,302	1,346	1,393
	1,00 1,034	1,069	1,106	1,144	1,185	1,224	1,266	1,310	1,356	1,404
	1,05 1,055	1,074	1,109	1,148	1,188	1,230	1,273	1,319	1,366	1,415
	1,40 1,036	1,073	1,113	1,151	1,193	1,236	1,281	1,328	1,376	1,427
	1,45 1,057	1,075	1,114	1,155	1,198	1,242	1,288	1,336	1,386	1,438
	1,20 1,037	1,076	1,117	1,159	1,203	1,248	1,295	1,345	1,396	1,450
	1,25 1,038	4,078	1,120	1,163	1,207	1,254	1,303	1,353	1,406	1,461
	1,30 1,039	1,080	1,123	1,167	1,212	1,260	1,310	1,362	1,416	1,473
	z=0,033 C. nég. 0,000		0,401	0,134 0,000	0,168 0,000	0,202 0,000	0,236 0,004	0,270	0,304	0,538
Pr 115 ordon.	z = 0,55	·	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00
	0,00 1,212 0,05 1,223 0.10 1,234	1,247	1,257 1,271 1,288	1,281 1,296 1,311	1,305 1,322 1,339	1,330 1,348 1,366	1,355 1,375 1,395	1,382 1,403 1,425	1,409 1,432 1,455 1,479	1,437 1,461 1,486 1,512
	0,15 1,246 0,20 1,258 0,25 1,269	1,298	1,299 1,314 1,328	1,327 1,343 1,359	1,336 1,373 1,390	1,385 1,404 1,423	1,415 1,436 1,457 1,477	1,447 1,469 1,491 1,514	1,503 1,527 1,551	1,512 1,538 1,563 1,590
	0,30 1,281 0,35 1,293 0,40 1,305	1,311 1,323 1,338 1,351	1,343 1,357 1,372	1,375 1,391 1,407 1,423	1,408 1,423 1,443 1,461	1,442 1,461 1,481 1,500	1,499 1,820 1,541	1,536 1,559 1,583	1,576 1,601 1,626	1,616 1,643 1,670
de Vo.	0,45 1,317 0,50 1,329 0,55 1,341 0,60 1,353	1,365 1,378 1,392	1,387 1,402 1,417 1,432	1,440 1,437 1,473	1,479 1,498 1,516	1,500 1,520 1,540	1,563 1,584 1,606	1,606 1,630 1,654	1,651 1,677 1,703	1,697 1,725 1,733
Valeurs	0,65 1,365	1,406	1,447	1,490	1,535	1,581	1,629	1,678	1,729	1,781
	0,70 1,378	1,420	1,463	1,507	1,535	1,601	1,651	1,709	1,755	1,810
	0,75 1,390	1,433	1,478	1,524	1,572	1,622	1,674	1,797	1,782	1,839
Va	0.80 1,403	1,447	1,494	1,542	1,591	1,643	1,696	1,751	1,809	1,868
	0,85 1,413	1,462	1,509	1,559	1,610	1,664	1,719	1,776	1,836	1,897
	0,90 1,428	1,176	1,525	1,577	1,630	1,685	1,743	1,802	1,863	1,927
and the same of th	0,95 1,440	1,490	1,541	1,594	1,649	1,706	1,766	1,827	1,891	1,957
	1,00 1,453	1,504	1,557	1,612	1,669	1,728	1,789	1,853	1,919	1,987
	1,05 1,466	1,519	1,573	1,630	1,688	1,749	1,813	1,879	1,947	2,017
	4,40 4,479	1,533	1,590	1,648	1,708	1,771	1,837	1,905	1,975	2,048
	4,13 1,492	1,548	1,606	1,666	1,728	1,793	1,861	1,934	2,004	2,079
	4,20 1,505	1,563	1,623	1,684	1,749	1,816	1,886	1,958	2,033	2,111
Pour 5	1.25 1.518 1.30 1.531 3=0.372			1,703 1,721 0,476			1,910 1,935 0,580	1,985 2,012 0,615	2,062 2,091 0,650	2,142 2,174 0,685
linclin.	C. nég. 0,002						0,004	0,005	0,003	0.006

					с,		<u>'</u>				
Pr. Vb. ordon.	z =	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50
	0,00 0,05	1,465	1,494 1,525	1,525	1,556 1,588	1,588 1,622	1,621	1,654 1,693	1,689 1,730	1,725 1,768	1,762 1,808
1	0,40 0,45	1,519 1,546	1,552	1,586 1,620	1,621	1,657	1,694	1,752	1,772	1,812 1,857	1,854 1,902
	0,20	1,573	1,610	1,649	1,688	1,728	1,770	1,813	1,857	1,903	1,950
	0,25	1,601 1,629	1,640 1,670	1,681	1,722	1,765 1,802	1,809 1,848	1,854	1,901	1,949 1,996	1,999 2,049
	0,35	1,658	1,701	1,746	1,792	1,839	1,888	1,938	1,990	2,044	2,100
	0,40 0,45	1,687	1,732 1,763	1,779	1,827 1,863	1,877	4,928 4,969	1,981 2,025	2,036 2,083	2,093 2,142	2,151 2,203
۸۰	0.50	1,745	1,795	1,846	1,899	1,954	2,011	2,069	2,129	2,192	2,256
de d	0,55 0,60	1,775	1,827	1,881 1,915	1,936	1,993 2,053	2,053	2,114 2,159	2,177 2,225	2,242 2,293	2,310 2,364
	0,65	1,836	1,892	1,950	2,011	2,055	2,138	2,105	2,274	2,345	2,419
Valeurs	0,70 0,75	1,866	1,925 1,958	1,986 2,022	2,049 2,088	2,114	2,182	2,254	2,323	2,398 2,451	2,475 2,532
Val	0,80	1,929	1,992	2,058	2,127	2,197	2,270	2,346	2,424	2,505	2,589
	0,85 0,90	1,960	2,026	2,095 2,132	2,166 2,206	2,239 2,282	2,345 2,364	2,394 2,443	2,475 2,527	2,560 2,616	2,648 2,707
	0,95	2,025	2,061 2,096	2,169	2,246	2,325	2,407	2,492	2,580	2,672	2,766
	1,00	2,057	2,184	2,207	2,287 2,328	2,369 2,413	2,454 2,501	2,542 2,593	2,635 2,687	2,728 2,786	2,827 2,888
	1,05	2,090	2,467 2,203	2,246 2,284	2,370	2,413	2,549	2,644	2,742	2,844	2,930
	1,45	2,457	2,240	2,323	2,412	2,503	2,597	2,695	2,797	2,903	3,013
	1,20	2,191 2,225	2,276 2,313	2,363	2,454 2,497	2,548 2,594	2,646 2,696	2,748 2,804	2,855 2,909	2,963 3,023	3,076 3,144
	1,30	2,600	2,550	2,443	2,540	2,644	2,746	2,854	2,966	3,084	3,206
Pour 3		= 0,721	0,756	0,792	0,827	0,863	0,899	0,934	0,970	4,006 0,014	1,043 0,015
meiin.	C. neg	. 0,007	0,007	0,008	0,009	0,010	0,011	0,012	0,013	0,014	0,013
Pr VI. ordon.	z =	1,55	1,60	1,65	1,70	1,75	1,80	1,85	1,90	1,95	2,00
	0,00	1,799	1,838	1,878	1,920	1,962	2,006	2,051	2,097	2,145	2,194
	0,05 0,10	1,848 1,897	1,890 1,942	1,933 1,988	1,977 2,035	2,022 2,083	2,069 2,133	2,117	2,167	2,218	2,271 2,349
	0,15	1,948	1,995	2,044	2,094	2,145	2,199	2,254	2,310	2,369	2,429
	0,20 0,25	1,999	2,049 2,104	2,101 2,158	2,154 2,215	2,209 2,273	2,265 2,333	2,324 2,395	2,384 2,459	2,446 2,525	2,511 2,594
	0,50	2,103	2,159	2,217	2,277	2,339	2,402	2,468	2,536	2,606	2,678
	0,55 0,40	2,157 2,211	2,216 2,274	2,277 2,339	2,340 2,405	2,405 2,473	2,473 2,544	2,542	2,614 2,693	2,688 2,774	2,765 2,852
	0,45	2,267	2,532	2,400	2,470	2,542	2,617	2,694	2,774	2,857	2,942
Vo.	0,50 0,55	2,323 2,380	2,394 2,452	2,463 2,526	2,536 2,604	2,612 2,683	2,691 2,766	2,772 2,854	2,856 2,940	2,943 5,034	3,033 3,126
de	0,60	2,437	2,513	2,591	2,672	2,756	2,842	2,932	3,025	8,121	3,220
	0,63 0,70	2,496	2,575 2,638	2.657 2,723	2,742 2,812	2,829 2,904	2,920 2,999	3,014 3,097	3,111	3,212 3,304	3,316 3,413
Valeurs	0,75	2,555 2,615	2,702	2,791	2,884	2,979	3,079	3,184	3,288	8,398	3,512
Na Va	0,80	2,676	2,766	2,860	2,956	3,056	3,160 3,242	3,267 3,354	3,379 3,471	8,494 8,594	3,613 3,715
	0,85 0,90	2,738 2,801	2,832 2,898	2,929 3,000	3,030 3,105	5,134 5,213	3,526	3,443	3,564	5,689	3,819
	0,95	2,864	2,966	3,071	3,180	8,293	3,411	3,532 3,623	8,659 3,755	5,790 5,894	3,925 4,032
	1,00	2,928 2,993	5,034 5,103	3,144 3,217	3,257 3,335	3,375 3,457	3,497 3,584	3,716	3,852	8,994	4,141
	1,10	3,059	3,473	3,291 3,367	3,414 3,494	8,544	8,678 3,762	3,809 3,904	3,954 4,052	4,099 4,205	4,251 4,363
	1,15	3,426 3,494	3,244 3,316	3,443	3,494	3,625 3,711	5,853	4,000	4,153	4,312	4,477
	1,25	3,262	3,389	5,520	3,657	5,798	5,945	4,098	4,257	4,421	4,592
	1,30	3,334	3,463	3,599	3,740	3,886	4,089	4,197	4,361	4,532	4,708
Pour 3 inclin.	C. nég	-1,079 .0,017	1,113 0,018	1,152 0,019	1,188	1,225 0,022	1,261	1,298 0,025	1,535 0,027	4,372 0,029	1,409 0,031

				C	, , , ,	, r				-
	1		•	V	ALEUR	S DE	z.			
V_{o}	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
	<u> </u>				<u> </u>	<u> </u>	<u> </u>			<u> </u>
0,00	0,0808	0,1034	0,4578	0,2140	0,2722	0,3324		0,4594	0,5258	0,5949
0,08	0,0809	0,1036 0,1038	0,4582 0,4586	0,2148 0,2155		0,3344 0,3357	0,8970 0,8998	0,4 622 0,4654	0,5339 0,5339	0.6000
0,18		0,1039	0,1590	0,2162			0,4017	0,4685	0,5379	0,6102
0,20 0,25	0,0510	0,1041	0,1594 0,1598	0,2169	0,2768 0,2780	0,3891	0,4040 0,4064	0,4746 0,4748	0,54 20 0,5464	0,6134
0,30	0,0511	0,1045	0,1602	0,2184	0,2791	0,3425	0,4088	0,4780	0,5503	0,6258
0,35 0,40	0,0511	0,1046	0,4606 0,4640	0,2191	0,2803 0,2813		0,4112 0,4136	0,4812	0,5344 0,5386	0,6340
0,48	0,0512	0,1050	0,1614	0,2206	0,2826		0,4160	0,4877	0,5628	
0,50 0,55	0,0543 0,0543	0,1052	0,1618	0,2213 0,2221	0,2838	0,3494 0,3512		0,4909	0,5670	0,6470 0,6528
0,60	0,0514	0,1055	0,1626	0,2228	0,2862	0,3329	0,4233	0,4974	0,5755	0,6577
0,65 0,70	0,0514 0,0514	0,4057 0,4059	0,1630 0,1634	0,2236 0,2243			0,4257 0,4282		0,5797 0,5844	0,6682
0,75	0,0545	0,1060	0,1638	0,2250	0,2897	0,3582	0,4307	0,5074	0,5884	0,6741
0,80 0,85	0,0515		0,1643 0,1647				0,433 <u>2</u> 0,4356		0,5927	0,67 96 0,68 52
0,90	0,0516		0,4654		0,2933	0,3633	0,4384	0,5174	0,6048	0,6908
0,95 1,00	0,0517 0,0517	0,4067		0,2280					0,6059	
4,05	0,0517	0,1071	0,1663	0,2295	0,2970	0,3689	0,4457	0,5276	0,6147	0,7076
1,10	0,0518 0,0518	0,1073	0,1667 0,1671	0,2303 0,2310	0,2982	0,3707	0,448 2 0,4508	0,5340	0,6192 0,6237	0,7183
1,20	0.0319	0.4076	0.4676	0.2348	0.3006	0.3743	0.4533	0.5379	0.6282	0.7948
1,25 1,30	0,0519	0,1078	0,4680	0,2326	0,3019	0,5761	0,4559	0.5444	0,63 27 0,6373	0,7306
=====	7	,	1		1		10,,,,,,	1	1	
V_0	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00
 	<u> </u>						<u> </u>			
0,00	0,6664		0,8171		0,9786				1,3384	
0,05 0,10	0,6727 0,6789	0.7480	0,8262 0,8353	0,9072	0,9912	1,0784		1,2628	1,3603	
0,45	0,6852	0,7633	0,8445	0,9290	1,0107	1,1080	1,2031	1,3020	1,4050	1,5118
0,20 0,25	0,6946		0,8538 0,8632	0,9400 0,9514		1,1250	1,2205 1,2380		1,4276	1,5375 1,5634
0,30	0,7045	0,7868	0,8726	0,9623	1,0558	1,4535	1,2558	1,3622	1,4736	1,5896
0,35 0,40	0,7110 0,7175		0,8822 0,8917		1,0691				1,4970	
0,45	0,7241	0,8107	0,9014	0,9964	4,0959	1,2002	1,3099	1,4243	1,5445	1,6701
0,50 0,55	0,7307 0,7374	0,8188	0,9111					1,4453	1,5686	1,6974
0,60	0,7444	0,8351	0,9307	1,0543	1,1370	1,2482	1,3634	1,4882	1,6176	1,7530
0,65 0,70	0,7509 0,7577	0,8434 0,8547	0,9407 0,9507		1,1510	1,2643	1,3853 1,4034	1,5100	1,6424	1,7813
0,73	0,7645	0,8600	0.9608	1,0671	1,1791	1,2974	1,4225	1,5539	1,6927	1,8386
0,80 0,83	0,7714 0,7783	0,8684 0,8769	0,9709 0,9811	1,0792 1,0914	1,1953		1,4419	1,5765 1,5988	1,7483	1,8676
0,90	0,7852	0,8854	0,9914	1,1036	1,2222	1,3478	1,4811	1,6215	1,7700	1,9267
0,95 4,00	0,7922 0,7993	0,8940	1,0018 1,0122		1,2368		1,5009 1,5210	1,6444 1,6675	1,7964	1,9566
1,05	0,8064	0,9113	1,0226	1,1409	1,2663	1,3995	1,5411	1,6909	1,8495	2,0178
1,10	0,8135 0,8206	0,9200			1,2812 1,2963		1,5615 1,5819	1,7144 1,7382		2,0481 2,0792
1,20	0.8278	0,9377	1,0546	1,1791	1,3415	1,4524	1,6027	1,7621	1,9312	2,1105
4,25 4,30	0,8330	0,9466 0 9886	1.0654	1,1920	1,3268	1,4702	1,6236	1,7864	1,9588	2,1422
	0,0422	10,5000	1.,0103	'x'*(1.6.9		1.,2000	1.,,,,,,,	1.,0100	1 300 /	1 2.2 /44

Vo		_							_		
Vo					V.	ALEUR	B DE	z.			
0.00 0.00 0.0008 0.0008 0.0008 0.0008 0.0081 0.0082	v.	n M	0 00	I U PS					1 0 00	10.00	امدما
0.00		0,01	0,02	0,00	0,04	0,00	0,00	0,07	0,00	0,00	0,10
0.00							1 - 1			-,	
0.40										1.	
0.20											
0.25						,					
0.30											
0.45									l' '	1	
0.43	0,35			,03062	,04110		,06249	,07349	,08446	,09568	,40703
No. 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,14627 0,1788 0,1988 0,1972 0,1988 0,1972 0,1988 0,					1		'	1	ľ	,	
Vo 0,41 0,42 0,43 0,14 0,45 0,46 0,17 0,18 0,19 0,20 0,00 ,14627 ,12750 ,13883 ,45088 ,46184 ,17549 ,18550 ,19722 ,29925 ,22140 0,00 ,14620 ,12788 ,13080 ,16244 ,17420 ,18610 ,19814 ,21023 ,22250 0,45 ,14724 ,12865 ,14019 ,15186 ,16367 ,17560 ,18768 ,19989 ,21223 ,22260 0,45 ,14776 ,12904 ,14066 ,13239 ,16487 ,17760 ,18877 ,20079 ,24523 ,22966 0,20 ,14789 ,12942 ,14141 ,15394 ,16531 ,17771 ,19007 ,22486 ,24466 ,22666 0,30 ,14882 ,13034 ,14033 ,15394 ,16631 ,17742 ,1967 ,20339 ,21823 ,2284 0,45 ,141887 ,13084 ,14203 ,15394 <th></th>											
0,00								1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0,00	V _o	0,11	0,12	0,13	0.14	0.15	0.16	0.17	0.18	0.19	0.20
0.00										<u> </u>	
0.08	0,00			,	-,						
0.43	0,08		,12788								
0,20				1		1		,18690	,19899		
0,25											
0,35											
0,40											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				l'	l .		1	1	1	ľ	
0,00											
0,00		ı —	Ī			1	<u> </u>	l			
0.05	V _o	0,21	0,22	0,23	0,24	0,25	0,26	0,27	0,28	0,29	0,30
0.05											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
0,45											
0,20	0,15		1 '	1	1 '	1	1	1		ľ	
0,50					0,2778	0,2912	0,3047	0,3184	0,3322	0,3463	0,3604
0,85	1 1	1	1	1	'	1		1	l '		
0,40	0,35										
Vo			1	0,2707		0,2985	0,3126	0,3269			
Vo 0,31 0,32 0,33 0,34 0,35 0,36 0,37 0,38 0,39 0,40 0,00 0,05 0,05 0,400 0,365,1 0,3662 0,3711 0,3801 0,3801 0,3801 0,3802 0,4084 0,4084 0,4084 0,4084 0,4084 0,4084 0,4227 0,4376 0,4411 0,4560 0,4711 0,4662 0,4007 0,4743 0,4663 0,4007 0,4863 0,3017 0,4411 0,4662 0,4007 0,4004 0,4863 0,4007 0,4863 0,4007 0,4863 0,4007 0,4863 0						0,3003	0,3146	0,3291	0,3438	0,3588	0,3740
0.00		0,5401	7,2098	0,2/8/	0,2818	0,0021	0,0100	0,0013	0,0402	0,0013	U,8767
0.00	$\mathbf{v}_{\mathbf{v}}$	0.34	0.39	U 33	0.34	U 3E	0.36	0.27	U 36	0.30	امیما
0.05		U,01	0,02	0,00	0,04	0,00	0,50	0,37	0,38	0,39	0,40
0.05	0.00	0.3634	0.3774	0.3910	0.4040	0 14 00	0 4227	0.8577	0 4607	0 4270	0 4010
0.40	0,05		0,3801	0,3942							
0,20	1			i '		1	1	0,4560	0,4711	0,4863	
0,25											
0,80							,				
0,55											0,5218
0,45 0,3893 0,4049 0,4207 0,4367 0,4528 0,4692 0,4859 0,5028 0,5199 0,5372											0,5269
	0,45		1			1	1				
									0,5074	0,5248	0,5429

$$z = \frac{\alpha x}{c}$$
, $V_0 = \frac{\alpha V_0}{r}$


•							_				
				٠	v	ALEUR	S DE	z.			
ı	V _o	0,05	0.10	0.15	0.20	0,25	0,30	0.35	0.40	0,45	0,50
I		<u> </u>				<u> </u>		<u> </u>			<u> </u>
į	0,00		0,4034			0,2722		0,8947			0,5949
I	0,08 0,40		0,1036 0,1038	0,4582 0,4586	0,2148 0,2155	0,2734 0,2745	0,3344 0,3357	0,8970 0,8998	0,46 22 0,4654		0.6000 0,6051
	0,45		0,1039	0,4590			0,3374				0,6102
ı	0,20 0,25	0,0510	0,1041 0,1043	0,4594 0,4598	0,2169 0,2177		0,3391 0,3408	0,4040 0,4064	0,4716 0,4748	0,5420 0,5461	0,6134
ı	0,30		0,4045				0,3425		0,4780		0,6258 0,6310
ı	0,35 0,40		0,1046 0,1048				0,3460		0,481 2 0,4844		
ı	0,48 0,80	0,0512		0,1614	0,2206 0,2213	0,2826 0,2838		0,4160 0,4184	0,4877 0,4909	0,5628 0,5670	0,6416 0,6470
ı	0,55	0,0513 0,0513	0,105 2 0,1053				0,3512		0,4942		0,6525
ı	0,60 0,65	0,0514 0,0514			0,2228 0,2236	0,2862		0,4233 0,4257	0,4974 0,5007	0,5755 0,5797	0,6577
	0,70	0,0514	0,4057 0,4059			0,2874 0,2886	0,3564	0,4287	0,5040	0,5844	0,6686
Ħ	0,75 0,80	0,0515	0,1060		0,2250 0,2258	0,2897	0,358 2 0,3600	0,4307	0,5074 0,5107		0,6744 0,6796
ı	0,85	0,0516	0,1062 0,1064		0,2258	0,2924		0,4356		0,3971	0,6852
ı	0,90 0,95	0,0516 0,0517	.,			0,2933		0,4384 0,4407	0,5174	0,6015 0,6059	0,6908
ı	1,00	0,0317	0,4067 0,1069		0,2280 0,2288	0,2946 0,2958	0,3671	0,4432	0,5242	0,6103	
I	1,05 1,10		0,4074				0,3689	0,4457 0,4482		0,6147 0,6192	0,7076 0,7183
ł	1,15		0,1073 0,1075			0,2982 0,2994		0,4508		0,6237	
ı	4,20 4,25	0,0319			0,2318	0,8006	0.3743	0,4533	0,8379	0,6282	0,7248 0,7306
ı	1,23	0,0519	0,1078 0,1080	0,1684	0,2320	0,3019	0,3761 0,3780	0,4585			0,7368
ł		<u> </u>	1	<u> </u>	· · · · · ·	<u> </u>	i	1	1		1
ı	V_0	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	1,00
ı											
	0,00 0, 05	0,6664 0,6727	0,7404	0,8171 0,8262		0,9786 0,9912	1,0638	1,1321 1,1689		1,3384	1,4365
ı	0,10	0,6789	0,7556	0,8353	0,9180	4,0039	1,0931	1,1860	4,2823	4,3825	1,4864
	0,45	0,685 2 0,6916	0,7633	0,8445 0,8538	0,9290	1,0107		1,2031			1,5118
ı	0,25	0,6981	0,7789	0,8632	0,9514	1,0427	1,1382	1,2380	1,3420	1,4505	1,5634
	$0,30 \\ 0,35$	0,7045 0,7410		0,8726 0,8822		1,0558	1,4535	1,2558		1,4736	1,5896
	0,40	0,7475	0,8027	0,8917	0,9850	1,0824	1,1846	1,2917	1,4035	1,5207	1,6430
	0,45 0,50	0,7 24 4 0,7307	0,8107 0,8188	0,9014		4,0959 4,1095			1,4243 1,4453		1,6701
ı	0,33	0,7374	0.8269	0,9209	1,0196	1,1232	1,2321	1,3467	1,4667	4,5930	1,7254
	0,60 0,65	0,7444 0,7509	0,8351 0,8434	0,9307 0,9407	1,0543	1,1370 1,1510	1,2482 1,2645	1,3654	1,4882 1,5100	1,6176 1,6424	1,7530
۱	0,70	0,7577	0,8547	0,9507	1,0551	1.1650	1,2809	1,4034	1,3319	1,6674	1.8098
ı	$0,75 \\ 0,80$	0,7645 0,7744	0,8600 0,8684	0,9608	1,0671	1,1791		1,4225	1,5539 1,5765	1,6927 1,7183	1,8386
	0,83	0,7783	0,8769	0,9811	1,0914	1,2077	1.3309	1,4614	1,5988	1,7440	1,8970
	0,90 0,93	0,7852 0,7922	0,8854 0,8940	1,0018	1,4036 1,4459	1,2222	1,3478	1,4811	1,6215	1,7700	1,9267
ı	1,00	0,7993	0,9026	1,0122	1,1284	1,2515	1,3821	4,5210	1,6675	1.8229	1,9868
	1,05	0,8064 0,8135	0,9413		1,1409	1,2663		4,5411 4,5615	1,6909 1,7144	1,8495 1,8764	2.0478
ı	4,45	0,8206	0,9289	1,0439	1,1663	1,2963	1,4346	1,5819	1,7382	1,9037	2,0792
ı	1,20 1,25		0,9377 0,9466				1,4524		1,7621 1,7861	1,9342	2,1108
Ħ	4,30	0,8122	0,9556	1,0763	1,2019	1,3421	1,4883	1,6446			2,1741

				c	-, vo-	r ·				
				V	ALEUR	S DE 2	z.			
Vo	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50
0,00	1, 5 585	1,6438 1,6751	4,7533 4,7882	4,8668 4,9057	1,9845 2,0276	2,1067 2,1542	2,2332 2,2856	2,3645 2,4224	2,5008 2,5640	2,6425 2,7113
0,10	1,5944	1,7068	1,8236	1,9451	2,0743	2,2025	2,3388	2,4806	2,6281	2,7845
0,15 0,20	1,6230 1,6520	1,7389 1,7714	1,8595 1,8958	1,9850 2,0255	2,4455 2,4604	2,2515 2,3012	2,3928 2,4476	2,5400 2,6003	2,6953 2,7595	2,8529 2,9254
0, 2 5 0,30	1,6812 1,7108	1,8043 1,8375	4,9325 4,9697	2,0664 2,1079		2,3516 2,4026	2,5032	2,6614 2,7235	2,8267 2,8949	2,9990 3,0738
0,35	1,7407	1,8712	2,0074	2,1500	2,2987	2,4544	2,6167	2,7865	2,9642	3,1497
0,40 0,45	1,7709 1,8015	1,9052 1,9397	2,0455 2,0840	2,1925	2,3464 2,3940	2,5068	2,6746 2,7333	2,8504 2,9151	3,0344 3,1057	3,2267 3,3049
0,50 0,55	4,8325 4,8637	1,9745 2,0097	2,1231	2,2792	2,4425		2,7928 2,8534		3,1779 3,2512	3,3843
0,60	1,8953	2,0453	2,2025	2,3680	2,5414	2,7236	2,9142	3,1148	3,3255	3,5463
0,65 0,70	1,9272	2,0843 2,4477	2,2429 2,2837	2,4132 2,4589		2,7795 2,8361	2,9760 3,0387	3,1834 3,2523	3,4008 3,4771	3,6294 3,7480
0,75	1,9921	2,4545 2,4917		2,5054 2,5549			3,1021 3,1664	3,3 225 3,3935	3,5544 5,6327	3,7980
0,80 0,85	2,0250 2,0583	2,1917	2,3667 2,4089	2,5994	2,7463 2,7991	2,9513 3,0100	3,2314	3,4654	3,7121	3,884 <u>2</u> 3,9745
0,90 0,98	2,0919 2,1258	2,2672 2,3056	2,4516	2,6470 2,6953		3,0694 3,1294	3,2972 3,3638		3,7924 3.8738	4,0599
1,00	2,4604	2,3443	2,5383	2,7442	2,9610	3,1902	3,4312	3,6865	3,956%	4,2402
4,05 4,10	2,1947 2,2296	2,3835 2,4230	2,5823 2,6268	2,7936 2,8435	3,0162 3,0720	3,2516 3,3138		3,76 2 0 3,8383	4,0396 4,1240	4,3324 4,4254
1,15	2,2649 2,3005	2,4629 2,5032	2,6717 2,7171	2,8939 2,9449	3,1283 3,1853	3,3766 3,4404	3,6380 3,7085	3,9456 3,9938	4,2094 4,2958	4,5192
1,20	2,3364	2,5489	2,7629	2,9964	3,2429	3,5044	3,7798	4,0729	4,3832	4,7109
4,50	2,3726	2,5850	2,8092	3,0484	3,3011	3,8693	8549	4,1530	4,4717	4,8084
Vo	1,55	1,60	1,65	1,70	.1,75	1,80	1,85	1,90	1,95	2,00
0,00	2,7889		7 0004	3,2635		7 6406	3,7944	7 00 KZ	h 1022	h 3800
0,05	2,8643	2,9411 3,0232	3,0994 3,1886	3,3603	3,5386	3,7241	3,9169	4,1174	4,3257	4,5422
0,10 0,15	2,9409 3,0188	3,1067 3,1916	3,2794 3,3718	3,4589 8,5593	3,6454 3,754 2	3,8397 3,9575	4,0418	4,2523 4.3898	4,4711	4,6986 4,8585
0,20 0,25	3,0980 3,1785	3,2780	3,4658	3,6614	3,8650	4,0775	4,2989 4,4344	4,5299	4,7705 4,9245	5,0211 5,1872
0,30	3,2603	3,3656 3,4550	3,5614 3,6586		8,9777 4,09 2 4		4,5657	4,8182	5,0816	5,3565
0,35 0,40	3,3438 3,4276	3,5457 3,6578	3,7574 5,8578			4,4506 4,5793	4,7027 4,8424		5,2415 5,4044	5,5290 5,7047
0,45	3,5432	3,7343	3,9598	4,1988	4,4484	4,7102	4,9839	3,2706	5,5702	5,8836
0,50	3,6004 3,688 2		4,0634 4,1686		4,5710 4,6955	4,8433 4,9786	5,1281 5,2747	5,4267 5,5865	5,7389 5,9105	6,0658 6,2511
0,60 0,65	3,7776 3,8683	4,0204 4,1197	4,2753 4,3837	4,5425	4,8220 4,9505	5,4460 5,2557	5,4238 5,5752	5,7469 5,9440	6,0854 6,2626	6,4397 6,6315
0,70	3,9603	4,2203	4,4937	4,7805	5,0810	5,3975	5,7294	6,0778	6,4434	6,8265
0,75 0,80	3,0536 4,1481	4,3224 4,4260	4,6052		5,2435 5,3479	5,5415 5,6877	5,8854 6,0441		6,6264 6,8127	7,0247 7.2261
0,85	4,2439	4,5309	4,8334	5,1509	5,4842	5,8360	6,2052	6,5940	7,0019	7,4308
0,90	4,3410 4,4394	4,6373 4,7451	4,949 5 5,0674		5,7629	5,9866 6,1393	6,8687 6,5346		7,3894	7,6386 7,8497
1,00 1,05	4,5390 4,6399	4,8544 4,9654	5,1869 5,3081		5,9052 6,0495	6,2942 6,4513	6,7029 6,8737	7,4344 7,3495	7,5871	8,0640 8,2845
4,10	4,7421	5,0772	5,4308	5,8037	6,1957	6,6106	7,0468	7,5075	7,9918	8,5022
1,15	4,8456 4,9504	5,1907 5,3057	5,5554 5,6840	5,9396 6,077 2	6,3439 6,4940	6,7721 6,9357	7, 222 4 7,4008	7,6982 7,8915	8,4986 8,4083	8,526 2 8,9533
1,25 1,50	5,0564	5,4924	5,8086	6,2167	6,6462	7,1016	7,5807	8,0875	8,6209	
,	-,.007	, ,,,,,,,,	10,0011	10,0019	0,0000	.,.090	1,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15,5004	12,44,0

VALEURS DE z. Vo 0,05 0,10 0,45 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,00 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Vo 0,05 0,10 0,45 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,05
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
0.05
0,05 0,04916 0,04916 0,04989 0,08825 0,04782 0,04738 0,04631 0,04631 0,04631 0,04631 0,04631 0,04631 0,0921 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 0,9821 <
0,48 1,4857 1,4743 1,4569 1,4846 1,4886 1,44143 1,4004 1,5860 1,3719 1,4377 0,20 1,9800 1,9904 1,9904 1,9907 1,4814 1,8646 1,4848 1,4823 1,8923
0,20 .19800 .19601 .19402 .19203 .19907 .18814 .18614 .18448 .18233 .1802 0,28 .24759 .24180 .24241 .23963 .25708 .35454 .23200 .29243 .22692 .22446 0,30 .29575 .29029 .28710 .28392 .38075 .27759 .27444 .26430 .28492 0,36 0,3461 0,3482 0,3383 0,3344 0,3770 0,3725 0,3680 0,5353 0,3536 0,3536 0,3483 0,4772 0,4180 0,4128 0,4075 0,4024 0,3536 0,3536 0,4383 0,4772 0,4180 0,4128 0,4075 0,4024 0,3753 0,48 0,4856 0,4876 0,4813 0,4784 0,4633 0,4633 0,4573 0,4813 0,4874 0,4693 0,4633 0,4573 0,4843 0,4876 0,4884 0,4836 0,4833 0,4873 0,4874 0,4693 0,4633 0,4573 0,4843
0.28 .24739 .24480 .2424 .23963 .23708 .3345 .23200 .23943 .22692 .22440 0.30 .29757 .29551 .29029 .28710 .28592 .23789 .23744 .26630 .26621 0.30 0.3461 0.3463 0.3383 0.3344 0.3506 0.3297 0.3681 0.3881 0.3770 0.3725 0.3463 0.3583 0.3570 0.3464 0.4392 0.4338 0.4772 0.4180 0.4188 0.4075 0.4024 0.3771 0.50 0.4388 0.4876 0.4843 0.4754 0.4633 0.4573 0.4533 </th
0,35
0,40
0,45
0,53 0,5429 0,5329 0,5289 0,5289 0,5820 0,5152 0,5084 0,5084 0,484
0,60
0.63 0.6441 0.6325 0.6235 0.6148 0.6063 0.5978 0.5894 0.5810 0.5727 0.5664 0.70 0.6904 0.6803 0.6706 0.6610 0.6961 0.6412 0.6329 0.6236 0.6144 0.6031 0.75 0.7591 0.7593 0.7716 0.6967 0.6864 0.6761 0.6639 0.6836 0.6836 0.6836 0.80 0.7780 0.77642 0.7346 0.7330 0.77446 0.7303 0.7449 0.7498 0.7498 0.7379 0.7363 0.80 0.8370 0.8241 0.8143 0.9845 0.8509 0.8176 0.8044 0.7913 0.7784 0.7784 0.90 0.8837 0.8837 0.8143 0.8836 0.8836 0.8836 0.8836 0.8836
0,70 0,6901 0,6803 0,6706 0,6610 0,6516 0,6422 0,6329 0,6236 0,6144 0,608 0,75 0,7391 0,7243 0,7476 0,7071 0,6967 0,6864 0,6781 0,6639 0,6858 0,685 0,80 0,7780 0,7762 0,7643 0,7330 0,7416 0,7303 0,7194 0,7080 0,6971 0,686 0,83 0,8370 0,8241 0,8143 0,7897 0,7863 0,7744 0,7649 0,7498 0,7379 0,7399 0,90 0,8857 0,8717 0,8379 0,8475 0,8509 0,8176 0,8044 0,7913 0,7784 0,765
0,80
0,8570 0,8241 0,8143 0,7987 0,7863 0,7744 0,7649 0,7498 0,7379 0,726 0,90 0,8857 0,8717 0,8579 0,8485 0,8509 0,8176 0,8044 0,7913 0,7784 0,765
0.90 0.8857 0.8717 0.8579 0.8443 0.8509 0.8176 0.8044 0.7913 0.7784 0.765
0,95 0,9347 0,9195 0,9045 0,8897 0,8752 0,8609 0,8467 0,8327 0,8188 0,805
. 4,00 0,9834 0,9671 0,9509 0,9349 0,9194 0,9040 0,8887 0,8736 0,8587 0,8439 0,9194 0,9040 0,98305 0,9143 0,8984 0,8820 0,9143 0,9143 0,8984 0,8820 0,9143 0,8984 0,8820 0,9143 0,8984 0,8820 0,9143 0,8984 0,8820 0,9143 0,8984 0,8820 0,9143 0,8984 0,8820 0,9143 0,
1,03 1,03 22 1,0145 0,9971 0,9801 0,9634 0,9469 0,9305 0,9143 0,8984 0,8820 4,10 4,0809 1,0620 1,0434 1,0254 1,0072 0,9895 0,9720 0,9847 0,9377 0,9840
4,45 4,1295 4,1094 4,0895 4,0700 4,0508 4,0320 4,0434 0,9949 0,9768 0,959
1,20 1,1781 1,1566 1,1354 1,1146 1,0942 1,0741 1,0543 1,0348 1,0156 0,996
4,25
$oxed{V_{\circ}} oxed{0.55} oxed{0.60} oxed{0.65} oxed{0.65} oxed{0.70} oxed{0.75} oxed{0.80} oxed{0.85} oxed{0.85} oxed{0.90} oxed{0.95} oxed{1.00}$
$[0, \]0, \ [0, \]0, \ [0, \]0, \ [0, \]0, \ [0, \]0,$
0,05 0,04521 0,0478 0,04525 0,04549 0,04549 0,04506 0,04263 0,04221 0,04178 0,04138 0,100 0,09001 0,08911 0,08521 0,08732 0,08644 0,08555 0,08466 0,08578 0,08229 0,08208 0,08578 0,
0,15 ,13438 ,13299 ,13160 ,13021 ,12883 ,12746 ,12608 ,12474 ,12334 ,1219
0,20 ,17833 ,17643 ,17451 ,17259 ,17069 ,16880 ,16691 ,16503 ,16315 ,1612
0,25
0,35 0,3078 0,5044 0,3004 0,2968 0,2932 0,2895 0,2859 0,2824 0,2788 0,275
0,40 0,3502 0.3458 0,3415 0,3372 0,3330 0,3287 0,3245 0,3203 0,3162 0,312
$\begin{bmatrix} 0.45 & 0.5922 & 0.3874 & 0.5821 & 0.5772 & 0.5723 & 0.3674 & 0.5625 & 0.5577 & 0.3529 & 0.348 \\ 0.50 & 0.4538 & 0.4280 & 0.4223 & 0.4467 & 0.4444 & 0.4055 & 0.4000 & 3945 & 0.3891 & 0.383 \\ \end{bmatrix}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0,60 0,5138 0,5086 0,5014 0,4943 0,4873 0,4804 0,4735 0,4666 0,4398 0,433
0,68 0,5363 0,5483 0,5403 0,5328 0,5247 0,5170 0,5093 0,5018 0,4944 0,487
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0,80 0,6753 0,6650 0,6546 0,6443 0,6342 0,6242 0,6143 0.6043 0,5949 0,583
0,85 0,7145 0,7031 0,6919 0,6808 0,6698 0,6589 0,6482 0,6377 0,6273 0,617
0.7532 0.7409 0.7288 0.7168 0.7030 0.6934 0.6819 0.6706 0.6594 0.648 0.95 0.7916 0.7783 0.7632 0.7524 0.7538 0.7273 0.7149 0.7028 0.6909 0.679
$ \begin{array}{c c} 0.98 & 0.7916 & 0.7783 & 0.7632 & 0.7534 & 0.7598 & 0.7273 & 0.7149 & 0.7028 & 0.6909 & 0.679 \\ 1.00 & 0.8295 & 0.8153 & 0.8014 & 0.7876 & 0.7741 & 0.7608 & 0.7476 & 0.7344 & 0.7219 & 0.709 \\ \end{array} $
1,05 0,8671 0,8520 0,8371 0,8225 0,8081 0,7939 0,7798 0,7660 0,7525 0,739
14.10 0.9045 0.8885 0.8725 0.8570 0.8417 0.8265 0.8146 0.7970 0.7827 0.768 0.9413 0.9245 0.9075 0.8909 0.8747 0.8588 0.8430 0.8275 0.8124 0.797
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1,23 1,0143 0,9933 0,9764 0,9379 0,9398 0,9220 0,9045 0,8873 0,8703 0,834
1,30 1,0506 1,0505 1,0104 0,9909 0,9718 0,9550 0,9576 0,9166 0,8990 0,881

					; ,					
				v	ALEUR	S DE :	z.			
Vo	1,05	1,10	1,15	1,20	1,25	1,30	1,35	1,40	1,45	1,50
0.05	0, ,04094	0, ,04052	0, ,04010	0, ,03968	0, ,03926	0, ,03884	0, ,03843	0, ,03804	0, ,03760	0, ,03719
0,40	,08115	,08028	,07944	,07855	,07769	,07683	,07597	,07545		,07544
0,45	,12065	,11930	,11796	,11663		,11398	,11267	,11136	,44006	
0,20	,15945	,15760	,45577	,45394	,45243	,45032	,14853	,44678	,14498	,14521
0,25	,19757		,19285	,19051	,18819	,18588	,18360	,18132	,17905	
0,30		,23244	,22923	,22635	,22351	,22067	,24788	,21509	,21232	
0,85	0,2748	0,2683 0,3039	0,2649 0,2999		0,2584 0,2920	0,2547 0,2881	0,2514 0,2842	0,2484		0,2415 0,2727
0,45		0,3389	0,3343		0,3252		0,3163			0,3032
0,50	0,3785	0,3732	0,3680	0,3628	0,5577	0,3526	0,3476	0,5427	0,3377	0,3329
0,55		0,4069	0,4011	0,3953	, ,		0,3783	0,3728		0,3619
0,60		0,4400	0,4336	0,4271	0,4208		0,4084	0,4023		0,3902
0,65	0,4798	0,4725	0,4634	0,4584 0,4890	0,4514 0,4814	0,4445	0,4378 0,4666	0,4311 0,4393	0,4244	0,4179 0,4449
0,70 0,75		0,5359	0,5275	0,4890	0,4814		0,4000	0,4393		0,4449
0,80	0,5764	0,5668	0,5577	0,5486	0,5397	0,5309	0,5224	0,5138	0,5054	
0,85	0,6074	0,5974	0,5873	0,5776		0,5586	0,5494	0,5403	0,5349	
0,90	0,6376	0,6296	0,6164	0,6060	0,3958	0,5857	0,5759	0,5661	0,5565	0,5474
0,95	0,6677	0,6562	0,6450	0,6339	0,6230	0,6423	0,6048	0,3945	0,5842	
1,00	0,6972 0,7263	0,6850 0,7133	0,6734 0,7007	0,6643 0,6882	0,6497 0,6760	0,6384 0,6639	0,6273 0,6522	0,6463 0,6405	0,6034	0,5947 0,6479
1,05	0,7549	0,7412	0,7007	0,7146	0,7017	0,6890	0,6766	0,6643	0,6523	0,6404
1,10 1,15	0,7830	0,7685	0,7545	0,7405		0,0890	0,7005	0,6876	0,6750	0,6625
1,20	0,8107	0,7955	0,7807	0,7660	0,7517	0,7377	0,7240	0,7105	0,6972	
4,25	0,8380		0,8064	0,7910	0,7761	0,7613		0,7329	0,7489	0,7053
1,30	0,8648	0,8480	0,8318	0,8456	0,8000	0,7846	0,7696	0,7548	0,7403	0,7261
	1		1	T	1	1	T	l	1	
V_{o}	1,55	1,60	1,65	1,70	1,75	1,80	1,85	1,90	1,95	2,00
					<u> </u>	<u> </u>		<u> </u>	<u> </u>	
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,05	,03678 ,07 2 60	,03637 ,07176	,03597 ,07093	,03556	,03516	,03476 ,06847	,03436 ,067 6 5	,03397 ,06684	,03357 ,06604	,03318 ,065 2 4
0,15	,10748	,10620	,10492	,40367	.10241	,10116	,09992	,09869	,09746	,09624
0,20	,14147	,13973	,43800	1	,13458	,15288	,13120	,12955	,12787	,12622
0,25	,17458	,17237	.47017		,16582	,16367		,15942	,15732	,15593
0,30	,20685	,20415		,19881		,49356	,19097		,18584	
0,35 0,40	0,2383 0,2690	0,2354 0,2653	0,2319 0,2616	0,2288		0,2226 0,2308	0,2495 0,2472			0,2105 0,2368
0,45	0,2090	0,2038	0,2905		0 2822	0,2782	0,2472			0,2624
0,50	0,3281	0,3233	0,3186		0,3094		0,3003	1 '	0,2913	
0,55	0.3566	0,3513	0,3460	0,3409	0,3358	0,3397	0,3237		0,3159	
0,60	0,3843	0,3785		0,3674		0,3559	0,8504			0,5344
0,65 0,70	0,4115	0,4051	0,3988 0,4242		0,3865 0,4408	0,3804	0,3744	0,3685 0,3914	0,3627 0,3854	0,3570 0,3789
0,76	0.4638	0,4310 0,4363	0,4242	0,4174	0,4108	0,4042	0,3977	0,4136	0,4069	0,4002
0,80	0,4890	0,4810	l '	0,4653	1 '	0,4500	0,4426		0,4280	
0,85	0,5137	0,5054	0,4966	, ,	0,4802	0,4721	0,4641	0,4563	0,4486	0,4410
0,90	0,5378	0,5287	0,5196	0,5108		0,4935	0,4851	0,4767		0,4605
0,95	0,5613	0,5516	0,5421		0,5235	0,5144	0,5055			0,4795
1,00 1,05	0,5844 0,6069	0,5741	0,5640 0,5854		0,5444 0,5647	0,5348	0,5254	0,5161 0,5350		0,4980 0,5160
1,10	0,6289	0.6175		1	0,5846	1	0,5636			0,5355
1,15	0,6504	0,6385			0,6040			0,3334		0,5506
1,20	0,6715	0,6590	0,6467	0,6347	0,6229	0,6113	0,6000			0,5672
4,25	0,6921		0,6662	0,6537	0.6414	0,6293	0,6175	0,6059	0,5945	0,44
N 1,30	0,7122	0.6986	0,6853	0,6722	0,6395	0,6469	0,6346	0,6225	0,6107	l ^o

ī

